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Abstract

The gut microbiota is considered a key ‘metabolic organ’. Its metabolic activities play essential roles complementary to the
host metabolic functions. The interplays between gut microbes and commonly used non-antibiotic drugs have garnered
substantial attention over the years. Drugs can reshape the gut microorganism communities and, vice versa, the diverse gut
microbes can affect drug efficacy by altering the bioavailability and bioactivity of drugs. The metabolism of drugs by gut mi-
crobial action or by microbiota–host cometabolism can transform the drugs into various metabolites. Secondary metabolites
produced from the gut microbial metabolism of drugs contribute to both the therapeutic benefits and the side effects. In
view of the significant effect of the gut microbiota on drug efficiency and clinical outcomes, it is pivotal to explore the inter-
actions between drugs and gut microbiota underlying medical treatments. In this review, we describe and summarize the
complex bidirectional interplays between gut microbes and drugs. We also illustrate the gut-microbiota profile altered by
non-antibiotic drugs, the impacts and consequences of microbial alteration, and the biochemical mechanism of microbes
impacting drug effectiveness. Understanding how the gut microbes interact with drugs and influence the therapeutic effi-
cacy will help in discovering diverse novel avenues of regulating the gut microbes to improve the therapeutic effects and
clinical outcomes of a drug in precision.
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Introduction

A gigantic amount of microorganisms, including bacteria, vi-

ruses, fungi, and archaea, are co-residing in the human gastro-

intestinal (GI) tract, living in a commensal relationship with

humans [1]. They are involved in the regulation of a multitude

of host metabolic aspects, contributing to the digestion of foods,

signaling transmission, and immunity development [2–5].
Intestinal microbiota can affect host physiology and disease

pathogenesis through its structural component lipopolysaccharide
or secreted metabolites that transmit via blood circulation [6].

Alterations of the gut microbiome are associated with several
physical conditions, including gastrointestinal dysfunctions, car-
diovascular diseases, metabolic disorders, and even diseases asso-
ciated with psychiatric abnormalities [7–10]. In addition, the
interest in associations between gut microbes and non-antibiotic
drugs usage has been growing in recent years. Importantly, oral ad-
ministration of medication is a convenient and widely used medi-
cation administration route by which drug digestion and
absorption are mostly carried out in the GI tract. Therefore, gut
microbes are considered a key participator in drug metabolism.
Research has shown that the gut microbiota was able to influence
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the effect of >30 approved drugs [11] and that >200 approved com-
pounds can inhibit the growth of at least one bacterium [12].

The clinical outcomes are various after the administration of
the same medication in patients. Some individuals experience
significant improvements whereas others see less of a benefit
or even no improvements at all [13]. Considering that the hu-
man gut microbiota is highly individualized, it leads one to
speculate that gut microbiota is one of the primary variates de-
termining the effectiveness of the drugs. Knowledge of how hu-
man gut microbiota affects drug pharmacokinetics and
pharmacodynamics over the last decades has made big strides
and further advance our understanding of inter-individual var-
iations in drug efficacy and adverse effects. In this review, we
discuss the complex bidirectional interactions between com-
monly used non-antibiotic drugs and the gut microbiome, and
describe the microbial impact on drug efficacy and safety un-
derlying biochemical mechanisms. Elegant examples of drug–
microbiome interactions are provided, including the drugs
metformin and proton-pump inhibitors (PPIs) that modulate
microbiome composition and functions [14, 15] (Figure 1).
Meanwhile, the gut microbiota can influence the treatment effec-
tiveness of a specific drug by impacting its concentration and bio-
activity, such as in the cases of statin, levodopa, and digoxin
(Figure 1). Understanding the relationship between the gut micro-
biota and non-antibiotic drugs could provide us with useful and
valuable instructions for assessing current drug-administration
routes and the development of precision medicine.

Metformin alters the gut microbiome of type 2
diabetes patients, contributing to its
therapeutic effects

Type 2 diabetes is a disorder of blood glucose regulation (hyper-
glycemia) primarily arising from insulin resistance [16].

