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Abstract: In wireless sensor networks (WSN), a sink node receives signals from a large number of sen-
sor nodes. Hence, the sink nodes are required to integrate compact antennas with high performances,
such as high gain, dual polarizations, and omnidirectional radiation. In this paper, a high-gain
omnidirectional dual-polarized (HGODP) antenna with a slot-cavity structure is proposed for WSN.
The proposed antenna integrates dual omnidirectional antennas with orthogonal polarizations, i.e., a
thin open-ended cavity for horizontal polarization and four folded slots for vertical polarization. Due
to the orthogonal operating modes of the dual polarizations, the antenna configuration is constructed
within a compact volume, but with an independent design. A prototype of the proposed antenna is
fabricated and measured within a ruler-like profile. The experimental results show that the realized
gains are higher than 6.5 dBi and are achieved for both dual polarizations in 2.37~2.54 GHz. With the
merits of high gain, high isolation, and omnidirectional radiation, the proposed compact antenna
exhibits promising usage for sink nodes in WSN.

Keywords: high-gain antenna; omnidirectional radiation patterns; dual-polarized antennas; sink
nodes; wireless sensor networks

1. Introduction

The dramatically booming requirement of wireless sensor networks (WSN) demand
more sensor nodes with sensing ability for different applications, such as ecological moni-
toring, health surveillance, and traffic control [1–4]. To ensure the stability of a reception
link from plenty of the sensor nodes, high-performance antennas with high gains, orthogo-
nal polarizations, and omnidirectional coverage are required in sink nodes. First, high-gain
antennas allow a longer wireless transmission distance between the sink node and sensor
nodes [5–7]. Second, dual-polarized antennas have the capabilities of avoiding the polariza-
tion mismatch and reducing the system volume compared with a pair of spatially-separated
single-polarized antennas [8–10]. Third, omnidirectional antennas provide a 360◦ full-space
radiation pattern in the azimuthal plane, leading to a broad sensor coverage and flexible
system alignment [11–13].

For high-gain omnidirectional dual-polarized (HGODP) antenna designs, it is critical
to choose radiating elements with consideration of the system dimensions, port isolation,
and gain variation (the difference between the maximum and the minimum gains). Re-
cently, HGODP antennas have been widely studied by three methods. The first one is the
employment of multiple directional dual-polarized antennas in a rotationally symmetric
array [14–20]. For example, an omnidirectional dual-polarized (ODP) antenna composed
of four vertical dipoles and four horizontal dipoles is presented in [14], which suggests that
the port isolation is higher than 25 dB and has a bandwidth of 30%. Reference [15] adopts
an inverted-cone monopole for vertical polarization and two pairs of dipoles for horizontal
polarization. Another method to realize HGODP antennas is to locate a linear array of
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ODP elements. Two types of ODP elements are achieved by locating two orthogonal slots
carved onto a column in [21]. By carving the horizontal-polarized slots on the cavity with
vertical polarization, [22–24] present ODP antennas with high isolation. Besides, the de-
signs in [10,25] realize a high-gain radiation pattern by using an array of several separated
antenna elements at a certain distance. These high-gain antennas combine the antenna
elements of a high profile [21], irregular structure [22–25] or within a certain distance, which
will result in high grid lobes, complicated feeding structures, or large system sizes for array
design. The third potential method to realize HGODP antennas is directly integrating
dual high-gain omnidirectional antennas with orthogonal polarizations. However, the
integration of two single-polarized antennas with high-gain omnidirectional radiation in
the azimuthal plane has not been intensively studied and presented.

