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Wilson disease is a rare autosomal recessive condition caused by mutations in the copper-
transporting ATPase ATP7B gene (OMIM: 606882) provoking loss of function and resulting
in variable hepatic and neurologic symptoms. Currently, the treatment of Wilson disease
focuses on achieving a negative copper balance either with chelators (e.g., D-penicillamine,
trientine, and tetrathiomolybdate) or zinc, which reduces copper absorption, or a combination
thereof.1 However, these lifelong treatment regimens often cause side effects and do not restore
normal copper metabolism.

Recently, the construction and characterization of an AAV8 vector system in which the human
ATP7B cDNA is placed under the control of the liver-specific human α1-antitrypsin (AAT)
promoter has been described.2 This targeted therapy showed clear and robust long-term benefit
in the Atp7b−/− mouse model, representing a well-established model for therapeutic inter-
ventions such as drug, gene, and cell therapy.3 In particular, the AAV8 vector induced a dose-
dependent therapeutic effect as assessed by reduction in serum transaminases and urinary
copper excretion, normalization of serum holo-ceruloplasmin, and restoration of physiologic
biliary copper excretion in response to copper overload without any side effects.2 Although the
findings of this study are overall promising, the therapeutic effects from reducing cerebral
copper have not been tested yet.

We have previously analyzed in detail the age-dependent accumulation of copper in theAtp7b−/−

mouse model in which a portion of the Atp7b exon 2 is replaced by a disruption cassette
incorporating an early termination codon and a frameshift mutation giving rise to a shortened
mRNA, which is not capable to produce detectable levels of ATP7B protein.4 This former
analysis in respective mice revealed about a twofold stable increase in copper throughout the
brain parenchyma, whereas in periventricular regions, copper was decreased by a factor of up to
3.5, especially in the fourth ventricle where lumen was systematically discernable in null but not
in wild-type animals.5 It is known that these impairments of homeostatic mechanisms in brain
copper metabolism are connected with distinct cognitive alterations, neurodegeneration, and
morphologic changes of normal astrocyte architecture, which are the consequences of varying
regional susceptibility to copper within the brain.5 Therefore, for the successful development of
future adeno-associated virus (AAV)-based gene therapy as a novel option in themanagement of
human Wilson disease, it will be of fundamental importance to investigate the effect of the
transgene on cerebral copper concentration and distribution.

To test whether the AAV8-based therapy allows for the correction of cerebral copper overload in
the Atp7b null mice, we extended the previous study and performed laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS) on brain tissue sections of male homozygous
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Atp7b null mice. To do so, 6-week-old Atp7b−/− mice (n = 6)
received an injection of AAV8 expressing a codon optimized
(co) version of an ATP7B mini gene (miATP7B) engineered
to allow optimize expression in mouse. The construct was
directed under transcriptional control of the human AAT
promoter (AAV-AAT-co-miATP7B) at a dose of 1 × 1011 vg/
mouse, whereas another group of Atp7b−/−mice (n = 5) of the
same age was left untreated. Moreover, we have incorporated
a group of age-matched Atp7b+/− littermates (n = 6) taken as
a healthy control group because these heterozygous animals
show no alterations of copper metabolism and expression of
the ATP7B protein compared with wild-type controls.3

Animals were sacrificed 14 weeks later, brains were harvested,
and 30-μm thick tissue cryosections were prepared for LA-
ICP-MS metal imaging. This technique has multielement

capability and allows for the analysis of a large variety of
biological materials with high spatial resolution.6 To visualize
the concentrations of individual elements in the analyzed
sections, we transmitted the measurements obtained in our
LA-ICP-MS line by line scans into an Excel spreadsheet and
generated parametric images using open source ELAI soft-
ware recently developed by us.7 At the end, the results are
processed into 2-dimensional images, which can be trans-
formed into common file formats such as TIFF or JPG while
retaining exact proportion of their X/Y dimensions.

