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Type 1 diabetes (T1D) is an autoimmune disease characterized by the immune

cell-mediated progressive destruction of pancreatic β-cells. High-mobility group box 1

protein (HMGB1) has been recognized as a potential immune mediator to enhance the

development of T1D. So we speculated that HMGB1 inhibitors could have anti-diabetic

effect. Sodium butyrate is a short fatty acid derivative possessing anti-inflammatory

activity by inhibiting HMGB1. In the current study, we evaluated the effects of sodium

butyrate in streptozotocin (STZ)-induced T1D mice model. Diabetes was induced by

multiple low-dose injections of STZ (40 mg/kg/day for 5 consecutive days), and then

sodium butyrate (500 mg/kg/day) was administered by intraperitoneal injection for 7

consecutive days after STZ treatment. Blood glucose, incidence of diabetes, body

weight, pancreatic histopathology, the amounts of CD4+T cell subsets, IL-1β level in

serum and pancreatic expressions levels of HMGB1, and NF-κB p65 protein were

analyzed. The results showed that sodium butyrate treatment decreased blood glucose

and serum IL-1β, improved the islet morphology and decreased inflammatory cell

infiltration, restored the unbalanced Th1/Th2 ratio, and down-regulated Th17 to normal

level. In addition, sodium butyrate treatment can inhibit the pancreatic HMGB1 and

NF-κB p65 protein expression. Therefore, we proposed that sodium butyrate should

ameliorate STZ-induced T1D by down-regulating NF-κB mediated inflammatory signal

pathway through inhibiting HMGB1.

Keywords: sodium butyrate, HMGB1, Th1/Th2, type 1 diabetes, streptozotocin

INTRODUCTION

Diabetes, as a non-communicable disease, has become the major cause of mortality and disease
burden in the world. In recent decades, the incidence of diabetes has increased continuously that
the estimated morbidity of diabetes in China was 10.9% in 2013 according to the latest published
national survey (1). Type 1 diabetes (T1D) is characterized by the chronic hyperglycemia resulting
from an immunologic disorder in which the autoreactive immune cells attack insulin-producing
pancreatic β-cells (2). T1D is also known as juvenile-onset diabetes because it usually occurs
in children and young adults (3). So far, the most suitable treatment for T1D is still insulin.
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However, the usage of insulin is restricted because of the
inevitable chronical cardiovascular complications caused by
unmanageable blood glucose and destruction of β-cells (4).
Recently, alloislet transplantation has been becoming an
appealing method for T1D treatment is, but therapeutic
approaches are limited due to deficiency of donor (5). In recent
onset of T1D, the insulitis is usually present that is characterized
by immune cell inflammatory infiltration within pancreatic islets
(6, 7), the process is thought to be important for autoimmune
diabetes progression (8). Consequently, it is reasonable to prevent
or treat T1D with some anti-inflammatory agents.

High-mobility group box 1 protein (HMGB1), a highly
conserved chromosomal protein, can be passively released from
damaged cells or secreted from immune cells. It was recognized
as an innate signal to mediate the autoimmune initiation and
progression of the systemic lupus erythematosus and rheumatoid
arthritis (9, 10). HMGB1 was also recognized to be involved
in the development of both type 1 and 2 diabetes (11–13). In
the type 1 diabetes model, streptozotocin (STZ) is a widely
used diabetogenic agent (14), Previous studies have shown
that HMGB1 is activated and the expression is increased in
STZ-induced diabetic mice (15, 16). In addition, Extracellular
HMGB1 was also discovered as proinflammatory cytokine (17,
18). Comparing with early-acting role of TNF-α and IL-1,
HMGB1 was identified as a late-acting cytokine to influence
the progression of sepsis (19), so we speculated that anti-
HMGB1 therapeutics would become an effective approach to
treat inflammation-related autoimmune disease. For example,
administration of anti-HMGB1 antibody reduced the diabetes
incidence and delayed the onset of diabetes in NOD mice (11).
Sodium butyrate, a short fatty acid derivative, is present in human
diet such as butter and cheese and it is also notably produced in
the large intestine through fermentation of dietary fiber (20). It
can act as a direct HMGB1 antagonist, and showed the effects to
attenuate myocardial ischemia/reperfusion injury (21), to protect
against acute lung injury (ALI) induced by severe burn (22),
and to reduce pancreas injury in severe acute pancreatitis (23),
through modulating the expression of HMGB1.