Treatment involves drug therapy and lifestyle intervention,
where the blood-glucose-lowering compound metformin is the
most viable drug option for type 2 diabetes [17]. The primary
metabolic effect of metformin is inhibiting gluconeogenesis in
the liver [18]. Compared with oral dosing, intravenously admin-
istered metformin does not enhance blood glucose regulation
[19], underscoring a potentially critical role of the GI tract and
its inhabiting microbes in this process. The fact that microbial
mediation has beneficial effects on glucose metabolism under
metformin treatment was revealed in both animals and
humans [20, 21]. In humans, the changes in the abundance of
the phyla Firmicutes and Bacteroidetes were significantly corre-
lated with changes in serum cholic acid and its conjugates,
which were elevated after metformin withdrawal [21]. It sug-
gests that such microbiome changes may contribute to the ther-
apeutic effect of metformin. In a murine study, higher
abundance of the mucin-degrading bacteria Akkermansia and
more mucin-producing goblet cells were observed in metfor-
min-treated, high-fat diet (HFD)-fed mice than in HFD-fed mice
without metformin treatment [20]. Increased Akkermansia muci-
niphila significantly enhanced glucose tolerance and attenuated
adipose tissue inflammation in HFD-fed mice [20]. Meanwhile,
another murine study revealed that the reduction in Bacteroides
fragilis abundance and its selective bile salt hydrolase (BSH) ac-
tivities both contributed to the improvement in glucose toler-
ance induced by metformin [22]. These data indicate that
A. muciniphila and B. fragilis may enhance the therapeutic effect
of metformin through immune-modulation and microbial met-
abolic processes.

Alterations in the gut microbiome composition and func-
tions induced by metformin treatment were demonstrated in
both mice [20] and humans [22, 23]. Moreover, metformin-
induced changes in the gut microbiota are also diet-dependent
[20]. HFD induced an increase in the abundance of Firmicutes

Figure 1. Overview of interactions between non-antibiotic drugs and the gut microbes.
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and a decrease in the abundance of Bacteroidetes and
Verrucomicrobia in mice compared with those fed with a normal
chow diet (NCD) [20]. Metformin administration led to a profound
shift in the fecal microbial profile of HFD-fed mice, where the
abundances of Firmicutes, Bacteroidetes, and Verrucomicrobia
were largely changed [20]. In contrast, there were no significant
differences in these phyla between NCD-fed mice with and with-
out metformin treatment. The abundances of 29 bacterial genera
were differentiated between mice treated with and without met-
formin, which suggests that metformin is associated with
changes in these taxa [20]. The relative abundance of
Akkermansia, Parabacteroides, Odoribacter, Alistipes, Blautia, and
Lactonifactor was altered by HFD, but metformin restored the
abundances of these taxa to levels comparable with that in NCD-
fed mice [20]. In particular, Akkermansia was considered a domi-
nant contributor to the gut-microbiome difference between HFD-
fed mice with and without metformin treatment [20].

This finding was verified in humans, further supporting that
A. muciniphila was the most increased taxon and the mere spe-
cies that was increased in abundance in response to metformin
[23]. Associations of metformin usage and the abundance of
Bifidobacterium adolescentis [24], Escherichia coli [25] and A. mucini-
phila [20] were also observed. In vitro, the growth of B. adolescentis
and A. muciniphila was promoted by metformin in pure cultures
yet no promotion effect was seen for E. coli [23]. To further inves-
tigate the functionality changes in the gut microbiome in re-
sponse to metformin exposure, fecal samples from humans
were cultured in a gut-simulator system with the presence of
metformin, followed by whole-genome shotgun sequencing at
both the DNA and RNA levels [23]. The results showed that
microbiome pathways involved in butyrate and pyruvate me-
tabolism were enriched in the metformin-treated group com-
pared to the control group [23]. When gut microbes obtained
from metformin-treated subjects (before and post-treatment)
were transferred to germ-free mice fed a HFD, glucose tolerance
was enhanced in mice who received fecal microbiota from post-
treatment samples as compared with those who received fecal
microbiota from baseline (before-treatment) samples [23]. A
greater abundance of Akkermansia induced by metformin was
demonstrated to improve the glucose tolerance in mice fed a
HFD, the beneficial effect of which was similar to that of
metformin-administrated mice fed a HFD [20]. Akkermansia had
an anti-diabetic effect by reducing stromal vascular fraction in-
flammation in visceral adipose tissue, which was involved in
the pathophysiology of insulin resistance, and by restoring the
levels of Treg proportion comparable with that in metformin-
treated mice fed a HFD [20]. Akkermansia could increase insulin
signaling in HFD-fed mice through regulating immune
responses [26]. In addition, metformin improved hyperglycemia
via the B. fragilis–intestinal farnesoid X receptor (FXR) axis [22].
FXR is involved in multiple metabolic disorders by influencing
glucose and lipid homeostasis [27, 28]. FXR deficiency was asso-
ciated with reduced adipose tissue mass and was accompanied
by glucose homeostasis and improved adipose tissue insulin
sensitivity [29]. Activation of FXR induced the expression of fi-
broblast growth factor 15 (in mice) and 19 (in humans and other
species), while metformin could suppress its activation by act-
ing on its signaling processes [22]. Interestingly, the level of FXR
expression was comparable between the mice treated with met-
formin plus antibiotics and mice treated with antibiotics only
[22]. Hence, gut microbiota is an essential factor in intestinal
FXR signaling suppression during metformin treatment. As bile
acids are significant messengers in the FXR signaling, mice
were gavaged with a FXR agonist taurocholic acid along with a

