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Abstract

Data Integrity Auditing (DIA) is a security service for verifying the integrity of outsourced

data in Public Cloud Storage (PCS) by users or by Third-Party Auditors (TPAs) on behalf of

the users. This paper proposes a novel DIA framework, called DIA-MTTP. The major nov-

elty of the framework lies in that, while providing the DIA service in a PCS environment, it

supports the use of third parties, but does not require full trust in the third parties. In achiev-

ing this property, a number of ideas also have been embedded in the design. These ideas

include the use of multiple third parties and a hierarchical approach to their communication

structure making the service more suited to resource-constrained user devices, the provi-

sion of two integrity assurance levels to balance the trade-off between security protection

levels and the costs incurred, the application of a data deduplication measure to both new

data and existing data updates to minimise the number of tags (re-)generated. In supporting

the dynamic data and deduplication measure, a distributed data structure, called Multiple

Mapping Tables (M2T), is proposed. Security analysis indicates that our framework is

secure with the use of untrusted third parties. Performance evaluation indicates that our

framework imposes less computational, communication and storage overheads than related

works.

Introduction

One of the commonly used Cloud services is a Public Cloud Storage (PCS) service. PCS main-

tains and manages data for its customers. Users can access their data anywhere, at any time

and with any device. Such services are typically provided over the Internet and charged on a

pay-as-you-go basis. The services offer flexibility, and improved data availability and accessi-

bility, so are increasingly popular among consumers. However, owing to the fact that providers

are third-party service providers and the services are provided over open networks, the services

are vulnerable to a large number of security threats and attacks [1]. The threats and attacks are

not just from external entities but also authorised insiders. For example, a dishonest provider
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may delete data intentionally in violation of contracts to save storage space or may hide any

accidental breach or loss of data to save their reputation. A disgruntled employee working for

a provider may make unauthorised alterations to users’ data in an attempt to discredit his/her

employer. A user may falsely accuse his/her provider of any data integrity or confidentiality

breach in an attempt to obtain some financial gains unlawfully, etc. These security concerns

are hindering the wide adoption of Cloud services in security sensitive areas, e.g. healthcare

[2–4]. Data Integrity Auditing (DIA) is a security service used to ensure the integrity of out-

sourced data held in PCS.

At the centre of DIA are data integrity verification methods through the use of some proofs

(also called tags or authenticators). There are broadly two classes of data integrity verification

techniques, Proof of Retrievability (POR) [5] and Provable Data Possession (PDP) [6]. As we

are interested in supporting both static as well as dynamic data, and the PDP based DIAs can

support dynamic data integrity verifications more efficiently, hereafter we only focus on PDP-

based DIAs and when we use DIA, we mean PDP-based DIAs.

Motivation

Over the past few years, there are a good number of DIA related works published in literature

[7–34]. These works can largely be classified into two main groups, the design of a tagging

method for the generation and verification of integrity tags [7–21], and the design of a DIA

system for ensuring the integrity of outsourced files via the use of a tagging method [14, 22–

34]. The state-of-the-art tagging methods can be further classified into two categories, sym-

metric-key based [7–11, 35], and public-key based [12–18]. The symmetric-key based methods

can only support private verifiability, making them unsuited to TPA-based DIA (Public DIA)

or in an environment where third parties cannot be trusted unconditionally. The asymmetric-

key based methods, such as RSA based [7, 13, 15] and short Boneh-Lynn-Shac-ham (BLS)

based [16–20, 36], can support both public and private verifiability, but these methods are

costly to the user end (Private DIA), particularly if users have a large number of files in the

PCS.

Most of the state-of-the-art DIAs proposed so far either make use of a centralised system

architecture [22–31] or assume that the providers and/or TPAs are unconditionally trustwor-

thy [31–34]. The centralised system architecture is vulnerable to performance and reliability

bottleneck. The assumption of providers/TPAs being unconditionally trustworthy may not be

valid in many cases, as indicated by a recent study that 34% of threats in 2018 are from autho-

rised insiders and it is increasing every year. A few that make use of a distributed system archi-

tecture [13, 33, 34] rely on the use of data redundancy to enhance reliability. This approach

imposes a high level of computational and communication costs on users. In addition, the

existing solutions have not considered how to support dynamic data with confidentiality pres-

ervation and tag collision resistance.

Our work reported in this paper is set to address these limitations and weaknesses, for

which we have formulated the following research questions: (1) how to minimise trust on the

third party service providers, (2) how to provide a DIA service securely and reliably with mini-

mal costs, particularly for the user end, and (3) how to balance the trade-off between costs and

security protection levels.