Given the role of HMGB1 in T1D initiation and progression
(11, 15, 16). And sodium butyrate, as a specific HMGB1
antagonist, has shown anti-inflammatory effect in various animal
models, so whether sodium butyrate have some protective effect
on the T1D development through inhibiting the HMGB1? In
current study, we reported the potential beneficial effects of
sodium butyrate in STZ-induced type 1 diabetes mouse model
and its underlying molecular mechanisms.

MATERIALS AND METHODS

Animals
Male BALB/c mice (6–8 weeks, 25 ± 2 g) were purchased from
Wuhan Centers for Disease Prevention & Control and the mice
were bred and maintained in a pathogen-free facility, where
kept the room temperature about 25◦C, humidity about 50%, a
standard 12 h dark/light cycles. The studies were in accordance
with protocols approved by the Institutional Animal Care and
Use Committee (IACUC) at the Yangtze University. The diabetes

was induced by treating the male BALB/c mice multiple low
doses of STZ (Sigma-Aldrich, Shanghai, China). Namely, the
mice were received intraperitoneal injection of STZ at a dose of
40 mg/kg/day (dissolved in 0.1 mol/L citrate buffer, pH 4.5) for 5
consecutive days. Non-diabetic mice were received with an equal
volume of vehicle. To observe the diabetic status of the mice,
the non-fasting glucose from tail blood sampling were monitored
by a glucose meter (OneTouch, LifeScan). Diabetes onset were
diagnosed when blood glucose level >16.7 mmol (300 mg/dl) on
2 consecutive tests (24).

Drug Treatment
Sodium butyrate (Sigma-Aldrich, Shanghai, China) were
dissolved in 0.9% sodium chloride solution and administered
by intraperitoneal injection of 500 mg/kg/day at day 6 after STZ
injection, the treatment were followed for 7 consecutive days.

Serum Collection
The mice were sacrificed at the end of experiment, after
anesthetized with diethyl ether, the blood were collected
using retro-orbital venous plexus puncture and then stayed at
room temperature for 30min, separated the serum through
centrifugation at 12,000× g for 15min at 4◦C. The sera were kept
at−70◦C for ELISA.

ELISA for Cytokine Assay
The amount of IL-1β in serum was determined using a
commercial kit (MultiSciences, Hangzhou, China) according to
the manufacturers’ instructions.

Histological and Morphological Analyses
The mice pancreases were removed and fixed in 4%
formaldehyde at room temperature for 24 h, then the fixed
tissues were infiltrated with paraffin, three series of 4µm
thick sections were prepared and subsequently subjected to
standard hematoxylin and eosin staining to assess the pancreatic
histopathologic changes.

Flow Cytometry Analysis of CD4+T Cell
Subsets
CD4+T cell subsets from the spleen and pancreatic lymph
nodes (PLNs) were determined by flow cytometry. Briefly,
the lymphocyte were isolated from fresh spleen and PLNs
by mechanical dissociation, then centrifuged and adjusted the
supernatant cell number to 2 × 106, erythrocytes were lysed
using red cell lysis buffer (Tiangen, Beijing, China), washed twice
with RPMI-1640 (containing 10% FBS), added 0.5 µl PMA and
BFA (MultiSciences, Hangzhou, China) and incubated for 5 h,
followed by incubation with PE-labeled IL-4, PE-labeled IL-17A,
FITC-labeled CD4, and APC-labeled IFN-γ (BD Pharmingen,
Shanghai, China) at 4◦C for 30min. The cells were then subjected
to flow cytometry analysis.

