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Iron and sulfide nanoparticle formation and
transport in nascent hydrothermal vent plumes
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Deep-sea hydrothermal vents are a significant source of dissolved metals to the global

oceans, producing midwater plumes enriched in metals that are transported thousands of

kilometers from the vent source. Particle precipitation upon emission of hydrothermal fluids

controls metal speciation and the magnitude of metal export. Here, we document metal

sulfide particles, including pyrite nanoparticles, within the first meter of buoyant plumes from

three high-temperature vents at the East Pacific Rise. We observe a zone of particle settling

10–20 cm from the orifice, indicated by stable sulfur isotopes; however, we also demonstrate

that nanoparticulate pyrite (FeS2) is not removed from the plume and can account for over

half of the filtered Fe (≤0.2 µm) up to one meter from the vent orifice. The persistence of

nanoparticulate pyrite demonstrates that it is an important mechanism for near-vent Fe

stabilisation and highlights the potential role of nanoparticles in element transport.
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The fluids emitted from most deep-sea hydrothermal black
smoker vents are enriched in iron, other metals and sulfide
up to several orders of magnitude over ambient seawater.

Many of these elements are biogeochemically relevant; for
example Fe sourced from vents is a globally important compo-
nent of the oceanic Fe budget1,2, and thus may ultimately affect
primary production in the surface ocean3,4. Quantifying the sig-
nificance of element transport from hydrothermal vents is
therefore of broad oceanographic importance.

Determining the potential for element transport away from
the vent source is complicated because the vent fluid undergoes
a wide spectrum of biogeochemical changes between emission of
the fluid and the formation of midwater plumes. In particular,
mixing of the reduced, hot and acidic vent fluid with cold,
oxygenated seawater leads to the precipitation of many metals in
the area surrounding the vents as sulfide or oxide minerals5,6.
The formation, aggregation, oxidation and/or stabilisation of
particles and nanoparticles in emitted vent fluid directly deter-
mines the potential for element transport to the broader oceans.
Moreover, although the chemistry of end-member vent fluid and
nascent buoyant plumes is highly variable between vents7–9, the
chemistry of the non-buoyant plume appears to be consistent,
regardless of the initial fluid composition10. This consistency
indicates that it is the physical and (bio)geochemical processes
in the initial stages of the buoyant plume that exert the primary
control on which elements are exported from vents, and that
these processes are similar between different black smoker vent
fields. In particular, the speciation and solubility of reduced Fe
and S are extremely sensitive to oxidation along the steep redox
gradients found at the vent orifice, which may result in their loss
from the rising fluid. The dynamics of reduced Fe and S are
important as these elements dominate fluid chemistry in many
systems and therefore affect the speciation of other elements,
such as Pb, Co, Cd, Cu and Zn9,11.

Nevertheless, recent work has demonstrated that Fe may be sta-
bilised as nanoparticulate pyrite in the hydrothermal fluid12,13 and
by organic ligands within the colder buoyant and non-buoyant
plume14–16 and that this Fe is transported hundreds to thousands of
kilometers from the local vent area17–20. These findings raise
important questions regarding the processes affecting particle for-
mation and transport in the initial mixing zone, including the extent
of metal sulfide precipitation and settling. However, systematic

studies of particle formation and Fe dynamics within this initial
mixing zone are lacking.

In order to elucidate these processes and investigate the
potential for Fe transport from the vent sites, we determined the
speciation of Fe and S and quantified the abundance of nano-
particulate pyrite within the first meter of buoyant plumes from
three hydrothermal vents with high sulphide to iron ratios
(ranging from 4 to 10) at the fast-spreading East Pacific Rise
(EPR, 9°50′N); P Vent, Bio 9 Vent and Bio Vent. We show that
despite a decrease in total Fe and the formation and entrainment
of sulfide particles within the plume, nanoparticulate pyrite can
comprise up to 60 % of filtered Fe (≤0.2 µm) one meter from the
vent orifice, even though it is not detectable at statistically sig-
nificant concentrations at the point of emission by chemical
leaching methods. This, combined with evidence for settling of
sulfide particles in the plume from stable sulfur isotope mea-
surements, indicates that physical and geochemical controls on
sulfide particle formation and settling have broad implications for
the stabilisation of Fe in nanoparticulate pyrite and for metal
transport from hydrothermal vents.