mixture of bile acids including chenodeoxycholic acid (CDCA),
glycoursodeoxycholic acid (GUDCA), and tauroursodeoxycholic
acid (TUDCA) to probe their roles in the metformin–micro-
biome–the host axis [22]. CDCA promoted taurocholic acid-
induced intestinal FXR signaling while GUDCA and TUDCA alle-
viated this activated signaling, suggesting that GUDCA and
TUDCA are potential FXR antagonists [22]. Further, the abun-
dance of B. fragilis was found to be positively correlated with
FXR-activated signaling and negatively correlated with the level
of potential FXR antagonists, including GUDCA and TUDCA, in
stool and serum samples [22]. Interestingly, metformin could
inhibit the growth of B. fragilis and downregulated BSH gene ex-
pression in B. fragilis to increase GUDCA levels to inhibit FXR sig-
naling [22] (Figure 2). Collectively, metformin has an anti-
diabetic effect through mediating the level and activities of B.
fragilis and influencing the FXR signaling in the gut. Bacteroides
fragilis administration markedly abrogated the effect of metfor-
min, characterized by impaired glucose tolerance and insulin
sensitivity [22]. All these studies in rodents and humans suggest
that gut microbial changes induced by metformin might en-
hance its therapeutic effect. The B. fragilis–GUDCA–FXR axis rep-
resents a critical inner working mechanism for the effect of
metformin–microbiome cooperation on the host.

Alterations in gut microbiota by cholesterol-
lowering drugs and its possible beneficial roles
in drug metabolism

The relationship between rosuvastatin (a commonly used
cholesterol-lowering drug of the statin class) and the gut micro-
biota was extrapolated from a clinical trial [30]. Blood lipid levels
of 64 patients with hyperlipidemia showed a significant reduc-
tion after the rosuvastatin treatment [30]. Interestingly, blood
lipid levels of half of patients slumped to normal levels, pre-
sented by a reduction in the low-density lipoprotein cholesterol
(LDL-C) levels (58.5%) and total cholesterol levels (26.6%), while
blood lipid levels of the other patients remained high after the
rosuvastatin therapy [30]. On the consideration that the various
gut-microbiome compositions across humans might account
for the observed variations in rosuvastatin treatment efficacy,
the authors found that bacteria from Firmicutes and
Fusobacteria had a negative correlation with LDL-C levels while
Cyanobacteria and Lentisphaerae had a positive correlation
with LDL-C levels [30]. In a separate study conducted in mice,
blood levels of triglycerides, total cholesterol, and LDL-C were
reduced after a 2-week statin treatment [31]. However, the level
of LDL-C from the statin-plus-antibiotics-treated group
(microbes-depleted) was remarkably higher than the LDL-C
level from the statin-treated group [31]. These data together
suggest that the intestinal microbiome contributed to the effec-
tiveness of the statin [31].

