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Objectives: The causative agent for coronavirus disease 2019, severe 
acute respiratory syndrome coronavirus 2, appears exceptional in its 
virulence and immunopathology. In some patients, the resulting hyper-
inflammation resembles a cytokine release syndrome. Our knowledge 
of the immunopathogenesis of coronavirus disease 2019 is evolving 
and anti-cytokine therapies are under active investigation. This narra-
tive review summarizes existing knowledge of the immune response 
to coronavirus infection and highlights the current and potential future 
roles of therapeutic strategies to combat the hyperinflammatory 
response of patients with coronavirus disease 2019.
Data Sources: Relevant and up-to-date literature, media reports, and 
author experiences were included from Medline, national newspa-
pers, and public clinical trial databases.
Study Selection: The authors selected studies for inclusion by 
consensus.
Data Extraction: The authors reviewed each study and selected 
approrpriate data for inclusion through consensus.
Data Synthesis: Hyperinflammation, reminiscent of cytokine release 
syndromes such as macrophage activation syndrome and hemo-
phagocytic lymphohistiocytosis, appears to drive outcomes among 

adults with severe coronavirus disease 2019. Cytokines, particularly 
interleukin-1 and interleukin-6, appear to contribute importantly to 
such systemic hyperinflammation. Ongoing clinical trials will deter-
mine the efficacy and safety of anti-cytokine therapies in coronavirus 
disease 2019. In the interim, anti-cytokine therapies may provide a 
treatment option for adults with severe coronavirus disease 2019 
unresponsive to standard critical care management, including 
ventilation.
Conclusions: This review provides an overview of the current under-
standing of the immunopathogenesis of coronavirus disease 2019 
in adults and proposes treatment considerations for anti-cytokine 
therapy use in adults with severe disease.
Key Words: coronavirus; inflammation; interleukin-1; interleukin-6; 
pneumonia, viral; sepsis

The coronavirus disease 2019 (COVID-19) pandemic has 
brought the manifold consequences of inflammation into 
sharp focus for the medical and lay communities (1).  

While our understanding of the pathobiology of COVID-19 
remains incomplete, one hypothesis proposes that the most severe 
complications of infection with this virulent virus arise from 
overzealous innate immune responses, akin to other viral sepsis 
syndromes (2, 3). Although we have just begun to approach rigor-
ous and data-driven understanding of this complex disease, clini-
cal management decisions depend on the most recent published 
evidence, despite its incomplete and nascent nature. This review 
lays out the current state of knowledge regarding the role of cyto-
kine biology in COVID-19 and how this background informs the 
potential use of anti-cytokine therapies to combat complications 
of severe COVID-19.

IMMUNOPATHOLOGY OF SEVERE ACUTE 
RESPIRATORY SYNDROME CORONAVIRUS 2
The causative agent of COVID-19, severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), enters the upper respira-
tory tract primarily through airborne droplets (4, 5). Ubiquitous 
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expression of angiotensin-converting enzyme 2 (ACE2), the cellular 
receptor for SARS-CoV-2, provides a fertile cellular environment 
for SARS-CoV-2 replication in the nose, throat, and lungs (6–8).  
The receptor-binding domain of the SARS-CoV-2 spike protein 
possesses greater affinity for ACE2 than that of SARS-CoV-1, the 
causative agent of the 2002–2003 SARS pandemic (9, 10).

After approximately 1 week of mild fever, cough, fatigue, 
anorexia, and myalgia, a subset of infected individuals develops dys-
pnea and hypoxemia that herald progression to severe COVID-19  
with potential for rapid decompensation and acute respiratory dis-
tress syndrome (ARDS). This complication, particularly when it 
requires mechanical ventilation, often proves fatal (11–14). Other 
tissues that express ACE2, such as the heart (15, 16), have proven 
vulnerable to SARS-CoV-2 and SARS-CoV-1 (17–20).