Results and Discussion
Fe and S dynamics in the first meter of the buoyant plume. The
concentration and speciation of iron and sulphur were measured
in samples from three different black smoker vents up to one
meter from the vent orifice (Supplementary Figure 1). Within this
distance, Fe was predominately (≥80 %) in the ≤0.2 µm fraction
(Supplementary Table 1). Despite this, total unfiltered Fe was
exponentially removed at P Vent and Bio 9 Vent, particularly in
the first 10 centimeters of the buoyant plume, indicating the
formation and subsequent rapid settling of larger particles. At Bio
Vent, initial Fe concentrations were lower and there was much
less Fe removal within the initial stages of the plume (Fig. 1a,
Supplementary Table 1).

Total unfiltered Acid Volatile Sulfide (AVS), which comprises
free sulfide and less recalcitrant metal sulfides (e.g. FeS, ZnS),
demonstrates behaviour consistent with removal within the first
10 centimeters at all three vents (Fig. 1b) and AVS can account
for the observed Fe removal. Concentrations of total Chromium
Reducible Sulphur (CRS), consisting of more recalcitrant sulfur
minerals21 (e.g. FeS2, FeCuS2 and partially S0), are up to an order
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Fig. 1 Plume iron and sulphur geochemistry. a Total unfiltered Fe(II) concentrations in all three plumes and b Total unfiltered AVS concentrations in all
three plumes
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of magnitude lower than those of AVS and consist of 1–13 % of
the total sulphide (Fig. 1b, Supplementary Table 1).

Within the initial first meter of mixing, total unfiltered Fe
remains almost exclusively as Fe(II) (Supplementary Table 1).
The predominance of Fe(II) is consistent with previous studies
which showed that Fe remains reduced at least up to 1.5 m from
the vent orifice at the Mid-Atlantic Ridge9,13. Although
oxygenated ocean water mixes into the buoyant plume within
the first meter with seawater (Table 1), the excess sulphide with
respect to Fe present in these fluids keeps Fe reduced due to a
catalytic cycle (Eq. 1a, b).

4Fe2þþO2þ 4Hþ ! 4Fe3þþ 2H2O ð1aÞ

2 Fe3þ þH2S ! 2Fe2þ þ S0þ 2Hþ ð1bÞ

In addition to the persistence of Fe(II), the presence of
filterable and particulate S0 within the plume (Table 1) provides
further evidence for such a catalytic cycle. Generally, the
particulate fraction of S0 is lowest in the samples taken from
the orifice, whereas the <0.2 µm fraction is greatest in these
samples. This indicates that S0 is mainly formed from sulfide
oxidation in the plume and is not due to entrainment of chimney
particles. The S0 in the < 0.2 µm fraction in the end-member
samples is expected to be dissolved or nanoparticulate S0, as
polysulfides undergo hydrolysis rapidly at high temperature
( ≥150 °C22. The decrease in S0 in the < 0.2 µm fraction is likely
due to changes in its solubility over the temperature gradient in
the initial plume23.

Formation of pyrite and persistence of pyrite nanoparticles.
Significant concentrations of nanoparticulate pyrite (defined
operationally as the difference between nitric acid and HCl
soluble Fe in the ≤0.2 µm filtered fraction12,13) were measured in
all plume samples at Bio 9 and P Vent (Table 1; Supplementary
Figure 2). In contrast, pyrite nanoparticles were not statistically
detectable in the hot (>350 °C) end-member samples by this
leaching method. Pyrite was detected in bulk end-member and
plume samples by powder XRD at both Bio 9 and P-Vent,
respectively, but was not detected at Bio Vent (Supplementary
Table 2).

Evidence for bulk pyrite formation comes from the stable
isotope fractionation between total unfiltered AVS and CRS at P

Vent and Bio 9, which are consistent with partial isotopic
equilibrium between pyrite and H2S through an FeS precursor24

(Eq. 2; Fig. 2).

FeSþH2S ! FeS2þH2 ð2Þ

The FeS−H2S pathway is expected to be the predominant
mechanism for pyrite formation in buoyant vent plumes based on
pH, reactant availability and reaction kinetics25. The rate of the
reaction presented in Eq. 2 plateaus above 125 °C as the reaction
is diffusion controlled26 and decreases with decreasing H2S
concentration and at temperatures lower than 125 °C. Thus, the
most significant pyrite formation should occur near the vent
orifice, and the nanoparticulate pyrite detected higher in the
plume has likely persisted throughout the cooling and rise of the
higher temperature fluid. At high temperatures, nucleation rates
are high, favouring the formation of nanoparticles27, and the
rapidly cooling temperatures and decreasing reactant concentra-
tions during mixing limit further growth, and thereby settling, of
the nanoparticles. Interestingly, in contrast to the chimney pyrite
from Bio 9 analysed by Rouxel et al.28, the S isotope composition
for the total unfiltered fluid samples measured here from Bio 9
and P Vent fall mostly below the pyrite-H2S equilibration line.
This may be due to formation of pyrite (e.g., CRS) at high
temperatures, followed by removal of light H2S from the solution,
either due to metal sulphide precipitation or degassing of H2S,
both of which would leave the remaining AVS pool isotopically
heavy.