Western Blot Analysis
Pancreas tissues were homogenized in the RIPA lysis buffer
(MultiSciences, Hangzhou, China) containing various inhibitors.
The lysates were separated by 10% SDS-PAGE and then
electrotransferred onto polyvinylidene difluoride (PVDF)
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FIGURE 1 | Sodium butyrate treatment decreases blood glucose level and delays the onset of diabetes. Male BALB/c mice received STZ treatment by i.p. route at a

dose of 40 mg/kg/day for 5 consecutive days. Sodium butyrate (dose of 500 mg/kg/day, n = 9) or vehicle treatment (n = 8) from day 6 (solid line labeled) for 7

consecutive days after the last STZ injection. (A) STZ induced diabetic mice exhibited lower blood glucose when receiving sodium butyrate treatment compared with

vehicle from day 11 (*p < 0.05). (B) Treatment with sodium butyrate decreased diabetes incidence and delayed the onset of diabetes (*p < 0.01). (C) Sodium butyrate

treatment had no effect on the body weight of the diabetic mice.

membranes. The membranes were incubated with primary
antibody for the protein of interest or anti-β-Actin, the
membranes were washed with Tris-buffered saline with
Tween and incubated with HRP-conjugated secondary
antibody. Immunoreactivity was detected using an enhanced
chemiluminescence reagent (MultiSciences, Hangzhou, China).

Statistical Analysis
Results are shown as mean± standard deviation (SD). Graphical
presentation and statistical analyses were carried out with
GraphPad Prism software. The Student’s t-test were used for
comparison of the mean for two groups (plasma glucose
and body weight).The difference of diabetes onset between
groups were determined using the log-rank (Mantel–Cox) test.
Comparisons between groups for cytokine secretion, the amount
of CD4+T cell subsets and western blot were performed by one-
way ANOVA. P < 0.05 was considered statistically significant.

RESULTS

Administration of Sodium Butyrate
Decreases Plasma Glucose and Delays the
Onset of Diabetes
To determine the effect of sodium butyrate on diabetes, the
mice were intraperitoneal injected with 500 mg/kg sodium
butyrate after the STZ injection. Vehicle-treated mice developed

hyperglycaemia within 7 day after the last STZ injection,
whereas the mice administrated with sodium butyrate exhibited
lower non-fasting serum glucose levels compared with vehicle
group (Figure 1A). Although sodium butyrate can’t block the
progression of diabetes, sodium butyrate treatment significantly
postponed the development of diabetes (Figure 1B). The
incidence of diabetes (non-fasting blood glucose level > 16.7
mmol) was first observed in vehicle group at day 12 compared
with sodium butyrate group at day 21. In addition, we have
also monitored the effect of sodium butyrate on the body
weight and food intake of diabetic mice, but there was no
significant difference between vehicle and sodium butyrate group
(Figure 1C and Supplementary Figure 1).

Pancreatic Histopathologic Changes Are
Improved by Sodium Butyrate
Histological examination of mice pancreases were performed
to evaluate the effect of sodium butyrate on STZ-induced
mice. As shown in Figure 2, the healthy mice had intact islet
morphology. However, islet boundary became a little vague and
cell number inside islet decreased in diabetic mice. Moreover,
heavy inflammatory cell infiltration at one side was evident.
Here, although sodium butyrate treatment could not prevent the
inflammatory cells infiltration, morphology of islet was improved
when compared with vehicle group.
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FIGURE 2 | Sodium butyrate treatment ameliorates the pancreatic histopathologic changes. Hematoxylin and eosin staining of pancreases from healthy mice, vehicle

group, and sodium butyrate treated mice (H&E staining, magnification 1000×).

The Ratio of Th1/Th2 and Th17 Cells Are
Regulated by Sodium Butyrate
It has been reported that the pathogenesis of some inflammatory
diseases are associated with the imbalance of Th1/Th2 and Th17
cells (25–27). We determined whether the anti-diabetic effect of
sodium butyrate are related with the changes of Th1/Th2 in the
spleen and Th17 cells in PLNs. As shown in Figure 3, vehicle
treated diabetic mice showed a higher percentage of Th1 and
lower percentage of Th2 compared with non-diabetic mice. More
importantly, the ratio of Th1/Th2 and Th17 cells in diabetic mice
are higher than non-diabetic mice. Whereas, sodium butyrate
regulated the increased ratio to a relative low level that was closed
to health non-diabetic mice. These results demonstrated that
sodium butyrate should exhibit the anti-diabetic effect through
modulating the unbalanced Th1/Th2 and decreased Th17 cells to
the normal level.