In this work, a slot-cavity structure with a ruler-like profile is presented to integrate
dual high-gain omnidirectional single-polarized antennas. As shown in Figure 1, the
proposed HGODP antenna is adopted into the sink nodes and serves multiple sensor nodes
in the azimuthal plane in WSN. For practical applications, the proposed antenna is located
on the same horizontal plane as other sensor nodes, such as the desktop of a smart home
system and the car roof of Internet of Vehicles. In this antenna, a long, open-ended cavity is
fed at its zeroth-order mode along the radiating aperture for horizontal polarization. For
vertical polarization, four folded slots with a proper spacing are etched onto the metallic
cavity. By integrating these two structures with orthogonal polarizations, a prototype of the
antenna is constructed and fabricated. The measured results show that an isolation higher
than 33 dB is achieved in the band of 2.37~2.54 GHz for both dual polarizations. In addition,
the realized gains are higher than 6.5 dBi and are obtained within a compact ruler-like
profile with a size of 250 × 27.8 × 5 mm3 (2λ0 × 0.23λ0 × 0.04λ0, λ0 is the free space
wavelength at 2.44 GHz). Compared with the previous HGODP antenna designs [14–25],
this antenna realizes the integration of a dual high-gain omnidirectional single-polarized
antenna, leading to a compact volume and high isolation. Besides, these two single-
polarized antennas can be designed independently, although they are collocated together.
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2. Antenna Design and Parametric Analysis
2.1. Antenna Configuration

Figure 2 illustrates the evolution process of the proposed slot-cavity antenna with a
ruler-like structure for HGODP radiation. The structure of the horizontal-polarized cavity
is depicted in Figure 2a. When the long cavity is excited uniformly, a series of equivalent
vertical magnetic currents are realized, providing high-gain omnidirectional radiation for
horizontal polarization. For vertical polarization, a group of folded slots is directly carved
onto the column sidewalls, as shown in Figure 2c. When the slots operate at their half-
wavelength mode, several horizontal magnetic currents are equivalently obtained along
the slots, causing omnidirectional vertical-polarized radiation. Based on the dual single-
polarized antennas, a slot-cavity antenna is integrated within a ruler-like profile, as shown
in Figure 2b. The realized horizontal and vertical magnetic currents are perpendicular with
each other, leading to the orthogonal operating modes of dual polarizations. Ultimately,
the proposed antenna achieves HGODP radiation and high port isolation within such a
compact volume. It is worth mentioning that a configuration with a longer cavity and more
slots can satisfy the requirements of higher-gain characteristics. Hence, this extendable
integration method exhibits promising potentials in wireless sensor networks.
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Figure 2. Evolution process of the proposed slot-cavity antenna with a ruler-like structure for HGODP
radiation. (a) Long cavity for horizontal polarization. (b) Antenna with slot-cavity structure for dual
polarizations. (c) Folded slots for vertical polarization. (d) Perspective view and (e) exploded view of
the proposed slot-cavity antenna.

The perspective and exploded views of the proposed antenna are shown in Figure 2d,e.
The yellow part represents copper, and the grey part is the F4BM265 dielectric (εr = 2.65 and
tan δ = 0.002). The proposed antenna is composed of an all-metal cavity with a thickness of
l3 = 5 mm and two feeding networks printed on the substrate with a thickness of h = 0.5 mm.
The width of the metal cavity l1 is optimized at 27.8 mm (a quarter wavelength at the center
frequency of 2.44 GHz), and the whole height of the cavity is 250 mm (two wavelengths at
2.44 GHz). The thickness of the cavity sidewall is t = 0.5 mm. A four-way power divider
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is adopted as the feeding network to uniformly excite the long, open-ended cavity and
is connected to four identical metal probes with a diameter of d = 1.2 mm and a spacing
s1 = 65.5 mm. When fed through Port 1 for horizontal polarization, the thin cavity operates
at the TE0.5,0,0 mode, providing the omnidirectional radiation pattern in the azimuthal plane.
For vertical-polarized radiation, four folded T-shaped slots with a width of w1 = 2 mm are
directly carved onto the sidewalls of the thin cavity, with a spacing of s2 = 46 mm between
two adjacent slots. The total length of each slot is l3 + w3 × 2 + w2 = 46.4 mm, which
is nearly a half of the resonant wavelength at 2.44 GHz. These four slots are microstrip-
fed using another similar four-way power divider feeding network on the other side.
When fed through Port 2, each slot operates at the half-wavelength mode, causing the
azimuthally omnidirectional radiation pattern. By combining the metallic cavity and two
substrates as a sandwich, dual orthogonal-polarized antennas are integrated with a compact
ruler-like structure and high port isolation. Here, all simulated results of the antenna are
numerically analyzed by the commercial software, ANSYS Electronics Desktop 18.0. When
one port is fed for the corresponding polarization, the other port is connected with a 50-Ω
matched load.