In contrast to Bio 9 and P Vent, statistically significant
concentrations of nanoparticulate pyrite were only observed in
one sample at Bio Vent (Table 1), one meter from the orifice in the
buoyant plume. Pyrite was also not detected in bulk samples via
XRD (Supplementary Table 2). The apparent isotopic fractionation
between AVS and CRS falls directly on the FeS−H2S equilibration
line29, indicating that metal monosulphides, rather than FeS2 are
the major particles forming at Bio Vent due to the lower Fe
concentrations (Fig. 1a; Supplementary Table 1) and cooler
temperature of the emitted fluid (i.e. 310 °C vs. ≥350 °C).
Importantly, at all vent sites, the distribution of nanoparticulate
pyrite in the plume (Table 1) does not indicate that it is removed
within the first meter. At P vent, for example, concentrations of
nanoparticulate pyrite are nearly constant as temperature decreases.

Table 1 Nanoparticulate pyrite and elemental sulfur concentrations in each sample

Vent T pH [Mg]
(mM)

Distance from orifice
(cm)

[Nano py]
(µM)

% Fenpy/ Fetotal
≤0.2 µm

[S0]<0.2
(µM)

[S0]>0.2
(µM)

[S0] total
(µM)

Bio 9 373 3.13 3.40 0 BDL — 30 2.3 32
150 4.87 43.7 10 43 20 0.99 n/a 0.99
79 5.31 52.2 20 24 20 BDL 1.9 1.9
25 5.58 51.4 50 9 12 BDL 18 18
10 6.28 51.1 100 1 6 1.3 22 23

P Vent 350 3.27 5.30 0 BDL — 2.4 1.7 4.2
240 3.93 25.9 5 20 4 3.2 18 22
210 4.01 28.3 10 18 6 0.41 30 30
120 4.87 46.0 50 13 6 0.62 50 50
35 5.73 51.5 100 16 30 3.8 28 32

Bio Vent 310 3.77 11.5 0 BDL — 4.3 10 15
260 4.10 20.4 20 BDL — 1.9 17 19
160 4.34 32.4 30 BDL — BDL 17 17
60 4.77 47.1 50 BDL — BDL 17 17
10 5.79 54.0 100 9 60 BDL 0.96 0.96

pH values are shipboard measurements
BDL, below detection limit (nano pyrite 1 µM: S0 0.5 µM)
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Sulphide precipitation and implications for element export.
The value of total unfiltered δ34SAVS over the plume for P Vent
and Bio 9 decreases and then increases again with increasing
distance from the vent orifice (Fig. 3). These isotopic differences
are larger than the typical variability for end-member
samples30,31. This pattern is not consistent with fractionation
caused by reaction or particle loss from the plume due to mass
balance considerations; however, it does correspond to the por-
tion of particulate Fe, as well as the visual particle density in the
samples (Supplementary Figure 3, Supplementary Table 1).
Although the isotope fractionation between sulfide and FeS is
small (≤0.250/00), there is a fractionation of 2.70/00 between dis-
solved H2S and HS−, by which HS− is lighter32. FeS and other
metal sulfides within the plume are expected to be formed by
reaction of metals with HS−, rather than H2S as the pH increases.
The pK1 of H2S in seawater at 150 °C is 6.0833, so that the pH of
the fluids after 10–20 cm begins to approach the pK1. Further-
more, in situ pH is typically higher than the shipboard pH; the
in situ pH in the end-member fluid at P Vent was previously
measured to be about 5.534, compared with our shipboard mea-
surement of 3.27 (Table 1).

Metal sulfide particles should therefore be isotopically lighter
than coexisting H2S. If the distribution of these particles were
homogenous throughout the plume, there would be no apparent
difference in δ34SAVS, but both visual (Supplementary Figure 3)
and Fe distribution data (Supplementary Table 1) demonstrate
that particle distribution is not homogenous. Therefore, the more
depleted δ34SAVS values must reflect a concentration of particles
(and thereby isotopically light sulfide) within the plume within
the first 10–20 cm at intermediate temperatures (100–250 °C).
Although higher particle concentrations are due in part to the
increased amount of particle formation at cooler temperatures
and higher pH35, the δ34SAVS patterns can only be explained if
bulk particles are concentrated in this area by settling from higher
in the plume. Particle settling is induced as the particles grow
with distance from the orifice. Simultaneously, the upward flow
decreases, changing the buoyancy (Fig. 4). This observation

indicates a critical point within the nascent plume that is decisive
for the quantity and type of particles and elements that will be
transported further up in the water column to the neutrally
buoyant plume, where they can then be transported laterally.