DIA in PCS with Minimising any Trust on Third Parties (DIA-MTTP) framework is

designed to address the limitations discussed above. The design has made use of the following

ideas: (i) a Multi-PCS-Multi-TPA system model; (ii) two levels of data integrity protections,

LoA1 (Level of Assurance 1) supported by using public verifiability and LoA2 supported by

using both public and private verifiability; (iii) two levels of data deduplication and at both the
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data block level during data uploading at both the user end and the service provider end; and

(iv) an integrated data updating and data deduplication using a novel data structure. The

framework has been analysed and evaluated in terms of security and performance, and the

results of the analysis and evaluation have been compared with related work, demonstrating

that the framework is more secure and more efficient than the related work.

Contribution

Our contributions can be summarised as the following:

• Specify a set of requirements for the design of an effective, secure and efficient DIA.

• A critical analysis of the existing DIA against the requirements to identify their strengths

and weaknesses.

• Design a novel DIA framework, DIA-MTTP, can satisfy all the requirements.

• Prove that DIA-MTTP can satisfy the security requirements through theoretical analysis.

• Justify the performance of DIA-MTTP through theoretical and experimental analysis and

comparisons with the state-of-the-art.

Organization

The rest of the paper is structured as follows. Requirement Specification Section presents a set

of requirements for the design of a DIA framework. Based on the requirements, Related Work

Critical Analysis Section critically analyses related DIA solutions published in literature, iden-

tifying areas for improvements. Key Features and Ideas Section presents our vision in design-

ing a novel DIA framework, the DIA-MTTP. Our design preliminaries and building blocks are

given in Design Preliminaries Section and Building Blocks Section, respectively. DIA-MTTP

Functional Blocks Section highlights the architecture and functional blocks of DIA-MTTP,

namely, Data Deduplication and Data Uploading (D3U), LoA1 Data Verification (LoA1DV),

LoA2 Data Verification (LoA2DV) and Data Updating (DU). These functional blocks are dis-

cussed, respectively, in Data Deduplication and Data Uploading (D3U) Section, LoA1 Data

Verification (LoA1DV) Section, LoA2 Data Verification (LoA2DV) Section and Data Updat-

ing (DU) Section, respectively. The security analysis of the DIA-MTTP framework is given in

Correctness and Security of DIA-MTTP Verification Protocols Section and the performance

evaluation in Performance Evaluation of the DIA-MTTP Section. Conclusion Section con-

cludes the paper.

Requirement specification

Based on the threat analysis in [37] and usecase study, we have specified a set of requirements

for the design of an effective, secure, reliable and efficient DIA. The requirements can be classi-

fied into four groups, functional, security, reliability and performance requirements. Their

details have been given in S1 File.

(F) Functional Requirements: (F1) Support Data/Tags Deduplication and (F2) Support

Dynamic Data/Tags.

(S) Security Requirements: (S1) Resistance of providers cheating, (S2) Resistance of TPAs

cheating and (S3) Resistance of users cheating.

(R) Reliability Requirements: (R1) Data Recovery and (R2) Elasticity.
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(P) Performance Requirements: (P1) Minimizing Data Uploading Computational Cost, (P2)

Minimizing Data Verification Computational Cost, (P3) Minimizing Data Updating

Computational Cost, (P4) Minimizing Data Uploading Communication Cost, (P5) Mini-

mizing Data Updating Communication Cost, (P6) Minimizing Data Verification Commu-

nication Cost and (P7) Minimizing Storage Overhead Cost.

Related work critical analysis

There are a good number of DIA works published in literature, where the first DIA proposed

by Ateniese et al. [7]. The DIA uses hashing based tagging method. The user before applying

the tag generation algorithm, she/he applies error-correcting codes (ECCs) on the data file for

data recovery property [38]. Another DIA was proposed by Chen et al. [8]. The Chen DIA is

similar to the Ateniese_1 DIA except in term of using Algebraic signature based tagging

method for more efficient DIA. It allows to perform a batch verification.

Above the two DIAs can be vulnerable to provider cheating (i.e. replay attacks). Thus, Soo-

khak et al. [9] proposed their DIA and use some random numbers, called nonces, in each data

verification to resist the attack. The user chooses a different nonce for each selected data block.

The provider should use these nonces in generating the proofs. Therefore, the user can be

assured of receiving fresh proof each time, without the need to choose a large number of the

data blocks.