2.2. Omnidirectional Radiation for Horizontal Polarization

Figure 3 shows a short cavity with a height of a half wavelength for horizontal
polarization. This cavity has only three metallic sidewalls. By tuning the position of the
metal feeding probe, the thin cavity operates at the TE0.5,0,0 mode (the electric field is within
the distribution of a quarter wavelength along the X-axis but is uniform along the Y-axis
and Z-axis). The equivalent magnetic current causes the omnidirectional radiation pattern
in the azimuthal plane, as illustrated in Figure 3b.
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Figure 3. Geometry of the short cavity for horizontal polarization. (a) Uniform E-field distribution
and equivalent magnetic current on the aperture of a cavity at the TE0.5,0,0 mode. (b) Omnidirectional
radiation pattern in the azimuthal plane.

Figure 4 illustrates the effect of the number of feeding probes on the electric field of the
long cavity. Here, the heights of three cavities are all taken as two wavelengths. When fed
through one feeding port in the middle of the cavity, as shown in Figure 4b, the equivalent
magnetic currents along the cavity aperture are out-of-phase and the thin cavity operates at
the TE0.5,0,2 mode with a one-wavelength electric field distribution along Z-axis. Therefore,
the peak gain in the three-dimensional radiation pattern is not in the azimuthal plane. In
Figure 4c, two feeding ports are utilized to excite the long cavity in the same phase. This
cavity operates at the TE0.5,0,3 mode, and the electric field is mainly in the same direction
on most of the aperture, generating an omnidirectional radiation pattern. However, the
direction of the electric field on the upper and lower part of the aperture is opposite to
that in the middle part, reducing the peak gain in the azimuthal plane. The number of
feeding ports is optimized and finally taken as four, as the field distributions and radiation
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properties are illustrated in Figure 4d. By exciting these four feeding ports in the same
amplitude and phase, the radiating aperture of the long cavity operates at the TE0.5,0,0
mode. The uniform electrical field along the radiating aperture of the cavity results in a
high aperture efficiency. Hence, by utilizing four feeding ports, the thin open-ended cavity
with the height of two wavelengths achieves an omnidirectional radiation pattern in the
azimuthal plane for horizontal polarization.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 12 
 

 

radiation properties are illustrated in Figure 4d. By exciting these four feeding ports in the 
same amplitude and phase, the radiating aperture of the long cavity operates at the TE0.5,0,0 
mode. The uniform electrical field along the radiating aperture of the cavity results in a 
high aperture efficiency. Hence, by utilizing four feeding ports, the thin open-ended cav-
ity with the height of two wavelengths achieves an omnidirectional radiation pattern in 
the azimuthal plane for horizontal polarization. 

 
Figure 4. Uniform electric field distribution on the aperture of the horizontally polarized long cavity 
for high gain. (a) Proposed long cavity with the length of two wavelengths. Electric field distribu-
tions and radiation patterns of horizontally polarized cavities with (b) 1, (c) 2, (d) 4 feeding ports. 

2.3. Omnidirectional Radiation for Vertical Polarization 
Figure 5 illustrates the configuration of the one slot for vertical polarization. A folded 

slot is carved into the middle of the thin cavity with a height of a half wavelength. Two 
dielectric substrates are attached onto the cavity sidewalls, and a microstrip line is 
properly fabricated onto one substrate as the feeding structure. The total length of the slot 
is l3 + w3 × 2 + w2 = 46.4 mm, which is nearly a half of the resonant wavelength at the center 
frequency of 2.44 GHz. By tuning the position and length of the microstrip line, the slot 
element operates at the first-order mode, causing an equivalent magnetic current along 
the slot and an omnidirectional radiation pattern, as shown in Figure 5b. 