The location and extent of this zone will be affected by the
physical characteristics of a given vent, including the temperature
of the emitted fluids and the size and flow rate of the plume. For
example, the isotopic composition of AVS in the Bio Vent plume
does not follow the same trend observed at Bio 9 and P Vent. This
is consistent with the visually lower flow and particle concentra-
tion in this plume, as well as the observed lower removal of Fe
and higher ratio of sulfide to Fe, compared to Bio 9 and P Vent
(Supplementary Table 1). These characteristics suggest moreover
that major Fe and particle removal took place at an earlier point
along the fluid flow pathway, for example within the chimney.
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For all vents, nanoparticulate pyrite is a significant portion (up
to 60%) of ≤0.2 µm Fe at 1 m above the vent orifice and above this
particle concentration zone. The lack of evidence for removal of
nanoparticulate pyrite in any of the three plumes, despite settling
of bulk particles, indicates that pyrite nanoparticles stabilise Fe
with respect to particle growth, within the ≤0.2 µm filtered
fraction, limiting the extent of Fe that settles from the plume.
Due to their small size12 and resistence to oxidation36, pyrite
nanoparticles may thus mediate Fe export from the vents to the
global oceans.

Previous work has shown the widespread presence of FeS2
nanoparticles in the end-member fluid of a variety of different
hydrothermal settings with different geological (back arc basin,
slow and fast spreading centers) and chemical characteristics (Fe
to sulphide ratios ranging from 0.1 to 10)12,13. Here, using a
combination of chemical leaching, mineralogical and stable
isotope methods, we demonstrated that these nanoparticles serve
to stabilise Fe during the extensive mixing and particle
precipitation that occurs immediately upon fluid emission from
the vent orifice. This study shows that particle formation, settling
and buoyancy between the hot vent fluids and the neutrally
buoyant plume directly affect metal transport from the initial
mixing zone. The formation of nanoparticulate pyrite at high
temperatures and limits on its growth due to rapidly cooling
temperatures during mixing act to stabilise the hydrothermally
derived Fe as nanoparticulate pyrite and prevent further particle
growth and oxidation. The data presented here demonstrate for
the first time the persistance of nanoparticulate pyrite throughout
a zone of major particle growth and settling, and suggest the
possibility for continued nanoparticle transport, including
transport from the vent sites.

Methodology
Sampling. Samples were taken using the Human Operated
Vehicle Alvin II operated by the RV Atlantis at three different
vent sites (P Vent, Bio 9 and Bio Vent) along the East Pacific Rise
9°N during March and April 2017. The in situ temperature of
each sample was taken with the high-temperature probe attached
to the titanium Major Sampler. One sample was taken within the
vent orifice, then subsequent samples were taken from first meter
of the rising plume in order to capture a broad temperature
gradient. Great care was taken by the Alvin pilots to hold the
nozzle of the sampler in the centre of the plume during sampling.

Sample processing. The samples were processed immediately
upon recovery shipboard, typically 2–4 h after they were taken.
The shipboard pH and temperature were measured immediately
and samples were fixed for either shipboard or shorebased
analyses.

Fe concentration and speciation. For Fe samples, triplicate ali-
quots of 10 mL (0.2 µm filtered and unfiltered) were added to
centrifuge tubes containing 0.5 mL HCl (trace metal grade). Iron
measurements were performed after sequential leaching with HCl
and HNO3

12. Each acid leach was allowed to react for at least
8 hours. Spectrophotometric measurements were made onboard
the ship using the ferrozine method of Stookey37 at a wavelength
of 562 nm. Samples were buffered in 2.5 M ammonium acetate
prior to addition of the ferrozine reagent. After the initial analysis
of the HCl leach, the samples were treated with hydroxylamine
hydrochloride as a reducing agent to measure total iron. Fe(III)
was determined by the difference between these numbers. After
the HNO3 leach, hydroxylamine was added simultaneously with
the ferrozine reagent to measure total Fe. Pyrite concentrations
were determined by subtracting total Fe from the sum of Fe(II)

and Fe(III) determined after the HCl leach. The detection limit of
this method was 100 nM.