Proinflammatory Cytokine IL-1β Are
Down-Regulated in Sodium Butyrate
Treated Diabetic Mice
Considering the role of proinflammatory cytokines on the
pathogenesis of diabetes, population with detectable levels of
circulating IL-1β cytokines have increased risk to develop
diabetes (28–30). We speculate that sodium butyrate could
relieve diabetes reflected by decreased level of IL-1β. As
expected, diabetic mice showed increased levels of IL-1β,
but sodium butyrate treatment significant decreased the level
(Figure 4). The data suggested that sodium butyrate could inhibit
proinflammatory response of diabetes.

Sodium Butyrate Inhibits the Pancreatic
HMGB1 and NF-κB p65 Protein Expression
Pancreatic HMGB1 and NF-κB p65 protein expression were
analyzed by western blot. Results showed that both HMGB1
and NF-κB p65 protein expression were up-regulated in diabetic
mice compared with healthy non-diabetic mice, in contrast,
the protein expression was markedly down-regulated in the

mice treated with sodium butyrate compared with diabetic mice
(Figure 5).

DISCUSSION

Current strategies for T1D treatment include lifelong insulin
delivery, maintaining normal glycemic level, eating healthy
foods, and keeping to a healthy weight. As is known to us,
people with diabetes have a higher risk to develop one or more
complications, so it is important to control and maintain the
blood glucose within the normal level.

HMGB1, a highly conserved non-histone nuclear protein,
was proven to be involved in the pathogenesis of inflammatory
and autoimmune disease (31), and it can serve as endogenous
alarmin to alert the innate immune system to promote host
defense or tissue repair. The role of HMGB1 in autoimmune
disease was first confirmed in rheumatoid arthritis (RA) (32).
Extranuclear HMGB1expression was increased in the synovia
of patients and animal models with rheumatoid arthritis (RA),
and blockade of HMGB1 expression in experimental animal
models can attenuate the RA (32, 33). In addition, HMGB1 was
also involved in pathogenesis of systemic lupus erythermatosus
(SLE), the patients with SLE show increased level of HMGB1
in the epidermis, and the increased plasma levels of HMGB1
correlated closely with disease activity (34). T1D is also an
autoimmune disease characterized by destruction of the insulin
secreting β-cells, previous study has shown that HMGB1 seems
to be involved in T1D pathogenesis and it can act as a potent
innate alarmin to mediate the initiation and progression during
T1D development in NOD mice, a model of spontaneous T1D
(11). When NOD mice were treated with HMGB1 neutralizing
antibody, the insulitis progression was significantly inhibited
and the diabetes incidence was also decreased (11). HMGB1
was also thought to be involved in the pathogenesis of type 2
diabetes (T2D) (35). It has been reported that serum HMGB1
level was increased in patients with T2D, and in vitro study
showed that high glucose can activate HMGB1 expression in
mesangial cells (35). A recent investigation about the effect of
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FIGURE 3 | Sodium butyrate treatment regulates CD4+ T cell subsets (A). Splenic and PLNs’ lymphocyte originated from sodium butyrate treated mice (n = 5),

vehicle group (n = 5) and healthy mice (n = 3) were harvested for CD4, IL-4, IFN-γ, and IL-17A staining. The percentages of Th1, Th2, and Th17 cells were

determined by flow cytometric analysis (B). The data are listed in the table as means ± SD of three independent experiment. The ratio of splenic Th1/Th2 and Th17

cell in PLNs was significantly higher than healthy mice, whereas sodium butyrate treatment restored unbalanced Th1/Th2 and regulated Th17 cells to normal level.

*p < 0.05, **p < 0.01 vs. healthy group, #p<0.05, ##p<0.01 vs. vehicle group.

HMGB1 on high concentration glucose induced mesothelial cells
(MCs) injury also demonstrated that high glucose promoted
HMGB1 translocation and secretion from the nucleus of MCs
(36). Moreover, it has also been reported that high glucose
can induce retinal pericytes, vascular smooth muscle cells and
human aortic endothelial cells to secret HMGB1 (37–39). So it
is undoubted that HMGB1 expression could be activated under
high glucose induction.