In the case of the dynamic data, the provider may cheat the verifier using old data and their

associated tags that are no longer valid more in the proof generation. Therefore, the existing

DIAs use one of data structures to track and authenticate the data update and making the DIA

more resistant to replace attacks. The Sookhak DIA used Multiple Index Hash Table (MIHT)

[9]. The values of the rows are used in generating tags of the file for preventing the forging

attack. It saves computational cost at the user end when using multiple tables (MIHT) instead

of one table (IHT). In case of insertion or deletion operations and use one table for all data

blocks, it can lead to recompute a high number of tags (i.e. in the worst case, all tags of the file

may be recomputed). This is because of the serial numbers of data blocks under the updated

rows should be alighted, and the tags that are associated should be recomputed, as a result.

Zhang et al. [10] proposed DIA and used Balanced Update Tree (BUT). In BUT, each node

associated with one update request. The size of the BUT is independent of the total data blocks

number for the file and grows linearly with the number of dynamic operations, unlike IHT.

Therefore, it is more efficient in the case of the file that has a high number of the data blocks

and rarely updated. The user and the provider should update their trees after each operation.

Three of DIAs proposed by Luo et al. [35], Xu et al. [11] and Krishra et al. [39]. The Luo

DIA is different from the Xu DIA and the Krishra DIA by using the algebraic signature based

tagging method and the IHT, while the Xu DIA uses homomorphic MAC (HomMAC) based

tagging method and the Krishra DIA uses symmetric encryption algorithm.

The user and TPA, in above DIAs, should be entirely honest (i.e. they are private DIAs).

Therefore, to make a DIA to be more secure (e.g. against non-repudiation attacks), Therefore,

a number of DIAs have been proposed, where they used asymmetric key based tagging meth-

ods to support the public verifiability.

Ateniese et al. [12] proposed another DIA and used an RSA based tagging method. For data

confidentiality preservation and data recovery, the user, before generating tags for a file, first

encrypts the file, which is then encoded using an ECC method. Erway et al. proposed another

DIA. [14]. It is similar to the Ateniese_2 DIA except in terms of using a Rank based Authenti-

cated Skip List (RASL) data structure. As both DIAs use the RSA based tagging methods, thus,

they can lead to higher computational and communication costs at the user end and storage
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cost at the provider end. Therefore, Hanser et al. proposed their DIA and used an ECDSA

based tagging method alternatively [15].

For more efficiency, Li et al. [16], Liu et al. [17], Wang et al. [18–20], Tian et al. [40], Yang

et al. [21], and Li et al. [41] proposed their DIAs using BLS based tagging methods to further

reduce uploading communication and storage overheads. The difference between these DIAs

is in a way that is used for preventing the provider cheating (replace attacks), i.e. tag collision

prevention in the tagging methods. The Liu_1 DIA and the Yang_1 DIA use a hash of the data

block in the tag generation, but in the Li_1 DIA and the Wang DIA use a block index. Further-

more, as using encryption at file-level may make data updating operations are inefficient

where the user should retrieve the whole file for each update, therefore, the Liu_1 DIA, the

Wang DIA and the Tian DIA use a random masking method. The random masking method is

used to disguise the content of the data blocks when they are being released from the PCS

upon receipt of an integrity verification request. Consequently, the TPA can verify the correct-

ness of the proofs and cannot derive the user’s data plainly and violate their confidentiality.

Additionally, the Li_1 DIA and Yang_1 DIA used IHT, the Liu_1 DIA and the Wang DIA

used Merkle Hash Tree (MHT), and the Tian DIA used Dynamic Hash Table (DHT), while

the Li_2 DIA uses Large Breaching Tree (LBT).

Using ECCs can work only on a specified number of losses, and, if it goes beyond this num-

ber, the original data cannot be recovered. Therefore, Liu et al. [22], Abo-alian et al. [23, 24],

and Curtmola et al. [25] use another approach, i.e. The user uploads multiple replicas for his

file to the PCS, and the TPA can check the integrity of all these replicas (data replication).

Since a dishonest provider can delete one of these replicas without knowing the user, these rep-

licas should, therefore, be distinguished from one another, and different associated tags are

computed, as a result. In the Liu_2 DIA, a different random number used in each replica and

then tags for each replica are generated. The Abo-alian_1 DIA uses an encryption algorithm

alternative to the random numbers. Also, the data confidentiality can be preserved. For sup-

porting dynamic data, the Abo-alian_2 DIA uses RASL.

In the above DIAs, the computational and communication costs of data uploading increase

linearly with the number of data replicas at the user end. The more data replicas, more compu-

tational and communication costs. Therefore, the Curtmola DIA has been purposed to allows

the user to generate one version of tags that can authenticate all data replicas by extracting a

random number from a replica before it can verify its integrity. However, in the case of dis-

honest TPA, it may collude with the provider and share these random numbers.