Sulphide speciation and concentration. Samples for sulfide
analysis (AVS/CRS) were preserved by adding 2 mL NaOH (0.5
M) and 2 mL zinc acetate (0.1 M) to 2 mL of sample, which was
then frozen and stored at −20 °C. Measurements were made on
shore using the distillation method of Fossing and Jørgensen21.
Samples preserved in NaOH and zinc acetate were defrosted and
the entire sample was transferred to a bubbler system along with
12 mL Ar-purged MQ water. In the bubbler, samples were purged
with Ar for an additional 10 min. 0.5 mL of 3M HCl (trace metal
grade) was then added via syringe to the system and evolved H2S
was captured in 20mL 1M trace metal clean NaOH. The base de-
protonates the H2S gas, converting it to HS− and allowing direct
quantification via UV-Vis spectroscopy (HS− peak at 230 nm).
Reaction time prior to analysis was 1.5 hours. This initial mea-
surement represents the Acid Volatile Sulfide fraction. Test tubes
containing a fresh 20 mL aliquot of 1 M trace metal clean NaOH
were then placed in-line with the bubbler system and 0.5 mL of 1
M Cr(II) solution in 1M HCl (prepared using a Jones reduction
column) was injected into the sample via syringe. Samples were
again bubbled for 1.5 h prior to analysis of evolved H2S as HS−

trapped in NaOH. This second analysis represents the con-
centration of Chromium-Reducible Sulfide.

Elemental sulphur. Sample aliquots of 30–50 mL were filtered
through a 0.2 µm Millipore GTTP filter into a zinc acetate solu-
tion to fix free sulfide and prevent oxidation during the extrac-
tion. The filtrate was then extracted shipboard in 5 mL of toluene
for 1.5 h38. The toluene layer was separated and stored at −20 °C
for later analysis. The filters were also stored at −20 °C for later
extraction and analysis onshore. Elemental sulfur was quantified
by HPLC using a C-18 column and 98% methanol 2% water as
the eluent with UV detection at 230 nm. The retention time for S8
was approximately six minutes. The detection limit for this
method is 0.5 µM.

Stable sulfur isotope measurements. Unfiltered 5–50 mL sam-
ples fixed in zinc acetate were distilled via the two-step AVS/CRS
procedure outlined above to separate AVS and CRS. Evolved
sulfide was trapped as ZnS and was converted to Ag2S upon
addition of AgNO3 (1 M). The precipitate was aged one week,
washed with 18.2 MΩ water (MilliQ) and NH4OH (1M), then
dried overnight at 60 °C. Ag2S was converted to SF6 by reaction
with excess F2 at 300 °C for at least 10 hours in Ni alloy reaction
chambers. The SF6 was then purified cryogenically and by pre-
parative gas chromatography. Following purification, stable sul-
phur isotopic measurements were conducted on a Finnigan MAT
253 dual inlet mass spectrometer39.

Isotopic composition is presented in permil using standard δ
notation relative to VCDT (Eq. 3)

δ34S ¼ 34Rsample=
34RVCDT� 1 ð3Þ

in which 34R= 34S/32S.

XRD. Samples for XRD analysis were prepared by the cen-
trifugation of 300–700mL of unfiltered fluid13. Samples were
then capped with UHP nitrogen and frozen. For analysis, pelleted
samples were resuspended in Milleq ® water and evaporated
under nitrogen onto zero diffraction wafers by MTI. Samples
were run on a Panalytical X’Pert3 Powder XRD using a Cu Kα
source at 40 kV and 45 mA, and scanned from 5–70° 2θ. Three
scans were performed with a 0, −1, and+ 1 degree wobble in
order to avoid preferential orientiation; final scans were an

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09580-5 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1597 | https://doi.org/10.1038/s41467-019-09580-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


average of all three scans. HighScore Plus software was used for
peak identification and fitting, with International Center for
Diffraction Data 2014 used for sample ID. Mineralogy as deter-
mined from XRD was checked for compatibility with elemental
results obtained from SEM/EDS. SEM was performed using a
Tescan VP-SEM in high vacuum mode at an accelerating
potential of 20 kV.

Mg concentrations. Samples for Mg concentrations were filtered
shipboard (0.2 µm) and acidified in 0.75M nitric acid. Onshore,
samples were diluted between 1:100 and 1:2000, using sample
temperature as an estimate of Mg. Samples were analyzed on a
Thermo Electron Corporation Finnigan Element XR Inductively
Coupled Plasma Mass Spectrometer (ICP-MS) in low resolution
mode, using a rhodium internal standard. Dilution preparation
and sample analysis were conducted under trace metal clean
conditions.

Data Availability
All data generated or analysed during this study are included in this published article
(and its supplementary information files).

Code Availability
No custom code was used in the production or analysis of these data.
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