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Explainable artificial intelligence aims to bring transparency to artificial intelligence
(AI) systems by translating, simplifying, and visualizing its decisions. While society
remains skeptical about AI systems, studies show that transparent and explainable
AI systems can help improve the Human-AI trust relationship. This manuscript
presents two studies that assess three AI decision visualization attribution models
that manipulate morphological clarity (MC) and two information presentation-order
methods to determine each visualization’s impact on the Human-AI trust relationship
through increased confidence and cognitive fit (CF). The first study, N = 206 (Avg.
age = 37.87 ± 10.51, Male = 123), utilized information presentation methods and
visualizations delivered through an online experiment to explore trust in AI by asking
participants to complete a visual decision-making task. The second study, N = 19
(24.9 ± 8.3 years old, Male = 10), utilized eye-tracking technology and the same stimuli
presentation methods to investigate if cognitive load, inferred through pupillometry
measures, mediated the confidence-trust relationship. The results indicate that low
MC positively impacts Human-AI trust and that the presentation order of information
within an interface in terms of adjacency further influences user trust in AI. We
conclude that while adjacency and MC significantly affect cognitive load, cognitive
load alone does not mediate the confidence-trust relationship. Our findings interpreted
through a combination of CF, situation awareness, and ecological interface design have
implications for the design of future AI systems, which may facilitate better collaboration
between humans and AI-based decision agents.

Keywords: explainability, confidence, trust, HCAI, cognitive fit, decision support

INTRODUCTION

Artificial intelligence (AI) and machine learning algorithms are increasing in sophistication and
accuracy to automate an ever-increasing array of tasks. However, these algorithms’ rapid growth in
complexity and performance makes them more opaque and less interpretable. Thus, the decisions
taken and processes used by these AI systems to make said decisions are more challenging to
understand and explain for its end users (Rudin, 2019).

Within the field of AI, interpretability can be defined as “the ability to explain or to present in
understandable terms to a human” (Doshi-Velez and Kim, 2017). It represents the degree to which a
human can understand the basis of a decision or the extent to which a human can predict a machine
learning model’s result with a high degree of consistency. The more interpretable the model, the
easier it is to understand why certain decisions or predictions have been made. This relationship
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also engenders confidence between the user of a decision support
engine and the machine learning algorithm that forms and then
provides those decisions.

In this work, we report on a study that aims to assess
the effect of interpretability techniques and visualizations on
user confidence in the AI system providing decisions. Current
research in the field focuses more on creating mathematically
interpretable models, neglecting the human who uses these
explanations (Abdul et al., 2018). Taking a user-centric approach
to interpretability and designing to foster confidence may better
facilitate collaboration between humans and AI decision systems
and assuage societal concerns around the use of AI (Bryson and
Theodorou, 2019). This study attempts to bridge this gap in
interpretability by providing human-centered explanations using
various techniques without compromising the faithfulness of the
AI visualization.

Research in explainable AI (XAI) seeks to create
interpretability models and methods to address the problems
associated with a lack of transparency in AI systems, therefore
making them more explainable and fairer (Barredo Arrieta
et al., 2020). Some methods developed for image recognition
systems attempt to highlight which components of the AI model
or system are perturbed to create decisions. Visualizations or
descriptions of discriminative mechanisms are then used to
represent perturbed components of the system for end-users.
These methods are essential to identify sources of potential
bias in the training data and ensure that algorithms perform as
expected (Gilpin et al., 2018). Providing explanations of system
behaviors as a form of transparency has been shown to have
a considerable positive impact on developing confidence in
new technology (Lee and See, 2004; Cofta, 2009; Eiband et al.,
2019; Glikson and Woolley, 2020; Meske and Bunde, 2020).
Implementing XAI methods within HCI design for systems that
include AI as decision support will help users become more
aware of a system’s behavior and support a richer collaboration
between humans and AI (Gilpin et al., 2018). Similarly, XAI
research is also critical in domains such as transportation,
finance, security, legal, and medicine, where AI decisions can
potentially impact human lives.

Improving congruence between algorithmic decisions and
human perceptions concerning those decisions is a serious
challenge within advanced and critical machine learning
applications (Doshi-Velez and Kim, 2017; Rudin, 2019).
However, the complexity, recursivity, and high degree of
nonlinearity of current machine learning systems make it
arduous to dissect the decision process and, thus, provide
straightforward and understandable explanations for a human
to process. To tackle this challenge, current approaches in XAI
create post-hoc algorithmic and mathematical methods to help
explain initially opaque models. Moreover, researchers in the
field have recently begun to investigate how to visually represent
the AI decision process to produce intelligible explanations for
humans (Sundararajan et al., 2019), highlighting the importance
of visualization during the interpretation process.

According to a recent call for research (Abdul et al., 2018),
a growing societal need is driving the rise in research interest
investigating XAI. Furthermore, this call states that there exists

a perception of bias in AI decision-making systems that affects
both users of those systems and those for whom decisions are
being made more generally. To address this need for research, we
present a study investigating the effects of design choices of an AI
model’s explanation visualization (EV) on the level of confidence
between a human and an AI system. As a basis for the study
presented here, we formulated the following research questions:
“To what extent will the EV of an AI system’s decision affect
a user’s confidence?”. And furthermore, to highlight if aspects
of information presentation further affect user confidence, “To
what extent does presentation order and visualization technique
promote or degrade user confidence in the AI system and
its decisions?”.

We present two studies designed to address these questions
using Cognitive Fit (CF) as a theoretical basis and utilizing several
EV methods of AI decisions output to manipulate morphological
clarity (MC) and two presentation-order methods to investigate
adjacency. The first study was administered online and assessed
each EV’s impact while participants completed a simple decision-
making task using an AI system’s outputs. The second study was
performed using the same stimulus material and methodology
in a laboratory. However, in this study, we recorded measures
of pupillometry to infer cognitive load. Both studies investigate
how user confidence in future system predictions is affected by
each type of EV.

PREVIOUS WORK

Trust and Confidence in Artificial
Intelligence
It has been proposed that control or perception of control
moderates confidence, whereby increasing confidence acts
cumulatively to build trust in alliances and partnerships (Das and
Teng, 1998). Trust in a specific technology, such as an AI system,
affects the value-added proposition of using the technology after
its adoption (Mcknight et al., 2011). Moreover, a user who has
high confidence in a technologies capabilities and thus places
trust in a specific technology is more likely to explore and use
its features (Mcknight et al., 2011). Therefore, it has become
essential to consider the trust relationship between user and
technology when developing and implementing an AI system
in order to accelerate its acceptance within the workplace. This
relationship has a few proven antecedents, such as navigational
structure and visual appeal, ease of use, and the national culture
of the user (Vance et al., 2008). Furthermore, trust in an AI
system is also dependent on more specific factors such as
privacy, security, reliability, stated and perceived accuracy, and
transparency (Cofta, 2009; Fairclough et al., 2015; Yin et al., 2019;
Glikson and Woolley, 2020).