Data deduplication can bring benefits, which it can release a user from sending a whole

data file, so saving bandwidth at the user and minimising the storage overheads at the PCS.

Therefore, Yuan et al. [26], Li et al. [27], Ma et al. [28] and He et al. [29] proposed their DIAs

and integrated them with data deduplication. The user should provide evidence by sending the

hash value of the file or random data blocks from the file. Once the user succeeds, then he can

generate his tags and upload them to the PCS without the data file.

As the file confidentiality can be vulnerable to compromise when applying the data dedupli-

cation among multiple users in the above DIA; thus, the encryption should be used. Unfortu-

nately, using conventional encryption with different signing keys results in different

ciphertexts being generated and will outright incapacitate data deduplication as a result.

Therefore, the Li_3 DIA, the Ma DIA and the He DIA applied other types of encryption algo-

rithms to preserve data confidentiality. The Li_3 DIA and the Ma DIA use a convergent

encryption [42]. The convergent encryption maybe not secure, whereby attackers may access

the hash value by guessing, i.e. it is vulnerable to brute-force attacks. Therefore, a proxy

encryption [43] is used in the He DIA, where each user can use his/her key. Then, the proxy

can re-encrypt the data to allow deduplication to be applied, where this new entity should be
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trustworthy for a good security level. However, the Yune DIA, Li_2 DIA and He DIA incur a

cost in term of computational. When the duplication is detected, the user still should generate

his tags. Therefore, Liu et al. [22] proposed for their DIA to use re-signature proxy BLS based.

The user, who is the first user who uploads a file, only processes the file, generates their associ-

ated tags and uploads them to the PCS. Thus, when another user has passed the ownership ver-

ification, then he can share his key for the tag generation with the provider for generating the

user’s tags.

Using a single TPA in DIA can make the DIA vulnerable to a bottleneck problem and cause

a delay in response when a high number of verification requests is received. Thus, using multi-

ple TPAs could be a solution to avoid this issue. Abbdal et al. [30] proposed a DIA using an

ECDSA based tagging method and two TPAs types, i.e. main TPA and multiple secondary

TPAs. In the Abbdal DIA, when the main TPA is busy, the verification request is forwarded to

the secondary TPA. Saxena et al. [31] releases the user from tag generation and multiple TPAs.

In each data integrity verification, multiple TPAs collaborate in the data verification. Jin et al.

[32] proposed another DIA using multiple TPAs, one TPA is for performing the data verifica-

tion and another TPA is for dynamic data, where it stores a data structure. The Jin DIA used

an index switcher for supporting a dynamic data.

Using multiple PCSes is in order to enhance the data availability, therefore, Yang et al. [21],

Ni et al. [13], Zhu et al. [33], and Liu et al. [34] proposed DIAs for the decentralised PCS. The

Yang_2 DIA can incur communication costs at the user and TPA. The user uploads a file rep-

lica to each PCS, i.e. the more data replicas, the higher the communication cost incurred. Fur-

thermore, it incurs high computational and communication costs at TPA, where it should

communicate with each provider for verification. Consequently, the Ni DIA was proposed

using a hierarchical approach. In the hierarchical approach, one of the providers is used as a

leader between other providers; thus, the user only communicates with the leader to upload

his data and their associated tags. The Zhu DIA proposed and used the same approach to

avoid the communication cost at TPA, too. The TPA only communicates with the leader when

checking the integrity of a file at multiple PCSes. In the Zhu DIA, the provider may defraud

the TPA and colludes with other providers. To detect such an attack by the TPA, different rep-

licas and their associated tags at each PCS can be used as a solution, but this can incur high

computational overhead costs at the user end. Therefore, Liu_4 DIA uses another approach,

i.e. extra data blocks and their associated tags are used rather than using multiple replicas.

Each PCS has different extra data blocks and their associated tags, and they should be included

in its proof. The providers do not know which the data blocks are being uploaded on its PCS,

and they are used for identification.

Key features and ideas

The DIA-MTTP has four novel features. This section gives theses features along with ideas

used to achieve feature.

The Multi-PCS_Multi-TPAs system model

The DIA-MTTP implements the idea of using entity redundancy to make the service more

reliable and secure. It uses multiple PCSes that are each managed by an independent provider

for data storage. There are multiple TPAs for data integrity verification on behalf of the users.