The genera Bacteroides, Butyricimonas, and Mucispirillum were
found to be enriched in atorvastatin- and rosuvastatin-treated
mice, where rosuvastatin was more effective than atorvastatin in
restoring the altered gut microbiota induced by HFD [32].
Moreover, the abundances of these bacteria were closely corre-
lated with host inflammation markers [32]. In addition, fecal
microbiota from rosuvastatin-treated mice improved serum glu-
cose and glucose tolerance in HFD-fed mice [32]. In humans,
Blautia and Anaerostipes were positively associated with butyric
acid production, whereas these bacteria were depleted in patients
with acute coronary syndrome. However, acute coronary syn-
drome patients treated with statins had a comparable level of
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Blautia and Anaerostipes to that of healthy individuals [33]. These
results imply that statins can restore the gut-microbiota profile
that are altered in a disease setting, whereas the microbiome
may work in synergism with the drug on the host.

The bioavailability of cholesterol-lowering drugs could be af-
fected by gut microbiota via modulating the metabolism of bile
acids. In humans, bile acids and statins share the same three
transporters in the intestine: multidrug resistance gene 1 P-gly-
coprotein, multidrug resistance-associated protein 2, and or-
ganic anion-transporting polypeptide 1B1 [34, 35]. Therefore,
the bile acids pool can compete with cholesterol-lowering drugs
for transporters, consequently affecting the bioavailability and
therapeutic efficacy of these drugs. In this process, the gut
microbiota may play a role by regulating the bile acid profile.
Study has revealed that increased plasma concentrations of
simvastatin are positively correlated with the levels of several
secondary bile acids [36]. One hypothesis is that the gut micro-
biota calibrates the bile acid profile impacting the competition
between bile acids and statins in contending for transporters on
host cells, leading to bioavailability differences in statins and its
therapeutic effectiveness across different individuals due to
variations in gut-microbiome configurations.

Gut microbes reduce the bioavailability of
levodopa through decarboxylation

Accumulating evidence suggests that a low diversity of gut
microbiota is associated with mental-health disorders such
as attention deficit hyperactivity disorder [37, 38]. When the

mice got a fecal transplant from depressed patients, recipi-
ent mice developed depression-like behaviors, indicating a
crucial role for microbiome in such a disease [39, 40].
Similarly, the gut microbiome can influence the effect of psy-
chotropic drugs in modulating host mental health [41].
Parkinson’s disease (PD) is a neurological movement disorder
that leads to shaking and difficulty in walking and balance,
affecting >1% of the population aged >60 years [42]. The
most potent medication for PD is levodopa (L-dopa), which is
prescribed to alleviate motor symptoms [43]. L-dopa is
absorbed into the intestine and must enter the brain so as to
be converted by the aromatic amino acid decarboxylase to
the neurotransmitter dopamine for it to be functional in co-
ordinating signaling from the brain to muscles [44]. However,
the GI tract is one of the major sites for dopa decarboxyl-
ation, rendering that dopamine synthesized in the periphery
hardly crosses the blood–brain barrier, resulting in ineffec-
tive medication of dopa [45, 46]. One major pathway contrib-
uting to this ineffectiveness is the consecutive gut microbial
dihydroxylation that converts L-dopa into non-therapeutic
m-tyramine [47, 48]. Thereby, the bioavailability of L-dopa to
the brain at the site of active gut microbial metabolism is one
key factor determining drug efficacy. Eradication of specific
bacterial clusters via antibiotics was found to improve the L-
dopa therapy in both humans and mice, suggesting that drug
efficacy is counteracted by certain gut bacteria [49, 50].
Moreover, peripheral dopamine may result in side effects in
the GI tract as well as orthostatic hypotension and cardiac
arrhythmias [51]. Overall, the gut-microbiota-mediated L-dopa

Figure 2. Regulation of gut microbiota–bile acid–farnesoid X receptor (FXR) axis to improve type 2 diabetes. Metformin reduces the abundance of B. fragilis and inhibits

bile salt hydrolase (BSH) activity. These changes can further increase levels of GUDCA (endogenous FXR antagonists) and suppress the FXR signaling. It shows benefi-

cial effects on metabolic diseases dependent on intestinal FXR inhibition.
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metabolism may lead to poor clinical outcomes and side
effects [52].

The impact of L-dopa on the gut microbiota of PD patients
has also been revealed in a longitudinal study to examine
the gut microbiota composition in PD patients before and after
L-dopa administration. A lower relative abundance of
Clostridium group IV was observed in PD patients who experi-
enced an obvious or moderate improvement in motor impair-
ment in response to L-dopa compared with those with a small
response [53]. Alterations in the microbiome functions were
also observed after treatment. A strong positive correlation be-
tween bacterial tyrosine decarboxylase (tdc) gene relative abun-
dance and L-dopa treatment dose as well as the duration of
disease was observed [54]. Moreover, the tdc gene in the fecal
microbiota was significantly correlated with L-dopa dosage,
suggesting bacterial tdc may play a role in L-dopa efficacy.