As described in Lee and See (2004), trust within a human-AI
partnership is the attitude that an agent, such as an AI system,
“will help achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability.” In this form of partnership,
insufficient trust placed in a system may result in distrust and
disuse of the system, whereas too much trust may result in over-
reliance in the system, whereby the AI takes away from human
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agency and the ability to make decisions. Depending on the scale,
importance, and impact of the tasks and decisions taken by the AI
system, misuses or disuses of the system by its users can lead to
safety and profitability problems (Parasuraman and Riley, 1997;
Lee and See, 2004). While trust mediates how much reliance
humans are willing to place on AI systems, trust also mediates
how much humans rely on each other (Lankton et al., 2015).
However, humans lose confidence in AI systems more rapidly
than other humans, even if both parties make the same mistake
(Dietvorst et al., 2015). Thus, it can be stated that trust in AI
systems tends to decrease rapidly as a function of the number
of errors the system makes over the duration of interaction and
that the restoration of trust in AI systems or tools requires an
undetermined but more significant amount of time (Glikson and
Woolley, 2020; Nourani et al., 2020). Moreover, studies have
shown that humans display greater trust toward other human
agents than AI agents, even though both perform the same tasks
and make identical mistakes (Jakesch et al., 2019; Glikson and
Woolley, 2020).

However, according to (DeCamp and Tilburt, 2019), it is
erroneous to speak of a user-AI trust relationship. Referring to
trust in AI as a concrete psycho-affective relationship would
imply that the system belongs to the same category of human
agents that can be trusted, such as a physician or member of
law enforcement. Currently, for an AI system, the thoughts,
motives, and actions, which comprise the human psycho-affective
framework involved in developing and allocating trust, go
beyond its technical and mechanical capacities. Furthermore,
moving forward, the development of AI will have a significant
moral impact in the long term as the performance of AI improves,
given that human capacities, in terms of technical accuracy,
speed, and judgment, may well prove inferior to that of AI
systems, resulting in a blanket of distrust regardless of evidence
proving their accuracy and worth.

Moreover, some researchers suggest a game-theoretic
approach where it is only possible to talk about trust when the
trustor is in a situation of vulnerability and uncertainty with
the trustee and when the consequences of a betrayal of trust are
more significant than the benefits sought (Luhmann, 2001; Vance
et al., 2008). In the context of the current research study, it would
therefore be more appropriate to speak of developing confidence
rather than trust in AI systems. Confidence in AI can be defined
as a measure of risk as to how sure users are that they received
the correct suggestions by the AI system and if they consider
the system to be reliable, i.e., the system consistently operates
properly, functional, i.e., the system does what it is supposed to
do, and helpful, i.e., the system provides adequate help for the
users (Lankton et al., 2015; Wanner et al., 2021).

Cognitive Fit Theory
Cognitive Fit theory (Vessey, 1991) offers a means to understand
how design choices of AI decision-making visualizations affect
human cognitive performance and potentially toward building
confidence in the system. This theory proposes that congruence
between the task and the structure of the representation of
a problem in an individual’s mental model results in reduced
cognitive effort and superior performance. The complexity and

usefulness of this mental model are dependent on the user’s
working memory capacity (Vessey and Galletta, 1991; Goodhue
and Thompson, 1995; Adipat et al., 2011). Therefore, additional
cognitive effort is required when there is a lack of fit between the
task at hand and the information format used to complete the
task (Vessey, 1991). The individual must mentally transform that
information into a format that enables them to accomplish the
task, resulting in reduced performance (Adipat et al., 2011). This
relationship between CF and cognitive effort was demonstrated
using neuroscientific methods (Nuamah et al., 2020).

Cognitive Fit theory was first proposed to assess the effect
of numerical data presented in a tabular versus function format
paired with a symbolic and spatial task on cognitive performance.
This theory has been applied in several studies over the
years, within other research domains, and using multiple other
information presentation formats (Adipat et al., 2011; van der
Land et al., 2013; Chen, 2017; Gillespie et al., 2018). CF theory can
also be used to support the theoretical basis of this study, where
numerical data are translated into visualizations using colors and
shapes for human usage. In this respect, the visualization of the
AI decision process can potentially help provide a stronger CF
between the task and the information required to complete that
task in human-AI collaboration contexts, where understanding
the AI decision process is of importance.

The result of designing tasks using this process is greater
efficiency and effectiveness, manifested as lower cognitive load,
increased accuracy, and speed in problem-solving. Therefore,
applying this process to the presentation and visualization of
AI decision reasoning may significantly impact the level of
confidence engendered between a human and an AI system.
Moreover, a visualization method with a stronger CF would help
users perceive the reasoning behind the AI system’s prediction,
consequently helping to avoid over or lack of confidence resulting
in a misuse or disuse of the AI system (Lee and See, 2004).
Furthermore, results from a recent study using the same stimuli
and AI algorithm (Hudon et al., 2021) reported a negative
correlation between cognitive load and the level of confidence
in the AI system resulting from the use of an EV. These results
further support the assertion that improving the CF between the
task and the EV type may reduce cognitive load and positively
influence a user’s confidence in the system.

Progress in Explainable Artificial
Intelligence
Recent advances in XAI have made it possible to produce
explainable models and learning methods, especially in image
recognition systems that have developed multiple techniques
(Barredo Arrieta et al., 2020). Techniques such as Grad-CAM
(Selvaraju et al., 2020) and integrated gradient (Sundararajan
et al., 2017) aim to show relationships between inputs and
outputs, focusing on processing information in the models.
Studies have investigated the potential effect of interpretability
and explanations on humans. Moreover, it has been shown
that transparency in a model helped users simulate the model’s
prediction (Poursabzi-Sangdeh et al., 2018). Others indicated that
visualizations have a considerable influence on the effectiveness

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 883385

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-883385 June 20, 2022 Time: 19:15 # 4

Karran et al. Designing for Confidence

of the explanations (Sundararajan et al., 2019), that they can
help discriminate between classes more accurately, help reveal
a model’s trustworthiness, and help identify biases in datasets
or models (Gilpin et al., 2018; Selvaraju et al., 2020). However,
it is unknown what impact these visualization techniques have
on developing confidence between human and AI systems
to our knowledge.

HYPOTHESIS DEVELOPMENT AND
RESEARCH MODEL

The research model (Figure 1) posits that the design of an EV
will affect a user’s confidence in the system. More precisely,
we hypothesize that the effect of EV adjacency and MC, in
addition to the interaction between both, will affect cognitive
load influencing perceived confidence. The rationale behind these
relationships is developed below.