In our analysis, we found that the brains of animals receiving
the transgene had overall lower concentrations of total cere-
bral copper (figure 1), most prominently noticeable in the
cerebellum, cerebellar white matter, corpus callosum, 3rd and
4th ventricles, and surrounding tissue, and a slight decrease in

Figure 1Metal bioimaging in 30-μm thick cryosections taken from the brains of untreated and AAV8-AAT-co-miATP7B-treated
Atp7b null mouse

The contents of copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), sodium (Na),magnesium (Mg), potassium (K), calcium (Ca), phosphorus (P), sulfur (S), carbon
(C), chromium (Cr), nickel (Ni), and lead (Pb) in each section are shown. Individual images of elements were done with the ELAI software tool.7 Light
microscopic (LM) images of cryosections and pictures of brains analyzed are shown for orientation in the left margin. In this analysis, Atp7b+/−mice served as
a further control. Please note that the content of C serving as reference is given in %, whereas concentrations of all other elements are given in μg/g liver
tissue. Details about animal manipulation are given elsewhere.2
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the basal ganglia. While the mean cerebral copper content was
3.80 ± 0.2 μg/g brain tissue in the untreated group, the de-
livery of the transgene reduced the copper content to a mean
concentration of 3.05 ± 0.17 μg/g. The content in theAtp7b+/−

control mice that show no alterations in copper metabolisms
was determined to be 2.34 ± 0.09 μg/g. The coefficient of
variation in these measurements was calculated to be 5.1% in
the nontreated group, 5.7% in the treated group, and 4.0% in
the control group. The concentrations of other metals in-
cluding iron, zinc, manganese, sodium, magnesium, potas-
sium, calcium, phosphorus, chromium, nickel, and lead were
unaffected. These findings reveal that the delivery of AAV8-
AAT-co-miATP7B is capable of reducing the overall cerebral
copper content without affecting other metals. Moreover, the
single IV administration with AAV8-AAT-co-miATP7B pro-
voked reduced urinary copper excretion, increased cerulo-
plasmin activity in blood, and reduced liver damage as
indicated by lower activities in alanine transaminase (figure 2,
A-C). This therapeutic effect on liver metal content was also
recently demonstrated by metal bioimaging showing the
overall reduction of hepatic copper throughout the tissue.8

Therefore, it is most likely that the reduction of cerebral
copper in our liver-directed therapy is secondary and induced
by hepatic ATP7B expression lowering systemic copper
concentration. All these changes demonstrate that AAV-
treated animals recovered from copper overload.

Under therapy, we noticed no alterations in neurologic
functions. However, this is not surprising because the most
striking phenotype of this experimental Wilson disease model
is the formation of gross anatomical liver abnormalities, and

no neurologic alterations have been reported. Only the
progeny of homozygous mutant females demonstrate neuro-
logic symptoms at young age.3 However, when these neurologic
symptoms are apparent, respective animals do not survive be-
yond 2 weeks of age.9 Thereafter, alterations in behavior pro-
voked by cerebral copper overload are negligible. As such, the
lack of severe neurologic alterations is a limitation of the current
model when comparing with human Wilson disease.

We hope that our note will further encourage clinical studies
aiming to use AAV therapeutic gene transfer in patients with
Wilson disease. The ability to elicit robust and long-term
ATP7B gene expression in vivo with AAV vectors might be-
come an attractive therapy to complement the mainstay
therapy for Wilson disease of relying on chelating agents and
medications that block excess copper absorption.
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Figure 2 Analysis of copper in urine and ceruloplasmin and ALT in control, untreated, and AAV8-AAT-co-miATP7B-treated
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(A) Copper in 24 hour urinewas analyzed 4, 9, and
14 weeks after the administration of the vector.
(B) Ceruloplasmin levels in serum were de-
termined 4 weeks after vector administration. (C)
Alanine transaminase (ALT) levels indicating liver
damage were determined 14 weeks after the
administration of the vector. p values for signifi-
cance are **p < 0.01.
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