Based on the potential role of HMGB1 in the pathogenesis
of diabetes, It was presumed that HMGB1 inhibitors would
probably affect the diabetes onset. Sodium butyrate is a well-
known short fatty acid derivative and exhibits good anti-
inflammatory property through inhibiting HMGB1 expression.

It has been proven that sodium butyrate showed protective effect
in myocardial ischemia/reperfusion, severe sepsis and ALI by
inhibiting HMGB1 (21, 22, 40, 41). Sodium butyrate can also
improve the performance of diabetic complications (42, 43).
For example, sodium butyrate showed protective effect against
diabetic nephropathy (DN) (42). In a high fat diet (HFD)-
induced type II diabetic model, cardiac function and metabolic
dysfunction were improved by sodium butyrate (43). In addition,
sodium butyrate can prevent the insulin resistance in HFD-
induced obese mice (44).

CD4+ T helper (Th) cells are major T cell subsets that
play a vital role in mediating immune responses. According
to cytokine production and specialized functions, the Th cells
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FIGURE 4 | Sodium butyrate down-regulates proinflammatory cytokine IL-1β

expression in diabetic mice. Levels of serum cytokine IL-1β in sodium butyrate

treatment (n = 9), vehicle group (n = 8) and healthy group (n = 5) mice were

assessed by ELISA. The IL-1β level is increased in diabetic mice compared

with normal, whereas sodium butyrate inhibit its expression. **p < 0.01 vs.

healthy group, ##p < 0.01 vs. vehicle group.

can be classified into at least four distinct Th phenotypes (Th1,
Th2, Th17, and T-regulatory cells). Th1 cells were responded
for cellular immunity through secreting interferon (IFN)-γ (45),
Th1 cells were thought to be involved in the insulin-producing
β-cell destruction in the pancreatic islets (46). Whereas, Th2
cells were mainly involved in mediating humoral immunity
and would actually protect against autoimmune disease (47).
Induction of Th2 cells could lead to dominant protective effect
against T1D development (48). Previous study had shown that
Th1/Th2 imbalance could contribute to pathogenesis of some
autoimmune diseases (26). Th17 cells, another subset of CD4+T
cells, can produce proinflammatory cytokine IL-17 and induce
inflammation to mediate autoimmune pathology. Some evidence
indicated that Th17 cell and its related cytokines had significant
effects on the onset and progression of T1D in both human and
animals (25, 27).

In this study, we evaluated the potential anti-diabetic effect of
sodium butyrate in a STZ-induced T1Dmicemodel.Multiple low
dose injection of STZ led to pronounced pancreatic insulititis,
followed by β-cell destruction and plasma glucose elevation
(14), then the HMGB1 was passively released from damaged
β-cell (11), and it acted as proinflammatory cytokine to enhance
the inflammatory response. We found that sodium butyrate
exhibited the protective effect on streptozotocin-induced type
1 diabetes in mice. Sodium butyrate treatment decreased the

FIGURE 5 | Sodium butyrate inhibits the pancreatic HMGB1 and NF-κB p65 protein expression (A). Western blot analysis of pancreatic HMGB1 and NF-κB p65

protein expression from sodium butyrate group (n = 5), vehicle group (n = 5), and healthy group mice (n = 3). Both HMGB1 and NF-κB p65 expression were

increased in diabetic mice compared with healthy group, however, sodium butyrate down-regulated their expression (B,C). Quantitative analysis of A results are

representative of three independent experiments and data represent the mean ± SD. **p < 0.01 vs. healthy group, ##p < 0.01 vs. vehicle group.
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FIGURE 6 | The potential mechanism of sodium butyrate on STZ-induced type 1 diabetes. STZ, specifically destroys pancreatic β-cells. The damaged β-cells

passively release HMGB1 (11). At the same time, the islets are infiltrated by inflammatory cells such as DCs, macrophages and T cells. Naïve CD4+ T cells are