Adjacency is a form of presentation order in which an adjacent
EV is presented with its explanation data displayed directly upon
the original image by coloring the areas in different colors to
indicate their data values. In contrast, a non-adjacent EV is
presented with the same explanation data but separated from
the image (Dennis and Carte, 1998). However, non-adjacent EV
requires greater cognitive effort to process since there is a loss
in correspondence between the explanation and the visualization
(Sundararajan et al., 2019). For spatial tasks, similar to the one
used in the study presented here, (Dennis and Carte, 1998)
showed that adjacent representations led to faster and more
accurate decisions. They state that adjacent visualizations should
help decision-makers associate areas of a visualization image
with its data, simplifying the complex relationship between them,
leading to faster, more accurate decisions. We posit that this
adjacency relationship will hold for newer spatial tasks in which
the visualization and data presented represent decisions already
made by an AI and where the user of the AI is asked if he has
confidence in future AI classification abilities.

Furthermore, we theorize that MC, which represents the
degree to which a visualization displays clear delimited features

by adjusting the appearance or removing specific data (e.g., noise)
to help make the delimitation clearer for the user (Sundararajan
et al., 2019), will also affect user confidence in the AI system.
This study uses three levels of MC (i.e., low, medium, and high).
First, low MC EVs are faithful to the model’s behavior as they
allow the user to precisely identify at a pixel level what areas
of the image are relevant. However, this precision makes the
EV more cluttered, preventing the user from having a clear
overarching view of the image. Alternatively, High MC EVs are
more faithful to the MC definition by having clear form features
while reducing the noise due to excess information. High MC
EV provides greater clarity for the user and tends to be easier
to comprehend by reducing his cognitive load but at the cost of
faithfully depicting the model’s behavior. On the other hand, low
MC EV might cause humans to misuse or ignore the explanation
altogether by giving them too much information to process
(Sundararajan et al., 2019; Müller et al., 2021). This concept of
information overload (i.e., too much available information or
too much high-quality information) has been shown to decrease
the user’s decision effectiveness and can even make the user less
confident about their decision (Keller and Staelin, 1987; Müller
et al., 2021).

As discussed previously, CF theory (Vessey, 1991) proposes
that the level of congruence between task and information
presentation mediates task performance. Such that, while solving
a problem, an individual creates a mental representation of
the problem based on the information presented. This mental
representation’s complexity and usefulness are dependent on
the user’s working memory capacity (Vessey and Galletta,
1991; Goodhue and Thompson, 1995; Adipat et al., 2011).
Thus, additional cognitive effort is required in the presence of
incongruence between task and the format of the information
presented to help complete the task (Nuamah et al., 2020),
requiring the individual to mentally transform that information
into a format suitable for accomplishing the task, resulting in
reduced performance (Adipat et al., 2011).

We hypothesize that specific EVs will result in a better CF,
reducing cognitive load, defined as the demand imposed by a task
on the user’s working memory (Wickens, 2008). Therefore, a task

FIGURE 1 | Research model.
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requiring significant mental resources is more likely to prompt
more user errors than a task requiring less cognitive resources,
resulting in less perceived effort and greater CF (Palinko et al.,
2010b; Nuamah et al., 2020).

Thus, we seek to determine whether Adjacent EVs will result
in higher confidence in the AI system (H1) or if High MC EVs will
result in higher confidence in the AI system (H2) or whether the
combination of adjacent and high MC EVs mediated by cognitive
load will result in higher confidence in the AI system (H3).

MATERIALS AND METHODS

Study One
Experimental Design
We designed an online experiment to test our hypotheses.
Specifically, we used a 2 × 3 within-subject factorial design to
examine the effects of adjacency and MC of AI EV on confidence
between the user and the AI system. The first factor considers
the adjacency of the representation with two levels: EV with
(adjacent) or without (non-adjacent) image background, the
second factor considers the MC of the EV with three levels:
low-cloud of points (CP), medium-heatmap (HM), and high-
outline (ON). We considered CP EV to be low MC since it
faithfully depicts the model’s attributions by highlighting the
image’s pixels that positively impact the model’s classification.
However, CP also displays much information that can be useless
to the user. We considered HM EV to be a low MC since it is
less precise than CP, showing only the model’s focal point on the
stimuli image. HM also does not delimit its shapes enough to be
considered a High MC visualization. Finally, ON EV draws only
the most essential zones of the image used in the classification,
therefore providing a high MC, but at the cost of pixel-level
precision. See Table 1 for EV examples and the Generation
of Explanations section for detailed information about these
factors’ implementation.

Participants
Amazon Mechanical Turk (MTurk) was used to recruit
participants. Based on (Jia et al., 2017) recommendations the
participant pool was screened for North American residency
to prevent linguistic difficulty. In the study, we restricted
ourselves to local explanations of the model as they are
deemed to be accessible for novices. This selection criterion
avoids confounding factors due to participants’ potential
machine learning expertise. A total of 350 North American
participants took part in the survey, of which 206 (Avg.
age = 37.87 ± 10.51, 123 Male) provided usable data. Sixty-
one participants considered themselves AI or Data experts based
on criteria posited by Mohseni et al. (2018). To improve data
quality, data were removed for participants who failed any of
the two attention checks, did the survey multiple times, or
did not correctly submit their survey. The attention checks
verified participant attention to the stimuli by displaying black
squares instead of the images. Our institution’s ethics committee
approved the study, and each participant provided informed
consent and was compensated $CAD 20 upon completion.

Experimental Procedure
Once recruited, participants were directed to an online survey
on Qualtrics. Participants were provided instructions and an
example of a trial task upon beginning the study. For each trial,
several elements were presented on screen (Figure 2): (1) The
image analyzed by the system, (2) the system’s EV, (3) the system’s
output, and (4) a related but unclassified image. In this case, the
system’s output is the classification of the image predicted by the
system; classifications were presented irrespective of correctness.
Classification mistakes were evenly distributed among all EV
types. For our 206 participants, we found on average per EV
type 350 classification mistakes (STD = 10.61) compared to 1,259
correct classification (STD = 14,15). Participants were then asked
to rate their agreement with the following statement using a 7-
point Likert scale ranging from “Strongly disagree” to “Strongly
agree”: “Given the information above, I am confident that the
system will correctly identify the next picture.” The decision-
making task consisted of 50 trials per participant, with two trials
consisting of attention checks.

Stimulus material was presented randomly, with one label
associated with a pair of similar images. In this context, similar
images belong to the same class, therefore having the same label
(e.g., two images of a car). A participant could not see the same
pair of images more than one time. EV types were also presented
in a random order for each task trial. The combination label-
explanation type was also randomized amongst participants to
avoid confounding effects due to the image label, object, or
prediction. Therefore, a participant could see the image of an
elephant paired with an adjacent-medium MC EV, and another
could see the same image paired with a non-adjacent-low MC
EV. After 50 trials, all six different EV types were seen and
judged eight times by the participant. After completing the main
task, participants were asked to answer demographic questions
regarding their age, gender, and education level.