Progression to severe COVID-19 coincides with increasing 
levels of inflammatory biomarkers (Fig. 1). Anecdotal experience 
suggests that patients decompensate more suddenly and rapidly 
than expected based upon experience with other viral pneu-
monias. In comparison to other coronaviruses and respiratory 
viruses, SARS-CoV-2 induces a weak type I, II, and III interferon 
response and strong activation of the interleukin (IL)–1/IL-6 
pathway (21–24). SARS-CoV-1 and Middle East respiratory syn-
drome coronavirus produce interferon antagonist proteins that 
may explain the impaired interferon response observed in SARS-
CoV-2 (25). SARS-CoV-2 may activate directly pro-inflammatory 
pathways through tumor necrosis factor α-converting enzyme 
(TACE or a disintegrin and metalloproteinase 17, ADAM17) and 
loss of ACE2’s counter-regulatory function (26, 27).

The exuberant IL-1/IL-6 response to SARS-CoV-2 appears to 
contribute importantly to patient symptomology and outcomes 
(Fig. 2). In the lung, coronavirus infection of type II alveolar epi-
thelial cells activates the inflammasome, a multiprotein complex 
that produces mature IL-1β (28), as well as mature IL-18 (another 

pro-inflammatory cytokine) and N-terminal gasdermin-D (the 
pore-forming protein that permits release of IL-1β from cells) 
(29–31). After maturation, IL-1β induces chemokine secretion and 
adhesion molecule expression (32, 33). IL-1β amplifies the inflam-
matory response by inducing endothelial cell and vascular smooth 
muscle cell secretion of IL-6, which can activate a broad array of 
cell types (34, 35). An auto-induction amplification loop whereby 
IL-1β induces IL-1β secretion perpetuates these actions (36–38).

IL-1β expression and activity in patients with COVID-19 
exceed that of healthy controls (39, 40). IL-6 and C-reactive 
protein, both downstream of IL-1β, can serve as biomarkers 
of IL-1 activity. Patients with severe COVID-19 exhibit greater 
elevations in IL-6 and C-reactive protein than those with mod-
erate COVID-19 (41, 42). Higher IL-6 levels predict both ARDS 
occurrence and death in adults with COVID-19 (43). While 
IL-6 concentrations begin to rise approximately 2 weeks after 
illness onset in COVID-19 nonsurvivors, they remain stable in 
COVID-19 survivors (44). This innate immune response has 
been compared to chimeric antigen receptor T cell-induced 
cytokine release syndrome, secondary hemophagocytic lympho-
histiocytosis, and macrophage activation syndrome (45).

An intriguing finding among patients with COVID-19 is early 
depletion and late functional exhaustion of CD4+ T cells (40, 44, 
46–48), potentially due to direct viral infection via CD147 (49–51) 
or migration of T cells to the lungs. Since CD4+ T cells regulate the 
innate immune response, their depletion may promote a second 
wave of cytokine release and pulmonary immune cell infiltration 
(52). Indeed, lower lymphocyte and interferon-γ expressing CD4+ 
T cell counts portend worse outcomes in COVID-19 (44, 48). Helper 
(CD3+CD4+), suppressor (CD3+CD8+), and regulatory (CD3+CD
4+CD25+CD127low+) T cell counts may be lower in severe COVID-
19 cases than in moderate cases (39, 42). Concentrations of IL-10, 
an anti-inflammatory cytokine, also are higher in severe COVID-19 

cases, likely representing a counter-reg-
ulatory response (39). The mechanisms 
of inflammation resolution in COVID-
19 warrant further research (53).

IL-1 BLOCKERS IN COVID-19

Pharmacology of IL-1 Blockers
Three distinct pharmacologic options 
can interrupt IL-1 activity (Fig. 3) (54).

Although anakinra, canakinumab, 
and rilonacept are approved for 
subcutaneous administration 
(Table 1; and Supplemental Table 1,  
Supplemental Digital Content 1, 
http://links.lww.com/CCX/A262), 
the IV route may be preferred in 
critically ill patients based upon 
experience with anakinra in patients 
with severe sepsis and hemophago-
cytic lymphohistiocytosis syndrome 
(55). Canakinumab and rilonacept 
have longer half-lives that allow for 