differentiated into effector Th1 and/or Th17 cells based on their cytokine microenvironment. In addition, the released extracellular HMGB1 targets DCs or macrophage

via the corresponding surface receptor(s), induces a signaling cascade and activates NF-κB pathway (12), therefore leading to the production of proinflammatory

cytokines IL-1β, TNF-α, and IL-6 (49). the unbalanced Th1/Th2/Th17 and proinflammatory cytokines further accelerate the islets inflammation and β-cells destruction

and lead to the onset of type 1 diabetes. Sodium butyrate, as a direct HMGB1 antagonist, could down-regulate the expression of HMGB1 and mediate the balance of

Th1/Th2/Th17 paradigm, thus attenuating type 1 diabetes.

level of plasma glucose and delayed the onset of diabetes. In
order to investigate the mechanism of beneficial effects of sodium
butyrate for T1D, we first analyzed the phenotypes of CD4+

T cells. The results showed that ratio of Th1/Th2 and Th17
were increased in diabetic mice, and sodium butyrate treatment
significantly decreased the proportion of Th1/Th2 in spleen and
Th17 from PLNs. As aforementioned, Th1 and Th17 cell are
closely associated with onset and development of T1D. So it
is not difficult to speculate that sodium butyrate could recover
the balance of Th1/Th2 and inhibit theTh17 cell to the normal
level. Th17 initiated the inflammation through stimulating the
production of proinflammatory cytokines, IL-1β, IL-6, and TNF-
α and in turn accelerated β-cell destruction (49). And our results
demonstrated that sodium butyrate treatment did decrease the
level of IL-1β in serum. To further address the underlying
mechanism of sodium butyrate, we determined the NF-κB p65
expression. Because NF-κB is an important transcription factor
that regulates the inflammatory gene expression. An in vitro
study showed high glucose mimicking diabetes can lead to
the activation of NF-κB and subsequent increased expression
of inflammatory chemokines and cytokines (35, 50). In our
study, NF-κB p65 expression was increased in diabetic mice,
indicating NF-κB signaling pathway is involved in pathogenesis
of the streptozotocin-induced type 1 diabetes model. Whereas
treatment with sodium butyrate can inhibit the NF-κB p65

levels. Therefore, the main results can be summarized in
Figure 6. Briefly, STZ directly targets and destroys pancreatic
β-cells, then HMGB1 was passively released from damaged
β-cells (11), and interacts with DCs or macrophage via the
corresponding surface receptor(s), induces a signaling cascade
and activates NF-κB pathway (12), therefore leading to the
production of proinflammatory cytokines (such as IL-1β), the
cytokines together with unbalanced Th1/Th2/Th17 accelerate the
islets inflammation and β-cells destruction and finally develop
into diabetes, high glucose would promote HMGB1 expression
and further aggravate the diabetic condition through positive
feedback effect of HMGB1 and high glucose. Whereas, sodium
butyrate, as a direct HMGB1 antagonist, could down-regulate the
expression of HMGB1 andmediate the balance of Th1/Th2/Th17
paradigm, thus attenuating type 1 diabetes.

Additionally, emerging evidences have implicated that
gut bacterial composition may be associated with disease
development and progression of T1D in both animal and human
(51, 52). And a recently study has also suggested that short
chain fatty acids (including sodium butyrate) treatment to rat
breeders can ameliorates T1D in the offspring through reshaping
the intestinal microbiota (53). So we speculate that sodium
butyrate, to some extent, could restore the balance of intestinal
flora to maintain metabolic homeostasis in the STZ-induced
T1D mice. And we would perform experiments to observe the
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effect of sodium butyrate on intestinal microbiota composition
in the future, such as Lactobacillus and Bifidobacterium that are
associated with the progression of T1D (54).

Altogether, our data suggest that sodium butyrate ameliorates
STZ-induced type 1 diabetes. The beneficial effects could be
attributed to the effects of sodium butyrate on restoring the
unbalanced Th1/Th2/Th17 paradigm and inhibiting NF-κB-
mediated inflammatory pathway. Therefore, sodium butyrate
would become a beneficial dietary supplementation for T1D
patients.
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