Study Two
Experimental Design
For the second study, we designed a 2 × 3 within-subject
factorial design to investigate the effects of adjacency and MC
of AI-EVs on the user’s cognitive load and perceived confidence.
The first factor considers the representation’s adjacency with
two levels: EV with (adjacent) or without (non-adjacent) image
background. The second factor considers the MC of the EV
with three levels: low-CP, medium-heatmap (HM), and high-
outline (ON). CP faithfully depicts the model’s attributions
by highlighting pixels of the image that positively impact
the model’s classification but also displays a high amount of
superfluous information. HM is less precise than CP in terms of
classification feature granularity. However, it shows the stimuli
image’s prime focus used to make a classification but does
not have precisely delimited features. The ON visualization
draws only the most essential zones of the image used in the
classification but at the cost of pixel-level precision. CP and
ON-EVs were both implemented using the Integrated Gradients
method (Sundararajan et al., 2017, 2019), and the HM-EV using
the Grad-CAM class activation function (Selvaraju et al., 2020).
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FIGURE 2 | Task’s design. Images selected from the ImageNet dataset (Deng et al., 2009).

FIGURE 3 | Task design. Images selected from the ImageNet dataset.

Experimental Procedure
Nineteen participants (24.9 ± 8.3 years old, 10 Male) took part
in the study, all signed consent and were compensated $CAD
30 upon completion. The study was approved by the ethics
committee of our institution, the task consisted of a spatial
task repeated over 60 randomized trials. Each trial involves a
series of elements displayed on screen (see Figure 3) in the
following order: (1) original image (e.g., image of an elephant),
(2) classification of the image given by the AI system1 (e.g.,
“Elephant”), (3) the AI EV (e.g., an overlay IA explanation onto
the original image), and (4) a perceived confidence question (e.g.,
confidence in the system).

Participants were asked to rate their agreement with the
following statement using a 7-point Likert scale ranging from
“Strongly disagree” to “Strongly agree” and “I am confident
in the system’s ability to classify pictures of similar objects

1The Xception (extreme inception; Chollet, 2017) algorithm which comes with
pre-trained weights on the ImageNet dataset was used to classify the images.

correctly.” A baseline image was finally shown at the end
of each trial for 1 s. Each participant saw all six types of
visualizations ten times. To measure pupil dilation, we used the
Tobii ×60 eye tracker.

Illuminance Testing
We measured lux using an Arduino light-dependent resistor
(photoresistor) housed in a custom 3-D printed 1.5 cm
depth × 5 cm area housing. Lux is a standardized unit of
measurement of light intensity where 1 lux is equal to the
illumination of a one-meter square surface that is 1 m away from
a single candle. The experiment took place in a light-controlled
room with an ambient lux value of lx (19.97). Luminance
measurements for the display screen and per condition images
were taken from a 70 cm distance and a height of approximately
1 m (representing a seated participant of average height). The
default screen brightness at idle was lx (1.59), with the baseline
fixation image lx (1.59). The average lux values per experimental
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condition were as follows: CP Adjacent lx (1.612), CP Non-
adjacent lx (1.607), HM Adjacent lx (1.609), HM Non-adjacent lx
(1.61), ON Adjacent lx (1.611), and ON Non-adjacent lx (1.67).
We performed a 1-way ANOVA to determine if a significant
difference existed between lux values that may affect pupillometry
measures, no significant difference in luminance values between
conditions was found FWelch (5, 24.637) = 0.710, p = 0.621.

Calculating Cognitive Load
Changes in Pupil dilation when a user faces a task requiring a
high cognitive effort are referred to as the Task-evoked pupillary
response (Beatty, 1982). We used pupil diameter to estimate the
user’s cognitive effort required to process each EV. We computed
the average percentage change from a baseline taken from a
neutral image (PcB) for each participant and each EV in this
analysis. We used the percentage change of pupil diameter rather
than the raw pupil size variation due to inter-participant variance
(Attard-Johnson et al., 2019).

Selection of Stimuli
Subsets of stimulus images were selected from the ImageNet
dataset (Deng et al., 2009), a publicly released image dataset
with 1.2 million quality-controlled categorized images and
associated human annotations. When building the stimulus
image dataset, neutrality and unambiguity were used as the
criterion. With these criteria in mind, straightforward categories
of image and annotation pairs such as “Dog” instead of
“Golden Retriever” or “Elephant” instead of “African elephant”
were chosen to reduce confusion and present images as
“platonic” classes. Image categories were chosen based on
(Snodgrass and Vanderwart, 1980), who defined a standardized
set of 260 illustrations of different concepts. These concepts
were chosen based on three criteria: (1) They are unambiguously
picturable, (2) they include exemplars from the widely used
category norms of Battig and Montague (1969), and (3) which
represent concepts at the basic level of categorization. As
described by Battig and Montague (1969), unambiguity is the
degree to which subjects will show consensus about the name
to give the object. From these 260 concepts, 100 were selected
to represent the categories of the images used within the
stimulus dataset.

ImageNet organizes images according to the WordNet
hierarchy (Miller, 1995), where each concept is described by
one or multiple names called a “synonym set” or “synset.” The
following criteria were established to select the stimulus images:
(1) The image’s synset must contain the name of one of the 100
previously selected concepts, (2) No human subject is present
in the image, and (3) the image must be neutral (no shocking
or disturbing depiction). In total, 200 images were selected,
giving two images per concept. Image ambiguity, familiarity,
and complexity were measured and used as control variables in
the final analysis.

Validation of Stimuli
To ensure that the selected images are an unambiguous
representation of the concepts outlined by Snodgrass and
Vanderwart (1980), we used a panel of 18 judges to validate

the images used for stimulus presentation. To ensure that three
judges independently coded each stimulus image, the validation
process was split into two rounds, and judges were split into six
groups of three, thus there were nine judges in both rounds,
and each group of three judges validated the entire stimulus
corpus. As part of the evaluation process, each judge was asked
to complete an online survey that displayed images to a screen
and then write a label composed of one or two words to describe
the image. Each group of three judges would assess between
65 and 68 images. This ensured that three judges provided
labels for all images. Furthermore, judges were prompted to
write a spontaneous description to minimize subjective bias.
Following guidelines presented by Snodgrass and Vanderwart
(1980), for each picture, the judges could also specify if: (1) They
did not know the object (DNO), (2) if they knew the object
but did not know its name (DKN), (3) and if they knew the
name of the object, but it was momentarily irretrievable [tip of
the tongue (TOT)].