Multiple PCSes can help to address data recovery and data availability. A data replication

among multiple PCSes can overcome the limitations of the other techniques that are used in

the existing works such as either encoding methods (i.e. ECCs) or data replication in a single

PCS. The data can be recovered using one of the copies on other PCSes. This may resist
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complete data loss or modification and an outage service. In the event of a service outage or

security attack in a single PCS such as a distributed denial-of-service (DDoS) attack, the users

are not able to access the service. However, data replication among multiple PCSes can help

the users to access their data by using another PCS.

For the same reasons as described above, we have also used multiple TPAs (i.e. the multi-

TPA approach) in the DIA-MTTP design. Using multiple TPAs can help to reduce the risk of

creating a performance bottleneck which can occur in the case of using one TPA to verify the

data in a distributed provider system. The approach of using multiple TPAs and pairing each

TPA with a separate PCS distributes data verification tasks as it allows each TPA to only com-

municate with one PCS during a data verification process. This can reduce data verification

delays, speeding up the response times to users. In addition, this approach introduces TPA ser-

vice redundancies for public verification, as each such verification involves the participation of

multiple TPAs and their verification results are collated to produce the final result delivered to

the user, thus protecting against collusions among the PCS providers, collusions among TPAs/

providers and frame attacks by TPAs.

While the Multi-PCS_Multi-TPAs approach can provide benefits related to service reliabil-

ity and security, it may increase the communication cost. To reduce this cost as much as

possible, we have adopted a hierarchical approach to entity connections. We have classified

multiple PCSes into one leader PCS and multiple non leader PCSes. We apply the same

approach to multiple TPAs. In other words, there is a leader provider and a leader TPA. These

leaders act as a gateway to their respective non leader entities. These leader entities operate

during the data uploading and integrity checking options. The leader entities mainly play the

role of managing and coordinating the users to ensure that they only communicate with leader

entities, i.e. the leader provider and leader TPA. There is no direct communication between

the users and the non leader providers in the TPAs.

Two-level data integrity protection

To better balance the trade-off between security protection levels and the costs incurred by

providing the protections, thus optimising performance, DIA-MTTP implements two Levels

of data integrity Assurance (LoA), namely LoA1 (level 1) and LoA2 (level 2). LoA1 supports

the use of public verification and it is intended for users with non-critical/low-sensitive data or

users who have more trust in their service providers. LoA2 supports the use of both public and

private verification (dual verification) and it is intended for users with critical/highly-sensitive

data or users who have less trust in their service providers. By supporting dual verification,

the users can also verify the integrity of their data directly, thus detecting any misbehaviours

through either the providers or the TPAs. This private verification can be performed at any

time and at any frequency.

Two-level data deduplication

Data deduplication refers to the process of eliminating any redundant data. Eliminating

redundant data can help to reduce computational, storage and communication costs. This is

because tag generations and data encryption are only applied to non-duplicated data. As a

result, the number of tags that should be generated and the number of data blocks that should

be encrypted can be reduced, thus lowering the computational cost imposed on users and the

storage cost imposed on the PCS. In addition, the amount of data poured onto the channel

when the data are being uploaded can also be reduced, thus reducing the bandwidth and/or

communication cost.
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Data deduplication can be applied at both the block-level and the file-level [44]. Block-level

data deduplication refers to the identification and elimination of redundant data blocks in

one or more files. File-level data deduplication refers to the identification and elimination of

completely redundant file(s). File-level data deduplication can only be applied to files that are

100% identical. Both deduplication operations are applied to files owned by the same user.

Due to brute-force attacks and confidentiality concerns, the deduplication operations are not

applied to files owned by different users [44, 45].

Data deduplication operations may be performed by a user, i.e. user-end data deduplica-

tion, and/or by a provider, i.e. PCS-end data deduplication [44]. User-end data deduplication

is applied to data blocks/files that are to be uploaded by a user, whereas PCS-end data dedupli-

cation is applied to all of the data blocks/files that are being managed by the PCS for the user.

To maximise cost reduction, DIA-MTTP employs block-level data deduplication and both

user-end and PCS-end. DIA-MTTP supports two data deduplication levels, namely Data

DeDuplication Level 1 (D3L1) and Data DeDuplication Level 2 (D3L2). D3L1 is a form of

user-end data deduplication, while D3L2 is a form of PCS-end data deduplication. With this

two-level data deduplication support, users may not need to compute any tags for the data if

the data to be uploaded is duplicated.