Figure 1. Infiltration of key immune cells and activity of key cytokines in coronavirus disease 2019 (COVID-19). 
This hypothetical diagram portrays how the second wave of inflammatory activity may be a major determinant 
of outcome in COVID-19. This second wave features both innate and adaptive cytokines. This diffuse cytokine 
release syndrome damages not only the lungs but also the heart, kidneys, and other organs. Identification of 
patients at risk for a cytokine release syndrome and prompt treatment with direct and selective inhibitors of the 
inflammasome, interleukin (IL)–6, or IL-1 (β or α) may prevent severe organ damage. IFN-γ = interferon gamma, 
TNF-α = tumor necrosis factor-α.
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expanded dosing intervals, but the shorter half-life of anakinra 
allows for more rapid clearance of the drug upon discontinuation 
(56, 57).

Organ dysfunction occurs commonly in critically ill adults 
with COVID-19. Anakinra and rilonacept have been used in 
patients with end-stage renal disease on hemodialysis in patients 
without COVID-19 (58, 59). Renal dysfunction has minimal 
effects on the pharmacokinetics of monoclonal antibodies such 
as canakinumab (60). Dose adjustments are not recommended 
for anakinra, rilonacept, or canakinumab in patients with hepatic 
dysfunction. None of the IL-1 blockers appear to cause hepatic 
toxicity.

Efficacy and Safety of IL-1 
Blockade
Evidence to support the efficacy of 
IL-1 blockade in COVID-19 includes 
two case series and extrapolation of 
human and experimental studies of 
other cytokine release syndromes, 
including notable data from severe 
sepsis clinical trials. Several ran-
domized clinical trials with anakinra 
and canakinumab are underway 
(Table  1; and Supplemental Table 1,  
Supplemental Digital Content 1, 
http://links.lww.com/CCX/A262). 
Cavalli et al (61) reported that 21 of 
29 patients (72%) with COVID-19 
who received IV anakinra (5 mg/kg 
bid for a median of 9 d) experienced 
clinical improvement, defined as a 
75% or greater reduction in serum 
C-reactive protein concentration 
and a Pao2:Fio2 ratio of greater than 
200 mm Hg for 48 hours and 26 of 
the 29 survived (90%) through day 
21 (only 56% of a historical control 
group survived to day 21). A series 
of eight patients who received IV 
anakinra (200 mg every 8 hr for 7 d 
or 300 mg daily for 7 d followed by 
100 mg once daily), showed no sig-
nificant changes in C-reactive pro-
tein concentration, but the Pao2:Fio2 
ratio increased (62).At the end of 
follow-up, three patients were dead, 
four remained on mechanical ven-
tilation, and one patient who did 
not require ICU admission was dis-
charged alive. Similarly, a case series 
of five patients with COVID-19 
reported that C-reactive protein and 
temperature declined while Pao2:Fio2 
ratio increased after anakinra 100 mg 
IV every 8 hours and a retrospective 
analysis of 10 patients who received 

canakinumab 300 mg subcutaneously demonstrated a more rapid 
reduction in C-reactive protein levels and a faster improvement 
in Pao2:Fio2 ratio when compared to a historical control group 
(63, 64).

A separate case series reported the efficacy and safety of 
anakinra 100 mg bid for 72 hours followed by 100 mg daily for 7 
days (100 mg daily for 72 hr followed by 100 mg every other day for 
7 d if creatinine clearance < 30 mL/min or on dialysis) in patients 
hospitalized with COVID-19 who did not require ICU admission 
compared to a historical control group (65). After multivariate 
adjustment, anakinra-treated patients had a significantly lower 
risk of death or mechanical ventilation than usual care historical 

Figure 2. Roles of interleukin (IL)–1β in coronavirus disease 2019. IL-1β is a primordial pro-inflammatory 
cytokine that plays multiple roles in innate immunity (1). After detecting damage-associated molecular patterns 
released from type 2 pneumocytes, sentinel immune cells, such as alveolar macrophages, activate IL-1β through 
the inflammasome (1). IL-1β then exerts pleiotropic paracrine and endocrine effects. IL-1β promotes secretion 
of IL-6 (2) as well as IL-1β (3) from endothelial cells. IL-6 initiates hepatic production of acute phase reactants, 
among many inflammatory actions. IL-1β initiates hematopoietic progenitor cell proliferation (4) and facilitates 
infiltration of neutrophils and monocytes by upregulating adhesion molecule expression and chemokine secretion 
(5). Exhausted CD4+ T cells can fail to execute antibody-mediated viral clearance, which allows a second, more 
powerful, and destructive wave of cytokine activity (6). Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) immune evasion tactics also impair the immune response. CCL = chemokine ligand.
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controls (hazard ratio, 0.22; 95% CI, 0.10–0.49). Anakinra signifi-
cantly reduced C-reactive protein within 48–72 hours.