In order to assess if a judges description (label) could be
accepted or rejected, we specified the following criteria: (1) It is
the same as the concept name (expected: bee, label: bee), (2) it is a
synonym of the concept name (expected: aeroplane, label: plane),
(3) it is a more precise term than the concept’s name (expected:
bear, label: polar bear), and (4) it is listed in the nondominant
list of name of the concept (Snodgrass and Vanderwart, 1980;
expected: alligator, label: crocodile). An image was replaced if
it matches one of these criteria: (1) At least two out of three
judges put a rejected label or checked DKO, DKN, or TOT, or
(2) at least two out of three judges use a nondominant name to
describe the image.

The first round of stimuli verification was composed of three
groups of three judges who produced an average Cohen’s Kappa
of 0.838 (Table 1), which is considered a strong agreement rate
(Viera and Garrett, 2005). However, eight images were replaced
that did not meet the level of agreement criteria. We conducted a
second round of stimuli validation to include the new images and
nine new judges, which produced an average Cohen’s Kappa of
0.879 (Table 1). We did not replace any images after this second
round of verification, given the high rate of inter-rater agreement.

Choice of the Algorithm
To classify the stimulus images and act as the automated system
in the study, we chose the Xception (Chollet, 2017) algorithm,
which is packaged with pre-trained weights trained on the
ImageNet dataset. Developed by a team at Google, Xception is a
deep learning algorithm that relies heavily on prior effort done in
the area of Convolutional Neural Networks. Xception has proven
to be a very effective, compact (88 MB), and accurate (0.790)
algorithm for computer vision problems (Chollet, 2017). We
applied the trained Xception algorithm to the validated stimulus
image. Output classifications, in the format of a sysnet-ID and
label, were then compared to the “platonic” class of image. For
example, if we are looking for the platonic class of “Cat” and
the algorithm returned the synset label of “Cat” or “Tiger Cat,”
we considered the classification acceptable as they both represent
the class of a cat. After training, we obtained a reasonable
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TABLE 1 | Overall inter-rater agreement for each group (G#) at each round (R#).

Kappa Raw agreement Fleiss’s K Krippendorff’s alpha N

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

G1 J1 – J2 0.829 0.969 75.40% 78.80% 0.816 0.854 0.81 0.855 N = 65 N = 66

J1 – J3 0.752 0.798

J2 – J3 0.858 0.798

G2 J1 – J2 0.938 0.85 84.80% 82.10% 0.896 0.853 0.896 0.855 N = 66 N = 67

J1 – J3 0.907 0.848

J2 – J3 0.845 0.863

G3 J1 – J2 0.845 0.907 72.70% 89.40% 0.803 0.927 0.804 0.927 N = 66 N = 66

J1 – J3 0.752 0.891

J2 – J3 0.814 0.984

Average 0.838 0.879 77.63% 83.43% 0.838 0.878 0.837 0.879

Values in bold represent the final average across rater groups.

FIGURE 4 | Example of each type of EV for the classification “Monkey”. Images selected from the ImageNet dataset (Deng et al., 2009).

classification rate of 0.76, close enough to the algorithm’s current
maximum accuracy rate.

Generation of Explanation Visualizations
In order to actualize the concepts of adjacency and MC during
the experimental task, we utilized several visualization and
presentation methods to provide the participant with an AI EV.
The low and high MC visualizations were both implemented
using the Integrated Gradients method (Sundararajan et al., 2017,
2019). These visualizations highlight in green the areas of the
stimulus image that positively impact the model’s classification.
The medium MC visualization was implemented using the Grad-
CAM class activation function (Selvaraju et al., 2020). This
method displays a heatmap that highlights activated regions
important for the classification of the image.

Adjacency representations were implemented using the Grad-
CAM class activation visualization overlaid upon the original

image and the Integrated Gradients visualization overlaid
upon a grayscale version of the original image, ensuring
that the attribution colors did not blend with those of the
image as recommended by Sundararajan et al. (2019). Non-
adjacent representations were implemented by showing a black
background under each visualization. In total, six combinations
of EV per image were generated (Figure 4).

Analysis
Using SAS 9.4, we performed a repeated-measures ANOVA
(Bonferroni corrected) for the dependent variable Perceived
Confidence (PConf) with both Adjacency, MC, and the
interaction of those two as within-subject factors. PConf is a
discrete variable taking values from 1 to 7, where 7 represents
the highest value of confidence between the user and the system.
Adjacency is a categorical binary variable (i.e., adjacent and
non-adjacent), and MC is a categorical, ordinal variable (i.e.,
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low, medium, and high). Since a classification’s validity can
significantly impact a user’s perceived confidence in the system,
we used the variable “Classification” as a covariate in the model.
Classification is a Boolean variable indicating whether the model’s
classification is correct.

In addition to the analysis performed in Hudon et al. (2021),
for study two, we computed a within-subject, repeated measures
mediation analysis using Monte Carlo methods (Yzerbyt et al.,
2018), in R (JSmediation) to estimate the confidence interval
of the indirect effect. Mediation analysis tests whether an IV
affects a DV through a third variable, the mediator, in this
case, cognitive load.

RESULTS

Study One
The results show a statistically significant main effect of
Adjacency [F(1, 205) = 246.96, p < 0.001], and MC [F(2,
410) = 5.69, p = 0.004]. Additionally, we observed a
significant interaction between MC and Adjacency [F(2,
410) = 6.10, p = 0.003]. The covariate variable Classification
also has a main effect on confidence [F(1, 205) = 768.13,
p < 0.001].

Post hoc comparisons of simple effects (Table 2) reported that
adjacent EV (M = 5.01, SD = 0.06) results in higher confidence
than non-adjacent EV [M = 4.55, SD = 0.06; t(205) = 15.71,
p < 0.001], providing support for H1. Concerning MC, post hoc
comparisons showed that a low MC (Cloud of Points) EV
(M = 4.85, SD = 0.06) resulted in higher confidence than both
medium MC (Heatmap; M = 4.77, SD = 0.06; t(410) = 2.36,
p = 0.019), and high MC (Outline; M = 4.73, SD = 0.06;
t(410) = 3.27, p = 0.001), providing no support for H2, as the
reported results highlight that the effect is the opposite of what we
had hypothesized. The comparison between good classifications
(M = 5.27, SD = 0.06) results in higher confidence than bad
classification [M = 4.29, SD = 0.06; t(205) = 27.72, p < 0.001].

As shown in Table 3, adjacent-high MC EV did not
significantly differ from the two other adjacent representations.
Therefore, H3 is also not supported. Surprisingly, a non-adjacent-
low MC EV (M = -0.25, SD = 0.09) resulted in a significantly

TABLE 2 | Post hoc comparisons adjacency, MC, and
classification on confidence.