Figure 4. Uniform electric field distribution on the aperture of the horizontally polarized long cavity
for high gain. (a) Proposed long cavity with the length of two wavelengths. Electric field distributions
and radiation patterns of horizontally polarized cavities with (b) 1, (c) 2, (d) 4 feeding ports.

2.3. Omnidirectional Radiation for Vertical Polarization

Figure 5 illustrates the configuration of the one slot for vertical polarization. A folded
slot is carved into the middle of the thin cavity with a height of a half wavelength. Two
dielectric substrates are attached onto the cavity sidewalls, and a microstrip line is properly
fabricated onto one substrate as the feeding structure. The total length of the slot is
l3 + w3 × 2 + w2 = 46.4 mm, which is nearly a half of the resonant wavelength at the center
frequency of 2.44 GHz. By tuning the position and length of the microstrip line, the slot
element operates at the first-order mode, causing an equivalent magnetic current along the
slot and an omnidirectional radiation pattern, as shown in Figure 5b.

For vertical polarization, four identically folded slots with spacing s2 are uni-formly
excited and directly carved onto the cavity sidewalls, as depicted in Figure 6. The radiation
properties with different values of s2 are also illustrated, including the peak realized gains
and gain variations in the azimuthal plane. As spacing s2 increases, the peak gain becomes
larger with a narrower main beam in the elevated plane. Due to the mutual coupling
between the slots, an obvious gain variation is realized in the azimuthal plane. When
the space between adjacent slots is selected as s2 = 46 mm, the active impedance match is
achieved and the energy is uniformly quartered on these four slots, causing a gain variation
of less than 6 dB, which is acceptable for practical applications.
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2.4. Dual-Polarized Slot-Cavity Antenna

By integrating the long cavity and group of slots, the proposed dual-polarized antenna
is built with a ruler-like profile. To excite this HGODP antenna, two compact feeding
networks are designed and arranged onto the sidewalls of the cavity. Before the detailed
design of the feeding networks, the mutual coupling between the feeding ports is analyzed
for each polarization. Figure 7a illustrates the mutual coupling between the horizontally
polarized feeding ports #1–#4. As seen, the isolations between adjacent ports, such as S12
and S34, are lower than 12 dB. Here, SMN represents the ratio of the energy received from
Port M to the energy fed through port N when energy is fed through port N. Figure 7b
shows the mutual coupling between the vertically polarized feeding ports #5–#8. It is
obvious that the isolation between adjacent ports is lower than 13 dB. Therefore, when
designing the feeding networks for dual polarizations, the active impedance match of
each port is carried out with consideration for the mutual coupling. Finally, there is a port
isolation higher than 33 dB between dual polarizations in the desired band.

As shown in Figure 8a, two feeding networks are fabricated on the substrates and
located on Sides 1 and 3 of the cavity. Figure 8b shows the topological diagram of two
feeding networks for each polarization. Due to the requirement for compact size, two
quarter-wavelength impedance converters are adopted. The width of the 100 Ω-microstrip
is w100 accepted for the printed circuit board (PCB) process. The feeding networks for two
polarizations have a similar design strategy. The detailed views of the two feeding networks
are shown in Figure 8c,d, respectively. To achieve a compact size, the folded slots are
adjusted into a T-shape. By tuning the position p1 of the probe, the 100 Ω-microstrip causes
the impedance to match horizontal polarization. For the same purpose, the impedance for
vertical polarization is matched by tuning the values of p2 and p3. The detailed dimensions
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are as follows: w50 = 1.33 mm, w70 = 0.73 mm, w100 = 0.34 mm, l0.25 = 21 mm, p1 = 7.8 mm,
p2 = 6.5 mm, p3 = 10.16 mm, g1 = 1 mm, g2 = 1 mm, and g3 = 1 mm.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 12 
 

 

of each port is carried out with consideration for the mutual coupling. Finally, there is a 
port isolation higher than 33 dB between dual polarizations in the desired band. 

 
Figure 7. Mutual coupling between feeding ports for (a) horizontal and (b) vertical polarizations. 