Two landmark clinical trials investigated the efficacy and safety 
of anakinra in patients with severe sepsis not due to SARS-CoV-2 
(66–68). The isolated organisms were most frequently bacteria 
and fungi. All participants received background antimicrobial 
therapy. While anakinra did not reduce mortality in these stud-
ies, this short-term (up to 72 hr), high-dose anakinra regimens 
did not increase the risk of bacterial superinfection, a concern in 
patients with COVID-19. A post hoc analysis found that anakinra 
reduced mortality in the subgroup of patients with hepatobili-
ary dysfunction and disseminated intravascular coagulation, two 
features consistent with macrophage activation syndrome (69). 
Anakinra appears effective in patients with hemophagocytic lym-
phohistiocytosis syndrome and in animals with chimeric antigen 
receptor T cell-induced cytokine release syndrome (55, 70, 71). 
Anakinra also demonstrates safety and efficacy in a range of acute 
inflammatory cardiovascular conditions (72).

IL-6 BLOCKERS IN COVID-19

Pharmacology of IL-6 Blockers
IL-6’s three distinct signaling pathways render targeting its activ-
ity complex (Fig. 3) and thus the three approved IL-6 monoclonal 

antibodies differ in their pharmaco-
logical effects on the IL-6 pathway 
(Table  1; and Supplemental Table 1,  
Supplemental Digital Content 1, 
http://links.lww.com/CCX/A262) 
(35, 73, 74).

Tocilizumab should be given IV, 
as the cytokine release syndrome 
appears to accelerate tocilizumab 
clearance (75). Sarilumab and siltux-
imab have delayed onset of action 
when administered subcutaneously 
(76, 77). Renal impairment dose 
adjustments are not required for any 
of the IL-6 blockers. The prescribing 
information for tocilizumab, sari-
lumab, and siltuximab recommend 
treatment interruptions or discon-
tinuations for elevated hepatic trans-
aminase concentrations or decreases 
in neutrophil or platelet counts.

Potential serious adverse effects of 
tocilizumab and sarilumab include 
elevations of hepatic transaminases, 
increases in serum cholesterol and 
triglyceride concentrations, and 
opportunistic infection. Tocilizumab 
increased low-density lipoprotein 
cholesterol levels by 11% and tri-
glyceride levels by 14% at 4 weeks 
in adults with rheumatoid arthritis 
(78). Two case reports illustrate the 

potential for tocilizumab to contribute to acute pancreatitis (79). 
The long half-life of these agents (30–40 hr and 8–10 d for IV 
tocilizumab and subcutaneous sarilumab, respectively) may con-
stitute a disadvantage if adverse effects do occur. IL-6 blockade 
restores cytochrome P450 activity; therefore, doses of concomi-
tant therapies with narrow therapeutic windows metabolized by 
cytochrome P450 substrates require close monitoring. Because 
IL-6 concentrations increase after tocilizumab treatment due to 
circulation of the cytokine-antibody complex, IL-6 cannot serve 
as a treatment response biomarker (80).