Factor (1) Factor (2) Mean diff
(1–2)

DF t p

Adjacent Non-adjacent 0.46 205 15.71*** <0.001

Low MC (Cloud of
points)

Medium MC
(Heatmap)

0.08 410 2.36* 0.019

Low MC (Cloud of
points))

High MC (Outline) 0.12 410 3.27** 0.001

Medium MC
(Heatmap)

High MC (Outline) 0.03 410 0.91 0.363

Good classification Bad classification 0.98 205 27.72*** <0.001

*p < 0.05, **p < 0.01, and ***p < 0.001.

greater positive impact on confidence than both non-adjacent-
medium MC EV, and non-adjacent-high MC EV. Figure 5
illustrates that all three adjacent EV types have a significantly
greater positive impact on confidence than their non-adjacent
equivalent. It also shows that low MC EV has a significantly
greater positive impact on trust than medium and high MC EV.

Study Two
Preliminary results from the second study were published in
(Hudon et al., 2021). These results reported a significant main
effect of adjacency (p < 0.001) and MC (p < 0.001) and a
significant interaction between both factors (p < 0.001) upon
perceived confidence. However, in this preliminary analysis, any
cognitive load mediation effect was never considered. Shown in
Figure 6 are the results from a mediation analysis that follows the
research model proposed above (Figure 1).

While the direct effect of adjacency on cognitive load was
significant [t(17) = 5.26, p < 0.001], the indirect effect on
perceived confidence [t(18) = 2.13, p = 0.47] via cognitive load
is not, showing no indirect mediating effect of cognitive load
on perceived confidence. Congruent with the above results, the
Monte Carlo (5000 bootstrap samples) confidence interval for
the indirect effect for adjacency reported no indirect effect upon
perceived confidence and cognitive load (CI95% [–0.885; 0.408]).

Similarly, for MC, while the effect of MC on perceived
confidence [t(18) = 2.33, p < 0.032] and cognitive load
[t(18) = 4.17, p < 0.001] is significant, the effect of cognitive
load on perceived confidence is not [t(16) = 0.04, p = 0.969],
showing a lack of indirect effect. Monte Carlo confidence interval
for MC reported no indirect effect upon perceived confidence and
cognitive load (CI95% [–0.615; 0.655]).

These results indicate that the pathway to confidence via
cognitive load as a mediator (H3) is not supported. However, the
effects of both adjacency and MC have a very strong influence
on the level of perceived confidence; and furthermore, each
presentation method strongly influences cognitive load (see
Figures 7, 8).

DISCUSSION

Overall, the results from these studies indicate a clear difference
when comparing EV types, such that adjacency strongly
influences perceived user confidence. Looking at this significant
difference in more detail, we found that adjacent EVs had a
more significant positive effect on user confidence than non-
adjacent EVs, confirming our hypothesis. However, contrary to
our initial postulation in which we surmised that a high MC
would provide more than sufficient information and accuracy of
representation to influence user confidence positively, low MC
EVs resulted in the highest confidence between all three levels of
MC. Furthermore, looking at the results from the interaction of
both adjacency and MC, the findings indicate no clear method of
information presentation, in that all three adjacent EVs have an
approximately equivalent impact on user confidence. Moreover,
the results indicate that in situations of non-adjacency, there is
a significant difference between low and medium MC in addition
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TABLE 3 | Post hoc comparisons of the interaction between adjacency and MC on confidence.

Adjacency MC level (1) MC level (2) Mean diff (1–2) DF t p

Adjacent Low (Cloud of points) Medium (Heatmap) –0.024 410 –0.48 0.632

Low (Cloud of points) High (Outline) 0.009 410 0.18 0.857

Medium (Heatmap) High (Outline) 0.033 410 0.66 0.511

Non-adjacent Low (Cloud of points) Medium (Heatmap) 0.191 410 3.82*** <0.001

Low (Cloud of points) High (Outline) 0.223 410 4.44*** <0.001

Medium (Heatmap) High (Outline) 0.032 410 0.63 0.530

***p < 0.001.

to low and high MC, where the latter resulted in lower confidence
in the system. Results from study 2 confirm these results. Finally,
and perhaps counterintuitively, cognitive load decreases as MC
increases with adjacent visualizations, with low MC showing the
lowest cognitive load while this representation shows the highest
density in terms of information and noise.

The Impact of Adjacency on User
Confidence
We first hypothesized that adjacent visualizations would have a
greater significant impact on user confidence than non-adjacent
EVs, as adjacency is posited to provide a superior CF with the task
at hand in terms of providing visual scan patterns for pertinent
information, potentially leading to higher confidence through a
reduction in epistemic uncertainty. The results indicate, at least
in part, that our hypothesis holds true and that adjacency does
indeed impact user confidence significantly. This effect can be
explained by the lower cognitive effort required to identify the
correspondence between the highlighted areas of the explanation
and the original image. Users were able to promptly identify
which areas of the image influenced the AI system in its decision,
helping them compare AI classification reasoning with their
own. Indeed, (Dennis and Carte, 1998) posited that adjacent
visualizations led to more accurate decision-making in less time
when the user is faced with a spatial task, resulting in a better CF.
However, non-adjacent EVs have the advantage of aiding the user
in inspecting the details of the explanation without the distraction
of the underlying image or reviewing the original image to verify
what the attributions highlight in order to form a fresh opinion

FIGURE 5 | Comparison of adjacent and non-adjacent visualizations based
on their MC from low to high. ∗∗∗p < 0.001.

(Sundararajan et al., 2019). Moreover, non-adjacent EVs ask the
user to continuously gaze back and forth between the original
image and the EV. Thus, in terms of CF, we suggest that users
need to mentally associate the original image zones with the
AI decision visualization, creating a more complex mental map
requiring more cognitive resources.

The Conditional Effect of Morphological
Clarity on User Confidence
We further hypothesized that high MC visualizations would
have a more significant positive effect on user confidence.
This visualization technique focuses and highlights important
regions of the classified images, reducing the signal-to-noise
ratio related to the EV representing the network’s results, thus
diminishing the information load required. However, our results
surprisingly indicate the opposite to be true, showing in this
case that low MC EV had a more significant positive effect
on user’s confidence than high and medium MC EVs. An
alternate interpretation for this relationship could be that low
MC EV’s include more information, even if that additional
information would ordinarily be considered noise. Furthermore,
this supplementary information may implicitly increase the
perception of transparency in the model and positively affect user
confidence. This interpretation aligns with (Brunk et al., 2019),
who showed that the interpretability of black-box algorithms is
perceived to be more transparent and trustworthy if additional
information is present.