Rekdal and his colleagues [55] identified a candidate L-dopa
decarboxylating enzyme, PLP-dependent tyrosine decarboxyl-
ase (pyridoxal 50-phosphate TyrDC) that was encoded by the
bacterium Enterococcus faecalis. TyrDC was involved in drug me-
tabolism by catalysizing the decarboxylation of L-dopa to dopa-
mine [55]. Another dopamine dehydroxylating strain from the
species Eggerthella lenta was also isolated, where expression as-
sociation was found between PLP-dependent decarboxylase and
molybdenum cofactor-dependent dopamine dehydroxylase
(Dadh) enzyme, corroborating that L-dopa could be sequentially
metabolized into m-tyramine [55]. The abundance of E. faecalis,
TyrDC, dadh, L-dopa, and dopamine metabolism in the gut
microbiota from PD patients were all inter-connected, suggest-
ing that these microorganisms and their metabolism are rele-
vant in L-dopa conversion [55]. Hence, to make L-dopa more
effective in PD patients harboring such L-dopa-utilizing bacte-
ria, inhibitors of gut bacterial L-dopa decarboxylation are pro-
posed to be co-administered. Considering tyrosine is a substrate
preference by TyrDCs, a mimic (S)-a-fluoromethyltyrosine
(AFMT) was considered and used to reduce L-dopa decarboxyl-
ation, which improved the therapeutic effect in PD mice [55].
When a mixture of L-dopa and AFMT was administered to E. fae-

calis-colonized mice, it led to an elevation in the level of L-dopa
in serum [55].

PPIs alter the composition of the gut
microbiota and increase the risk of enteric
bacterial infection

PPIs are commonly used to reduce stomach acid in acid-related
disorders and prevent gastroduodenopathy and bleeding [56].
Although few side effects are reported in PPI users, the absolute
number of PPI users presenting adverse drug responses is still
high [57]. 16S rDNA-based study revealed that patients with in-
flammatory bowel disease and patients with irritable bowel
syndrome are associated with lower diversity and changes in
20% of the gut microbiota (with relative abundances decreased
or increased) after PPIs treatment [58]. While the disease itself is
a confounding factor when interrogating the effect of PPIs on
the gut microbiome, it precludes us from dissecting the effects
of disease vs PPIs usage on the gut microbiome. To tease apart
the effect of PPIs usage vs disease in affecting the gut micro-
biome, there have been a handful of studies investigating the
effect of PPIs intake on gut-microbiome composition in healthy
individuals. Two separate trials on 12 healthy volunteers [14]
and 1,827 healthy twins [59] who voluntarily took PPIs showed
that PPIs induced considerable changes in taxonomic composi-
tion. The former study found that taxa associated with
Clostridioides difficile infection were significantly changed after
PPIs administration [14], whereas the latter study found that the
gut microbiome of PPI users was characterized by a lower abun-
dance of commensal bacteria and lower microbial diversity
compared with non-users [59]. Overall, the gut microbiome of
PPI users had a reduction in the abundance of Ruminococcaceae

and Bifidobacteriaceae, and an elevation in the abundance of
Enterobacteriaceae, Enterococcaceae, and Lactobacillaceae compared
with non-PPI users [14]. Changes in the microbial taxon and
functionality were positively correlated with a higher drug dos-
age [60]. A higher resolution of taxonomic and functional path-
way interrogation was facilitated by metagenomic sequencing.
PPIs accounted for most of the observed associations between
drugs and gut-microbiome alterations amongst the associations
between 42 commonly used drugs and the gut microbiome [60].
Beyond that, PPIs were the only drug category associated with
gut-microbiome compositional changes across all cohorts [60].

Figure 3. Schematic representation of digoxin-to-dihydrodigoxin conversion with the involvement of E. lenta. The heme binding domain of Cgr1 transfers electrons to

the extra-cytoplasmic terminal electron reductase Cgr2 through heme, resulting in reduction of digoxin to dihydrodigoxin.
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PPI-induced changes in the predicted microbial functions in-
clude fatty acid, lipid and L-arginine biosyntheses [60].