As shown in Figure 8a, two feeding networks are fabricated on the substrates and 
located on Sides 1 and 3 of the cavity. Figure 8b shows the topological diagram of two 
feeding networks for each polarization. Due to the requirement for compact size, two 
quarter-wavelength impedance converters are adopted. The width of the 100 Ω-mi-
crostrip is w100 accepted for the printed circuit board (PCB) process. The feeding networks 
for two polarizations have a similar design strategy. The detailed views of the two feeding 
networks are shown in Figure 8c,d, respectively. To achieve a compact size, the folded 
slots are adjusted into a T-shape. By tuning the position p1 of the probe, the 100 Ω-mi-
crostrip causes the impedance to match horizontal polarization. For the same purpose, the 
impedance for vertical polarization is matched by tuning the values of p2 and p3. The de-
tailed dimensions are as follows: w50 = 1.33 mm, w70 = 0.73 mm, w100 = 0.34 mm, l0.25 = 21 
mm, p1 = 7.8 mm, p2 = 6.5 mm, p3 = 10.16 mm, g1 = 1 mm, g2 = 1 mm, and g3 = 1 mm. 

 

Figure 7. Mutual coupling between feeding ports for (a) horizontal and (b) vertical polarizations.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 12 
 

 

of each port is carried out with consideration for the mutual coupling. Finally, there is a 
port isolation higher than 33 dB between dual polarizations in the desired band. 

 
Figure 7. Mutual coupling between feeding ports for (a) horizontal and (b) vertical polarizations. 

As shown in Figure 8a, two feeding networks are fabricated on the substrates and 
located on Sides 1 and 3 of the cavity. Figure 8b shows the topological diagram of two 
feeding networks for each polarization. Due to the requirement for compact size, two 
quarter-wavelength impedance converters are adopted. The width of the 100 Ω-mi-
crostrip is w100 accepted for the printed circuit board (PCB) process. The feeding networks 
for two polarizations have a similar design strategy. The detailed views of the two feeding 
networks are shown in Figure 8c,d, respectively. To achieve a compact size, the folded 
slots are adjusted into a T-shape. By tuning the position p1 of the probe, the 100 Ω-mi-
crostrip causes the impedance to match horizontal polarization. For the same purpose, the 
impedance for vertical polarization is matched by tuning the values of p2 and p3. The de-
tailed dimensions are as follows: w50 = 1.33 mm, w70 = 0.73 mm, w100 = 0.34 mm, l0.25 = 21 
mm, p1 = 7.8 mm, p2 = 6.5 mm, p3 = 10.16 mm, g1 = 1 mm, g2 = 1 mm, and g3 = 1 mm. 

 
Figure 8. Design of feeding networks in the proposed antenna. (a) Three-dimensional perspective
view of the proposed antenna. (b) Topological diagram of feeding networks for dual polarizations.
Structures of feeding network for (c) horizontal polarization and (d) vertical polarization. Orthogonal
current distributions on the cavity surface for high port isolation. Surface current distributions for
(e) horizontal polarization and (f) vertical polarization.

It is a key issue that the orthogonally polarized antennas achieve a high port isolation.
To verify this in the proposed antenna, the surface current distributions of the dual polar-
izations in the expanded view are depicted in Figure 8e,f. When the cavity is fed through
Port 1 for horizontal polarization, as shown in Figure 8e, the total vector surface currents
(black dash arrows) are in-phase on the opposite edges of the carved slots. When the group
of folded slots are fed through Port 2 for vertical polarization, as shown in Figure 8f, it is
observed that the surface currents are concentrated on the edges of the slots. Moreover,
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the vector surface currents are out-of-phase on the opposite edges of the slots. In algebraic
terms, the current distributions of the horizontal and vertical polarizations are orthogonal
in total. Therefore, a high port isolation is achieved within a compact ruler-like profile.