However, the adjacency comparisons (Figure 5) indicate no
significant difference between levels of MC when explanation
data are presented adjacently. As can be seen in the table, in
our case, the main significant variance between levels of MC
is between non-adjacent low MC with high and medium MC
EVs. These results imply that low MC EV has a greater positive
effect on confidence but only in situations of non-adjacency. With
these conditions in mind, and in light of our interpretations,
the results strongly suggest that users require more information
about the explanation when adjacency requirements are not met.
We interpret this difference between non-adjacent MC levels to
be a perceptual and processing disassociation between EV and the
subject matter of the input image. Moreover, while participants
could make a certain sense of the target objects form in the
case of the non-adjacent-low MC EV, the non-adjacent-medium
and high MC EVs were too abstract to identify clear forms and
associate them with the input image. As shown in Figure 4, the
non-adjacent-low MC EV allows the shape of the monkey’s head
to be distinguished, contrary to the two other non-adjacent EVs.
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FIGURE 6 | Mediation model for adjacency and MC on perceived confidence via cognitive load.

Therefore, we cannot conclude overall that low MC EV has a
greater effect on user confidence.

Overall, the results appear to indicate that in a task context
requiring no precise knowledge (i.e., identifying a simple object
in an image), confidence in an AI system can be improved with
explanations, providing there is adjacency between the EV and
the original image and furthermore, that the EV highlights areas
of the original image that correspond to the user’s perceptual
understanding of the task, regardless of the EV’s level of precision.
In contrast, when users with greater knowledge in a particular
subject are tasked with identifying specific patterns requiring
precision (e.g., detecting diabetic retinopathy), they are much
more critical about the type and characteristics of the EV used
(Sundararajan et al., 2019). However, further research is required
to investigate the relationship between the type of task and the
explanations provided to complete that task in more detail.

The Mediating Effect of Cognitive Load
on User Confidence
Our previous analysis (Hudon et al., 2021) indicated that adjacent
EVs resulted in lower cognitive load. We posited that this implied
that the cognitive effort required to process and understand the
AI’s EV through adjacent presentation is significantly lower than
non-adjacent EV, given a reduced need to mentally associate the
EV with the original image as the association is already made
implicit within the EV itself. This effect was hypothesized by
Dennis and Carte (1998), who stated that combining adjacent
presentation order with a spatial task may lead to faster and more
accurate decision making, resulting in a better CF. Furthermore,
we reported low cognitive load for non-adjacent-medium MC
EV. We posited that because this type of EV is very abstract,
it potentially makes it difficult to process the original image’s
target object and allows for a snap judgment and lower cognitive
workload through a disengagement effect.

However, as the current analysis indicates, it is primarily
adjacency and MC that act as mediators toward increased
user confidence in the AI decision visualizations and not the
level of cognitive load directly. Overall, in terms of CF, the
combination of low MC and non-adjacency results in the highest

perceived confidence for non-adjacent visualizations even under
conditions of high cognitive load. We previously proposed
(Hudon et al., 2021) that the high density of information
presented in this EV potentially helped users identify the
target object forms by reducing epistemic uncertainty. In that,
the extraneous but useful information allowed the user to
swap from cognitive processing to perceptual processing to
understand the model’s behavior. Ongoing research in human
factors is investigating the concept of epistemic uncertainty and
how it affects man-machine teaming (Tomsett et al., 2020) in
complex systems.

The results from the mediation analysis further indicate that
the pathway to increased confidence via cognitive load as a
mediator (H3) is not supported in our case. However, the
effects of both adjacency and MC appear to have a strong
direct influence on the level of perceived confidence, and
that each presentation method significantly influences cognitive
load. This result opens new questions for research concerning
the mechanisms of action and the relationship between MC,
adjacency, and perceived confidence in the results of AI decision
making, which may impact how these systems are created and
utilized by end-users.

FIGURE 7 | Percentage change of pupil diameter by each type of EV.
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FIGURE 8 | Perceived confidence for each type of EV.

Decision-Making Dynamics: Situation
Awareness, Ecological Interface Design,
and Fast and Slow Thinking
Speaking in terms of decision-making dynamics, another
complementary perspective from which to view these results
may be through the combination of the model situation
awareness (SA) proposed by Endsley (1995) ecological interface
design (Bennett and Flach, 2019) and “fast and slow thinking”
(Kahneman, 2011). When combined, these three approaches
provide a dynamic model that blends design, perception and
mechanisms that may explain the effects of MC and adjacency
with regard to AI decision visualizations upon the user.

Situation awareness was defined by Endsley (1995; ref pp 1)
as “the perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning,
and the projection of their status in the near future,” the model
thus consists of three tiers: perception, comprehension, and
projection, where each tier within the model details the human
factors associated with a dynamic system’s current and future
state of information. The overarching goal of ecological interface
design is to transform the behaviors required for workers to
do their jobs: from activities requiring the worker to draw
upon limited-capacity cognitive resources to activities that allow
powerful perception and action capabilities to be leveraged.
A critical process in achieving this goal is to understand the
abstract, complex, semantic structure of a work domain and then
design graphical displays that make it both concrete (i.e., easy to
see) and meaningful (i.e., easy to interpret) to the worker.

Kahneman (2011) proposed that the human decision-making
process is split into two parts a “fast” system and a “slow” system
or system one and system two. System one includes two variants
of intuitive thought, the expert and the heuristic, and operates
at relatively fast speeds and automatically with providing no
sense of voluntary control drawing upon the automatic neural
systems involved with perception and memory. This system is
the primary reactive system that consequently biases decisions ex
ante based on a coherent interpretation of reality given current
knowns and unknowns. System two by contrast, operates at a
slower rate and at the subconscious level to allocate attentional

resources to effortful mental activities and the conscious level
to engage reasoning and volition such as when performing
calculations or consciously attending to a problem. In terms of
overall functionality and versatility, system two has the broader
range in terms of decision making, however, it is system one that
is dominant in the majority of situations as it is tied to many
autonomic sensory and cognitive functions.

Thus, using this perspective to interpret the results reported
here, the sense of SA creates task specific expectations within
the user as it builds during task completion, these expectations
are influenced by the elements of the interface design, in the
current case the various visualizations of AI decisions. The
developing sense of SA and the interactions with the interface
dynamically cohere toward a more complete sense of SA related
to the task, mediated by the adjacency and MC of information
presentation within the interface. Therefore, the effects of MC
and adjacency speak to methods of creating ecologically valid
interfaces that positively affect SA. These further engage the
decision-making process at various levels where the combination
of both fast and slow processes mediated by adjacency and MC
aggregate toward an increase in trust and confidence, i.e. if a
task is repetitive requiring a quick “instinctual” decision, design
interfaces with adjacency as a focus which engenders confidence
and trust in the system until an error occurs. If, however, a more
considered decision is required, such as a diagnosis from medical
imagery for example, then design with non-adjacency, low MC
and moderate cognitive load as a focus, to engage more rational
processes through evidence gathering and consonance with
expected outputs (building toward good SA) which engenders
confidence building through perceived collaborative effort where
errors are shared between system and user.