Efficacy and Safety of IL-6 Blockade
There are several ongoing studies with the different IL-6 receptor 
blockers in patients with COVID-19 (Table 1; and Supplemental 
Table 1, Supplemental Digital Content 1, http://links.lww.com/
CCX/A262). Two trials have reported preliminary or interim 
results. One announcement reported that tocilizumab met its pri-
mary outcome of death or need for mechanical ventilation in a 
randomized trial of 129 patients with moderate-severe COVID-19.  
Detailed results of this clinical trial remain unreported (81). A 
press release indicates that an ongoing sarilumab adaptive clini-
cal trial will proceed with enrollment of only severe or critical 
patients with COVID-19 based upon analysis of initial results (81).  
Tocilizumab has an approved indication for chimeric antigen 

Figure 3. Pharmacologic interleukin (IL)–1 and IL-6 inhibitors. IL-1β and IL-1α initiate intracellular signaling by 
binding the IL-1 receptor (IL-1R) type 1, which recruits the IL-1 receptor accessory protein (IL-1Rap). IL-6 binds 
to the IL-6 receptor α as well as two glycoprotein (gp) 130 receptors. Three possible scenarios lead to IL-6 
signaling. IL-6 binds cell surface IL-6 receptor and gp130 in cis signaling. Trans signaling occurs when soluble 
IL-6/IL-6 receptor complex binds membrane-associated gp130. Last, plasmacytoid dendritic cells can present 
IL-6/IL-6 receptor to gp130 on T helper cell (Th) 17 cells. 
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receptor T cell-induced cytokine release syndrome (75). There are 
no studies of IL-6 blockers in patients with severe sepsis due to 
non-COVID-19 causes.

Observational studies suggest that tocilizumab rapidly 
decreases fever, reduces systemic inflammation over 5–7 days 
and associates with improved indices of oxygenation within 
48–72 hours, and decreased risk of intubation or mortality (80, 

82–87). For example, a case series of 20 patients who received 
tocilizumab for COVID-19 reported that C-reactive protein 
concentration decreased to less than 2 mg/L within 5 days, 
oxygen requirements decreased, and all patients survived to 
hospital discharge (82). Additionally, variation in background 
antiviral and immunosuppressive therapies across studies 
and across patients within studies further argues for cautious 

TABLE 1. Potential Anti-Cytokine Therapies for Coronavirus Disease 2019
Characteristic Anakinra Canakinumab Tocilizumab Sarilumab Adalimumab

Type Recombinant 
human receptor 
antagonist

Human monoclonal 
antibody

Humanized 
monoclonal 
antibody

Human 
monoclonal 
antibody

Human monoclonal 
antibody

Target Interleukin-1 receptor Interleukin-1β Interleukin-6 receptor Interleukin-6 
receptor

Tumor necrosis factor-α

Approved 
indication(s)

RA, CAPS CAPS, TRAPS, HIDS/
MKD, FMF, and SJIA

RA, giant cell arteritis, 
polyarticular juvenile 
idiopathic arthritis, 
SJIA, chimeric 
antigen receptor T 
cell-induced cytokine 
release syndrome

RA Crohn’s disease, 
ulcerative colitis, 
ankylosing spondylitis, 
RA, SJIA, SJPA, plaque 
psoriasis, hidradenitis 
suppurativa, uveitis

Black box 
warnings

None None Increased risk of serious 
infection

Increased risk 
of serious 
infection

Increased risk of 
serious infection and 
malignancy

Usual 
subcutaneous 
dose regimen

100 mg once daily 
subcutaneously

30 to 150 mg every 
4–8 wk (depending 
on indication/body 
weight) may titrate to 
clinical response in 
CAPS, TRAPS, HIDS/
MKD, and FMF

162 mg weekly or 
every other week 
depending upon body 
weight and clinical 
response

200 mg every  
2 wk

10–160 mg every other 
week depending upon 
age, indication, and 
body weight; loading 
dose required for 
certain indications

Usual or studied 
IV dose 
regimen

Studied as 100 mg 
loading dose 
followed by 2 mg/
kg/hr for 72 hr

Studied as 0.3, 1, 3, or 
10 mg/kg on day 1 
and day 15

Approved as 4–12 mg/
kg every 2–4 wk 
depending upon 
indication and body 
weight

NA NA

COVID-19 
clinical trial 
dose regimen

–10 mg/kg bid until 
75% C-reactive 
protein reduction 
and Pao2:Fio2 ≥ 
200 mm Hg for 2 d