An integrated data updating and data deduplication

Implementing the idea of integration of the data updating and data deduplication makes DIA

more efficient. As the outsourced data cannot only be static data files, users need to update

their data at any time. Therefore, they should keep the data that are non-duplicated after each

update. Furthermore, it can lessen the computational costs of the user, which can release him/

her from computing a tag for the updated data block in a case where it is duplicated. Using the

one data structure approach, i.e. a single data structure for tracking update all data files that

are owned by one user, can help to implement this idea more efficiently than using a data

structure for each file, i.e. file dependent data structure. The first approach allows for the provi-

sion of mapping information between one or more data files. Furthermore, it allows for the

implementation of batch update operations, i.e. updating one or more data blocks in one or

more files efficiently. In the latter approach, for batch updating, it should update each data

structure that is associated with a file separately. This can consume more communication and

computational costs on part of both the user and the provider.

To lessen the computational and communication costs during the data update and verifi-

cation, each entity in the DIA-MTTP system has its own respective data structure, i.e. User-

DS, TPA-DS, PCS-DS (i.e. the distributed data structure). It allows for the tracking of the

data update and the mapping of the information of the data deduplication by all system enti-

ties, unlike using a centralised data structure, i.e. where only the entity that has the data

structure can track the data update and deduplication. With a distributed data structure, the

user or the verifier can be released from verifying or re-signing a root of a tree in the data

updating or verification process. On the other hand, the provider can be released from send-

ing auxiliary information during the data update or verification. To lessen the computational

and communication costs during the data update and verification, each entity in the DIA-

MTTP system has its own respective data structure, i.e. User-DS, TPA-DS, PCS-DS (i.e. the

distributed data structure). It allows for the tracking of the data update and the mapping of

the information of the data deduplication by all system entities, unlike using a centralised

data structure, i.e. where only the entity that has the data structure can track the data update

and deduplication. With a distributed data structure, the user or the verifier can be released

from verifying or re-signing a root of a tree in the data updating or verification process. On
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the other hand, the provider can be released from sending auxiliary information during the

data update or verification.

In addition to providing the properties described above, DIA-MTTP also preserves data

confidentiality and resists replay attacks. Data confidentiality preservation is achieved using a

block level encryption method that has been implemented in the TOD method. The block

level encryption method relieves a provider from applying another method, i.e. random mask-

ing, to prevent the TPAs from accessing the content of the data that are to be verified. As men-

tioned in the existing works, the masking operation needs to be carried out by the provider

every time a file integrity verification request is received. This imposes an additional run-time

overhead on the provider. In addition, this approach does not protect the data confidentiality

present against the providers. Replay resistance is provided using nonces. A nonce is generated

and used in the verification request initiated by a verifier. The responder, a provider, should

include this nonce in the reply (as proof of data integrity preservation). In this way, the verifier

can be assured that the proof received from the provider is fresh.

Design preliminaries

This section gives the design preliminaries, i.e. system architecture, assumptions and nota-

tions, under which the DIA-MTTP framework is designed and described.

System architecture

DIA-MTTP supports the use of n providers and n TPAs. Each PCS is associated with a separate

TPA. The PCSes and TPAs are respectively layered at two levels, a leader level and a non-leader

level. One of the providers is designated as a leader provider. The leader provider is responsible

for managing the storage service provided by all the n providers and co-ordinating with PCS

users and other (n-1) non leader providers during their data uploading/updating operations.

Similarly, one of the TPAs is designated as a leader TPA (L-TPA). L-TPA is responsible for

managing data integrity verifications collaboratively performed by the n TPAs for PCS users

and co-ordinating with the PCS users and other (n-1) non leader TPAs during the verification

operations. PCS users only need to communicate with the leader provider during their data

uploading/updating operations and only need to communicate with the L-TPA during data

verification operations. Fig 1 shows the top-level architecture of the DIA-MTTP framework.

Assumption

To scope the work, the following assumptions are used for the design of the DIA-MTTP.

(A1) The focus of this work is on tackling insider threats in relation to data integrity. Some of

the external attacks, such as impersonation, are outside the scope of this work. In other

words, communication channels linking the DIA-MTTP entities are assumed to be authen-

ticated using off-the-shelf technologies, e.g. Secure Socket Layer (SSL) [46].

(A2) The provider and the TPA may misbehave, committing fraud and forgeries in relation to

data integrity, but they follow protocol specifications correctly.

(A3) The cryptographic algorithms and pseudo-random number generator used in the design

are secure.

(A4) Cryptographic keys are securely generated, distributed and stored. All the public keys are

certified and trusted by Certification Authorities (i.e., CAs).
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Notations

The notations used in the remaining part of this paper is summarised in Table 1.

Building blocks

The design of DIA-MTTP has made use of two main building blocks, a novel tagging method,

the TOD method [47], and a data structure, Mapping Multiple Tables (M2T). TOD is used for

tag generation and tag verification for outsourced data. M2T is used for handling dynamic

data and data deduplication. The following first describes TOD and then M2T.