Contribution to Theory and Implications
for Practice
The theory of CF has been used in previous research as
a framework to explain the impact of different information
presentation methods paired with various tasks on decision-
making performance. Studies from various fields have provided
validation of this theory, such as computer system development
(Shaft and Vessey, 2006), geographic information systems
(Dennis and Carte, 1998), and e-commerce (Brunelle, 2009;
Chen, 2017). Our study incorporates CF theory into XAI by
assessing which combination of presentation method and type of
EV provided a better “fit” and positively influenced confidence
using a spatial task. The results reported in this study provide
evidence showing that adjacent EVs facilitate the CF of a problem
and its representation for the user, in that they help users
effectively utilize their working memory while performing the
task by presenting the information in a more “understandable”
and structured format than non-adjacent EVs.

Studies have shown that visualized explanations of a system or
model positively impact confidence (Eiband et al., 2019; Meske
and Bunde, 2020) and that the presence of transparent design
further increases this impact (Kizilcec, 2016; Weitz et al., 2019).
We add to this design template for confidence by showing that
the choice of EV type in terms of its adjacency and MC may also
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modulate the impact on user confidence. Furthermore, designs
that impede the level of CF between interpretability and the task,
such as in the case of non-adjacent EV, may have a null or even
negative impact on confidence compared to cases where there is
no explanation transparency. Implying that not all explanations
of AI decision processes, be they visual or not, positively impact
user trust in AI decision systems. Therefore, when designing
AI decision tasks and interpretability interfaces, the aim should
be to achieve a high level of congruence between the problem-
solving task and the problem representation to align with the
user’s mental representation and knowledge of the task.

LIMITATIONS AND FUTURE WORK

The current study did not consider the cognitive distance or the
degree of similarity between two images representing the same
label. Consequently, some pairs of images may have appeared
similar (e.g., two images of an elephant’s face) and others rather
different (e.g., dogs of different breeds). Users presented with an
AI system’s classification could potentially be more confident that
the system will correctly classify a similar image than if they are
presented with a dissimilar image. This difference in similarity
between pairs of images could result in a bias in the results.
Therefore, future work should control the degree of similarity
between pairs of images. We see two opportunities to address this
challenge. Firstly, one should adopt an algorithmic perspective
and compute the similarity between pictures and secondly, one
could task a new panel of judges to assess the perceived visual
distance between images.

In this study, we only performed an analysis on the effect of
Adjacency and MC on the user’s confidence without including
the sample’s demographic data in the model. These data could
have a moderating effect on the user-AI confidence (e.g., the
confidence of an AI expert might be less influenced by the
different EV representation than an AI novice). Moreover, we
did not consider the potential impact on the confidence of the
individual’s propensity to trust AI. Some people are more likely to
trust technology than others, and it would have been interesting
to see the extent of this effect on confidence.

Finally, we did not control for algorithm type and design in
this study. Further work should concentrate on replicating our
results for different algorithms to examine if our observations
generalize. It has been demonstrated that even if the explanation
algorithm is model-agnostic, intrinsic differences in the image
recognition system design can lead to differences in predictive
features (Ribeiro et al., 2016). Thus, future research could
investigate the impact of design choices in black-box models on
the interpretability explanation and its impact on the human-
algorithm interaction.

While most of the work on interpretability focuses on
algorithmic approaches to create interpretable models, this study
shows that human-centered EVs of such algorithms can provide
an avenue for new research, where explanations are designed
to fit the users’ capabilities and the context of use. Future
studies could investigate the impact of the highlighted areas
of an image to determine if the highlighted areas that show a

similar thinking process to humans have a greater impact on
confidence than others.

Furthermore, explainability as currently recognized by the
explainable AI community, highlights technically relevant parts
of machine representations and machine models, i.e., those
elements that have contributed to model accuracy (as both
negative and positive attribution in the current study). However,
this form of explainability does not make reference to a human-
readable model which is potentially a limitation of the current
approach. As a consequence, researchers introduced the term
“causability,” defined as cause identifiability, as an extension to
“cause suitability” as a potential measurable model for human
interpretability (Holzinger et al., 2020). Utilizing this model as
a means through which to measure explainability would allow
the measurement of how an explanation of a statement reaches
a specified level of causal understanding for a user, in which
the effectiveness, efficiency and satisfaction of an explanation
can be determined for a given context of use. As previously
discussed and further highlighted by researchers in the field
(Holzinger and Müller, 2021), this will require new human-AI
interfaces in the future that enable contextual understanding and
also allow domain experts to ask questions and counterfactuals,
i.e., “what if ” questions. Investigating this new model and form
of measurement is something to be considered moving forward
toward explainable AI.

Concerns related to the lack of confidence between humans
and AI are not only relevant to the field of HCI. They have
far-reaching societal implications, as AI systems take critical
decisions that can impact human lives. To continue developing
better collaboration between human and AI agents, there is a
need to focus on developing interpretable, transparent models
that present information in a way that is compatible with human
cognitive processes (European Commission, 2021). In this regard,
research in the field could be expanded to include the concurrent
use of neurophysiological assessment methods such as eye-
fixation related potential (Palinko et al., 2010a). Studying the
active brain while testing new interpretation methods would add
an extra dimension that allows the testing of CF against the
cognitive load of adjacent and non-adjacent low, medium, and
high MC visualizations of new interpretation methods.

CONCLUSION

This study investigated the relationship between various types
of EV of an AI system’s output and user confidence in the
system’s decisions. The results show that visualization and
information presentation design choices have the potential to
positively impact a user’s confidence in the AI system. By
drawing upon CF theory (Vessey, 1991), we show that in this
case, adjacency and the level of MC of the visualization have a
conditional relationship upon user confidence. An EV overlaid
upon the original image, no matter the level of precision of the
visualization, results in a better fit between the decision task
and the explanation resulting in higher confidence. On the other
hand, users showed a preference for visualizations providing
precision in situations of non-adjacency of the EV.
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Furthermore, the relationships between various types of EVs
used to explain an AI system’s output and users’ cognitive
load cannot be explained simply as a function of cognitive
load, while visualization presentation methods do contribute to
both greater and lesser cognitive load, cognitive load in and
of itself does not mediate the effect on a user’s confidence
in system decision output. The results indicate that design
choices related to EVs can positively impact a user’s confidence
in AI systems by reducing epistemic uncertainty. Overall,
our results strongly suggest that the careful consideration
and application of CF theory, adjacency methods and EVs
containing low MC to AI interface and task design may
help improve the confidence relationship between a user and
an AI decision support system. Most of the advances on
interpretability and machine learning are still model-centric;
this research proposes a human-centered approach to evaluate
interpretability design choices.
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