–450 to 750 mg IV  
once based on  
patient weight

4–8 mg/kg or 400 mg 
once (maximum 
800 mg/dose),  
may repeat

200–400 mg 
once; may 
repeat in 
48–72 hr

Unknown

–100 mg IV every 4 hr 
dose for 15 d

–300 or 600 mg  
IV once

–200 mg IV every 8 hr

–100 mg 
subcutaneous daily 
for 28 d

Select 
COVID-19  
clinical 
trialsa

NCT04324021 NCT0436281 NCT04320615 NCT04315298 ChiCTR2000030089

NCT04339712 NCT04365153 NCT04317092 NCT04327388

NCT04330638 NCT04346355 2020-001162-
12

NCT04315480

CAPS = cryopyrin-associated periodic syndrome, ChiCTR = Chinese Clinical Trial Registry, COVID-19 = coronavirus disease 2019, FMF = familial Mediterranean fever, 
HIDS/MKD = hyperimmunoglobulin D syndrome/mevalonate kinase deficiency, NA = not available, NCT = National Clinical Trial, RA = rheumatoid arthritis,  
SJIA = systemic juvenile idiopathic arthritis, TRAPS = tumor necrosis factor receptor associated periodic syndrome.
aNCT accessed at www.ClinicalTrials.gov; ChiCTR accessed at http://www.chictr.org.cn/abouten.aspx.

www.ClinicalTrials.gov
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interpretation of these results. Nevertheless, clinicians must 
make treatment decisions using clinical judgment and these 
limited data until completion and full reporting of COVID-19 
clinical trials.

POTENTIAL ROLE OF OTHER ANTI-CYTOKINE 
THERAPIES IN COVID-19
SARS-CoV-1, and presumably SARS-CoV-2, activate TACE/
ADAM17 during the process of gaining host cell entry and can 
increase circulating tumor necrosis factor-α levels (26, 27, 88). The 
commercially available tumor necrosis factor-α inhibitors include 
adalimumab (human monoclonal antibody), etanercept (fusion 
protein), infliximab (chimeric monoclonal antibody), golimumab 
(human monoclonal antibody), and certolizumab pegol (human-
ized fragment antigen binding fragment) (Table  1). Like IL-1 
blockade, tumor necrosis factor-α antagonism does not appear 
to increase the risk of secondary infection in patients with sepsis 
receiving background antimicrobial therapy (89, 90). One ongo-
ing clinical trial is investigating tumor necrosis factor blockade 
and others have called for research on this therapeutic in COVID-
19 (91). Biosimilar tumor necrosis factor-α blockers have become 
available (Supplemental Table 1, Supplemental Digital Content 1, 
http://links.lww.com/CCX/A262).

Glucocorticoids, given their broad-spectrum immune-
suppressing effects, have seen wide use in patients with severe 
COVID-19 for the treatment of cytokine release syndrome and 
ARDS. Although the Surviving Sepsis Campaign suggests use of 
short courses of glucocorticoids for moderate-severe ARDS related 
to COVID-19, evidence supporting their benefit is lacking in this 
population and concerns that their use may prolong viral shed-
ding persist (92, 93). Preliminary results from the Randomised 
Evaluation of COVID-19 Therapy trial reported that dexametha-
sone 6 mg daily for up to 10 days significantly reduced all-cause 
mortality in patients hospitalized for COVID-19. Subgroup analy-
sis suggested significantly greater reductions in mortality for dexa-
methasone in patients receiving invasive mechanical ventilation 
(29.0% vs 40.7%; p < 0.001) and those receiving oxygen without 
invasive mechanical ventilation (21.5% vs 25.0%; p = 0.002). All-
cause mortality rates for dexamethasone in patients not receiving 
invasive mechanical ventilation or oxygen was 17.0% versus 13.2% 
for usual care.

SECONDARY AND OPPORTUNISTIC 
INFECTIONS IN COVID-19
In the advanced stages of COVID-19 disease, immune exhaus-
tion and inhibition of usual defense mechanisms such as ciliary 
clearance can favor bacterial superinfection as in other severe viral 
pneumonitides. Anti-cytokine treatments may impair further 
host defenses and/or delay the recognition of infection. The abso-
lute risk associated with short-term treatment may be acceptable 
in patients with life-threatening cytokine release syndrome.