It is vital to recognize that microbiome changed by PPIs may
actually contribute to the pathogenesis or progression of some
clinical diseases. Accumulating studies found that loss of specific
bacterial taxa results in weakened resistance to enteric infections,
including those caused by Clostridioides difficile and by Salmonella,
which were frequently observed in PPI users [61, 62]. The odds ra-
tios were estimated 1.5–1.8 for infection with C. difficile and 2.0–4.0
for infections with other pathogens after PPIs treatment [63]. It is
known that antibiotics administration induces dysbiosis of gut
microbial ecology that makes one vulnerable to C. difficile infection
afterwards; this is also true for PPIs usage [64]. In addition, one
study showed that PPI treatment was associated with the clinical
course in decompensated liver cirrhosis, where the gut micro-
biome mediated this process [65]. PPI abuse in early childhood
was associated with long-term changes in the gut-microbiome de-
velopment and obesity in later life [66]. Although the efficacy and
safety profile of PPIs are favorable, the medical community should
embark on assessing the functional consequences and impacts of
the changed gut microbiome by PPIs.

Gut flora causes inter-individual variations in
the metabolism of digoxin

Orally administered cardiac glycoside drug digoxin is known to
control heart problems, such as irregular heartbeats (arrhyth-
mias) including atrial fibrillation, and it also helps to manage
the symptoms of heart failure [67]. However, �10% of patients
experienced a lower benefit of digoxin due to the substantial
conversion of digoxin into relatively inactive metabolites, dihy-
drodigoxin and dihydrodigoxigenin [68]. One of the major sites
of this conversion is again carried out in the GI tract, where me-
tabolism of digoxin by gut microbes was well established [69,
70]. Moreover, antibiotic pretreatment reduced the secretion of
dihydrodigoxin in urine and increased the level of digoxin in
blood, hinting at an increase in digoxin bioavailability in the
host [68]. More than 40% of ingested digoxin was converted into
inactivate metabolites before its absorption in the gut; the role
of gut microbiota in digoxin efficiency reveals an extra layer of
information about the microbial contribution to host health
that is independent of human metabolism [71].

Research has identified some strains of digoxin-
metabolizing gut bacteria, such as E. lenta, in individuals who
can reduce the level of digoxin [72]. A two-gene cytochrome-
encoding operon (namely the cardiac glycoside reductase, cgr)
was also significantly upregulated in the presence of digoxin
[73]. This cgr operon functions by producing a protein–Cgr1–
Cgr2 complex that binds to digoxin and accounts for digoxin’s
consequent reduction due to the proteins that are homologous
to bacterial cytochromes and are therefore potentially capable
of using digoxin as an alternative electron acceptor (Figure 3).
Two E. lenta strains that lack the operon were unable to inacti-
vate digoxin [74]. Others found that amino acids, especially argi-
nine, serve as the main source of nitrogen and carbon for
E. lenta but it simultaneously inhibits digoxin inactivation [72,
73]. Therefore, a high-protein diet can help to improve the effi-
cacy of digoxin in those patients who carry cgrþE. lenta.

Conclusion and perspectives

We herein describe and summarize the relationship and inter-
plays between non-antibiotic drugs and the gut microbiome.

Clinicians and scientists should be aware that, beyond antibiot-
ics, non-antibiotic drugs can also influence the gut-microbiome
configuration and development, which may ultimately enhance
or impair host health and clinical outcomes. Meanwhile, as the
pharmaco-microbiomes field is coming to the surface and get-
ting attention, a comprehensive understanding of how gut
microbes metabolize/utilize/bio-transform drugs will open new
potential avenues for regulating the gut microbiome to improve
the efficacy of drugs and biologics. There are many clinical trials
underway. For example, the clinical trial NCT04208958 (EudraCT
number 2010–022394-34) is evaluating the safety and efficacy of
VE800, a commensal bacterial strain formulation, in combina-
tion with Nivolumab in patients with several metastatic cancer.
Another ongoing clinical trial (NCT03637803) aims to investigate
the safety and efficacy of pembrolizumab in combination with a
single bacterial strain Enterococcus gallinarum in patients with
solid tumors. These trials and results would influence clinical
practice in the foreseeable future.
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