The operating bandwidth of horizontal polarization can be enhanced by increasing the
cavity thickness l3. The reflection coefficients with different values of the cavity thickness
l3 are depicted in Figure 9. As the cavity is thickened, the area of the radiating aperture
becomes larger, reducing the quality factor of the cavity and broadening the bandwidth.
Considering the trade-off between the volume of the antenna and the bandwidth of hori-
zontal polarization, the value of cavity thickness is chosen as l3 = 5 mm in the proposed
design. Similarly, the vertically polarized bandwidth can be enhanced by increasing the
radiating aperture area, i.e., the slot width.
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3. Fabrication and Measurement

Figure 10 presents photographs of the fabricated prototype. The proposed HGODP
antenna comprises a copper cavity with a thickness of 0.5 mm and two feeding networks
on the substrates F4BM265 (εr = 2.65 and tan δ = 0.002). To connect these structures as a
sandwich, several fixing screws are arranged in the proper place.
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The measured and simulated S-parameters of the proposed antenna are illustrated in
Figure 11a. The −10-dB impedance bandwidth is 2.37~2.54 GHz. The measured result of
the port isolation is higher than 33 dB, indicating that a high isolation is achieved in the
compact ruler-like structure. The discrepancies between the measurement and simulation
are mainly attributed to fabrication errors. Figure 11b shows that the radiation efficiency of
the proposed antenna is higher than 82% for each polarization. Figure 11c gives the peak
realized gains and total antenna efficiencies. The proposed HGODP antenna achieves total
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efficiencies higher than 83% and 84% for the dual polarizations. On the other hand, peak
realized gains of 6.7 dBi and 6.5 dBi are realized in the operating frequency band for the
horizontal and vertical polarizations, respectively.
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Figure 12 illustrates the radiation patterns of the proposed antenna in the operating
frequency band in simulation and measurement. As seen, the measured co-polarized gain
variation of 2.2 dB is achieved for horizontal polarization, and the cross-polarization level
is lower than −15 dB. For vertically polarized radiation, the proposed antenna realizes a
co-polarized gain variation of 5.9 dB and cross-polarization of −14 dB in measurement.
The measured radiation patterns in the XOZ plane also agree with the simulated ones. In
addition, the measured and simulated radiation patterns at 2.40 and 2.48 GHz indicate that
stable omnidirectional radiation are obtained in the operating frequency band.

Table 1 presents a comparison compared with the other literature in terms of the total
volume, realized gain, port isolation, and operating frequency band. Compared with other
HGODP antenna designs, the proposed antenna is designed within an extremely compact
ruler-like structure with a thickness of only 0.04λ0. Besides, the proposed antenna provides
a high port isolation of 33 dB, indicating that the sink nodes within the proposed antenna
have the ability to receive orthogonally polarized signals from different sensor nodes in
wireless sensor networks.
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Table 1. Comparisons of the proposed antenna with the other HGODP antenna in the literatures.

Ref. Volume (λ0
3)

Realized Gain
for HP/VP (dBi) Isolation (dB) Band (GHz)

[16] 8.4 × 0.76 × 0.76 9.4/9.4 26 1.62~2.77

[17] 0.25 × π × 1.472 5.0/5.4 20 1.71~2.69

[19] 0.23 × π × 0.342 5.4/6.9 34 1.70~3.90

[21] 0.664 × 0.088 × 0.088 1.19/3.17 33.5 2.40~2.48

[23] 0.90 × 0.77 × 0.77 2.6/6.6 35 1.80~2.81

This work 2 × 0.23 × 0.04 6.7/6.5 33 2.37~2.54

4. Conclusions

In this paper, a compact HGODP antenna is proposed within a slot-cavity structure by
combining two high-gain omnidirectional antennas for orthogonal polarizations. A long
cavity is designed and excited for a high aperture efficiency and horizontally polarized radi-
ation. For vertical polarization, a group of slots is directly etched onto the cavity sidewalls.
Due to the orthogonal operating modes of the dual polarizations, the proposed antenna
achieves a high port isolation of more than 33 dB. The result also shows omnidirectional
radiation is achieved for both dual polarizations. The proposed compact antenna has the



Sensors 2022, 22, 788 11 of 12

advantages of high gain, omnidirectional radiation, and high isolation, exhibiting valuable
potential for sink nodes in wireless sensor networks.
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