IL-1 blockade has a favorable safety profile as demonstrated 
by the minimal increase in risk of fatal and lack of opportunistic 
infection associated with long-term canakinumab treatment (94). 
Chronic IL-6 and tumor necrosis factor-α blockade predispose 

to opportunistic infection, and all IL-6 and tumor necrosis fac-
tor blockers carry a black box warning for serious infection. In 
patients with bacterial or fungal severe sepsis on background 
antimicrobial therapy, short-term use of IL-1 or tumor necrosis 
factor-α blockers does not increase the risk of infection. Clinicians 
should consider testing for latent tuberculosis, hepatitis B, and 
hepatitis C during hospital admission in patients who receive an 
IL-6 or tumor necrosis factor-α blocker.

THERAPEUTIC CONSIDERATIONS FOR  
ANTI-CYTOKINE THERAPIES IN COVID-19
Current treatment for severe COVID-19 includes supportive respi-
ratory and hemodynamic care. No agent has received approval 
from the U.S. Food and Drug Administration for the treatment 
of severe COVID-19, but randomized trials of many therapeu-
tic candidates are ongoing (95). While the optimal COVID-19 
treatment would be an effective antiviral intervention, the high 
mortality of hospitalized patients with COVID-19 complications 
mandate adjunctive therapies as well (96).

Important unanswered questions include the target population 
for use (including the severity of COVID-19, age, comorbidities, 
the underlying immunologic profile [i.e., chemokine concentra-
tions, immune cell function, inflammation resolution, and anti-
inflammatory mediators], the presence of chronic or acute organ 
dysfunction), the optimal time to initiate therapy (asymptomatic, 
mild, or severe), the optimal dose and duration (related to the 
disease severity), the optimal biomarkers and clinical indicators 
of response, the use of concomitant agents (some of which may 
have immunemodulating effects), and the prevalence and risk fac-
tors for safety concerns. The heterogeneity of the sepsis syndrome 
poses a further barrier to implementation of anti-cytokine thera-
pies in COVID-19 (97).

Indeed, improving outcomes in the heterogeneous popula-
tion of adults with severe sepsis remains a challenge (98, 99). The 
specific risks and benefits of each anti-cytokine agent must be 
thoughtfully considered within the context of particular patients 
and diverse populations. Furthermore, clinicians and investigators 
should continue to explore strategies beyond cytokine blockade, 
such as immune stimulation with checkpoint inhibitors to pro-
mote viral clearance given the profound lymphopenia prevalent 
among patients with severe COVID-19, although these agents 
have their own toxicities.

Both the National Institutes of Health and the Surviving Sepsis 
Campaign concluded that current evidence is insufficient to issue 
recommendations related to the use of anti-cytokine therapies in 
COVID-19 (92, 100). Several institutions have made their own 
treatment protocols available publicly (101–104). Research is 
needed to identify patient subgroups with differential therapeutic 
responses to anti-cytokine therapies (69, 97).

Anti-cytokine therapies may offer an important treatment 
option in COVID-19. Of considerable concern, SARS-CoV-2 may 
cycle through the population, and we must prepare for recurring 
waves of involvement. Such resurgence may well occur before the 
development and testing of a vaccine. Furthermore, even if a vac-
cine were available, one cannot assume that COVID-19 will not 
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mutate rendering a vaccination approach incompletely protective. 
Last, the elderly and those with cardiometabolic risk factors who 
have high susceptibility to severe COVID-19 generally mount 
weaker responses to vaccination than younger individuals.

CONCLUSIONS
Our understanding of the immunopathogenesis of COVID-19 in 
adults has evolved rapidly. For COVID-19 adults with a cytokine 
release syndrome clinical picture, clinicians must currently rely on 
anecdotes and observational studies to guide treatment decisions 
regarding anti-cytokine therapies. Prospective randomized trials 
evaluating a number of different anti-cytokine therapies in adults 
with COVID-19 are underway. New evidence will continue to 
inform clinicians about the role for anti-cytokine therapy in criti-
cally ill adults with COVID-19.

Supplemental digital content is available for this article. Direct URL citations 
appear in the HTML and PDF versions of this article on the journal’s website 
(http://journals.lww.com/ccejournal).
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