TOD method

TOD has been described, analysed and evaluated in detail in [37]. As TOD is used as a building

block in DIA-MTTP, we here provide a summary of the TOD method.

TOD is built on a number of cryptographic primitives, namely, the Li Symmetric homo-

morphic encryption (LiSHE) scheme [48], the Paillier Asymmetric homomorphic encryption

scheme [49], algebraic signature [50] and BLS short signature [51]. It supports both public and

private verifiability on the same platform with less overhead at the user end. This property is

achieved by using four types of tags. The four types of tags are, respectively, an identifier tag

(IDTag), a data tag (DataTag), a data block tag (DBTag), and a DBTag tag (DBTagTag).

Fig 1. DIA-MTTP high-level architecture.

https://doi.org/10.1371/journal.pone.0244731.g001
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Table 2 shows how these tags can be generated. Furthermore, TOD uses block-level encryption

to protect data confidentiality.

Multiple Mapping Tables (M2T)

The M2T is used for tracking data file updates and facilitating data deduplication. When data

is uploaded by the user, the provider uses the M2T that is associated with a user to identify if

there is any data that has been duplicated. If there is no duplication, then the data will be stored

and the respective entries in the tables created. Otherwise, if any duplication is detected, then

the respective entries will be updated and there will be no new data or tag insertions. The M2T

is a tag-independent data structure. Unlike hashing-based tables (e.g. IHT), the M2T informa-

tion (i.e. sequential values) is not to be used in tag generation. This means that updating a data

block and its tag does not lead to updating unrelated tags.

Furthermore, the M2T can support the distributed data structure. There are three types of

M2Ts: User-M2T, PCS-M2T and TPA-M2T. User-M2T is used by the user to manage the

Table 2. Math equations for tag generation.

IDTagi ¼ ASðUserIDjjRNiÞ ð1Þ

DBTagi ¼ IDTagi þ DataTagi ð2Þ

DataTagi ¼ ASðEn DBiÞ ð3Þ

DBTagTagi ¼ ½HðEn IDTagiÞ � uDBTagMapValueiÞ�
x

ð4Þ

AggEn DB ¼
XC� 1

i¼0

En DBi ð5Þ

AggDBTag ¼
XC� 1

i¼0

DBTagi ð6Þ

AggIDTag ¼
XC� 1

i¼0

IDTagi ð7Þ

AggEn DBTag ¼ ASðAggEn DBÞ ð8Þ

AggDBTag ¼ AggIDTag þ AggEn DBTag ð9Þ

https://doi.org/10.1371/journal.pone.0244731.t002

Table 1. Notations used in the design of DIA-MTTP.

DF Data file.

DBi ith data block in a data file.

{DBi} Set of the data blocks.

d1 Number of data blocks of the file using D3L1.

d2 Number of data blocks of the file using D3L2.

sk User’s LiSHE secret key.

ppkEn User’s Paillier public key.

x User’s BLS private key.

ppk User’s BLS public key.

UserID ID of the owner of the file.

RN Random number generated using a secure pseudorandom number generator.

n Number of TPAs/PCSes in DIA-MTTP.

PCS provideri Provider manages PCSi.

TPAi ith TPA in the non leader group.

DT Number of rows that should be aligned in the IHT when updating a data block.

NP Number of nodes in a path for a data block (DB) in the tree (i.e. MHT or LBT).

https://doi.org/10.1371/journal.pone.0244731.t001
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updating of his/her data files in PCS and to provision their mapping information when data

deduplication is performed. PCS-M2T is used by a provider to manage the updating of a user’s

data files and to facilitate the L2 data deduplication, i.e. D3L2. TPA-M2T is used by a TPA to man-

age the updating of the user’s data files and the provision of their mapping information. The pro-

vider manages one M2T for each user. Similarity, the TPA manages one M2T for each user. There

are three M2Ts associated with a user; one with the user, one with the provider and one with the

TPA. Fig 2 shows the three M2T types that are associated with one user. As the DIA-MTTP sup-

ports the multiple PCSes, then there is a PCS-M2T associated with the user in each PCS.

To update the data, there are three operation types, i.e. a data block insertion, a data block

modification and a data block deletion. Their details have been given in S2 File.

DIA-MTTP functional blocks

The DIA-MTTP consists of four major functional blocks, namely Data Deduplication and

Data Uploading (D3U), LoA1 Data Verification (LoA1DV), LoA2 Data Verification

(LoA2DV) and Data Updating (DU). The D3U is used for uploading data and the associated

tags to multiple PCSes while applying two-levels of data deduplication. The LoA1DV is used

for performing public verification (i.e. LoA1) concerning the data that have been outsourced

Fig 2. Distributed M2T data structure.

https://doi.org/10.1371/journal.pone.0244731.g002
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to PCSes. The LoA2DV is used for performing both private and public verification (i.e. LoA2)

related to the outsourced data files in PCSes, and the DU is used for updating the data and

their associated tags in PCSes. Each block has a group of components which work collabora-

tively to achieve their duties. Each subgroup of components is managed by one of the entities.

The major functional blocks, i.e. their entities and their associated components, have been out-

lined in Fig 3. The details of the DIA-MTTP functional blocks, i.e. D3U, LoA1DV, LoA2DV

and DU, have been detailed in the following sections.

Data deduplication and Data Uploading (D3U)

The architecture of D3U is as shown in Fig 4. It a group of components and four types of enti-

ties, i.e. the user, the leader provider, the non leader provider and the L-TPA. Each entity man-

ages its associated components in order to perform its duties optimally.

A detailed description of the four algorithms that are used for implementing the operations

of the D3U components are given below.

FileSetUp algorithm: The FileSetUp algorithm is used for implementing the operations of

the DataPre-processing functional component. The algorithm takes the data file (DF) and the

user’s encryption key, sk, and outputs a set called the D3L1 Result (D3L1R). The user uses sk to

encrypt all of the outsourced data files. The D3L1R consists of K items, i.e. K is a total blocks

number of the data file. Each item in the D3L1R can be either En_DB value or an ID of the

data block. The ID of the data block is one of the identifiers (indexes) of data blocks in the data

file. It is associated with a data block that is identical to the given data block. In other words, if

a data block in the D3L1Ri (DBi) is identical to another data block in the file (DBj), then the

value of D3L1Ri is the ID of DBj rather than the DBi value. Thus, D3L1Ri contains non-dupli-

cated data blocks or the associated links of the duplicated data blocks. The details of this algo-

rithm are given in Algorithm 1 (see the DIA-MTTP algorithms in S3 File).

L2DataDedup algorithm: The L2DataDedup algorithm is used for implementing the oper-

ations of the L2DataDeduplication component. The duplicated data blocks are eliminated and

only the non-duplicated data blocks are kept. The algorithm takes two sets, D3L1R, and the

outsourced data blocks hash values set (ODBH) as the inputs and outputs three sets: the D3L2

Fig 3. DIA-MTTP: Functional blocks, components and entities.

https://doi.org/10.1371/journal.pone.0244731.g003
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Result (D3L2R), the non-duplicated data blocks set (NDB) and the non-duplicated data blocks

hash values set (NDBH). The D3L2R is a set in which its items number is equal to the items

number in D3L1R, i.e. K. Each item in D3L2R is associated with one data block. It can refer to

either an empty value or ID of one of the non-duplicated data blocks (in NonDuplicatedDB/

Tag table). When its value is empty, this means that its associated data block is a non-dupli-

cated block. Otherwise, the data block is a duplicated block and its value is an ID of the data

block that it is identical to the data block in the LPCS-M2T. The details of L2DataDedup algo-

rithm are given in Algorithm 2.

BlockTagGen algorithm: The BlockTagGen algorithm is used for implementing the opera-

tions of the Tags-Generator component. It uses the TagGen algorithm of the TOD method for

generating tags for the non-duplicated data blocks that are indicated in the D3L2R. The algo-

rithm takes the data blocks, {En_DBi}, the ID of the user (UserID), a BLS private key, x, a ran-

dom number, υ, and Paillier public key, ppkEn, D3L1R and D3L2R and outputs five sets, i.e.

{IDTagi}, {En_IDTagi}, {DBTagi}, {DBTagTagi} using Eq(1), Eq(2), Eq(3) and Eq(4) in Table 4,

and D3L1R0. The user uses x, υ, and ppkEn, to generate tags of all of the outsourced data files.

D3L1R0 is another version of D3L1R but with the elimination of the data block values. The

details of this algorithm are given in Algorithm 3.

FileTagSigGen algorithm: The FileTagSigGen algorithm is used to implement the opera-

tions of the FileTagSignature-Generator component. It is used for generating a signature for

the file tag (FileTag) of the data file, i.e. FileTagSig. The algorithm takes the total number of the

data blocks of the data file, K, the ID of the file, FileID, and a private key (Pkey) for signing, as

the inputs. Its output is FileTagSig using Eq(10) in Table 2. It is used to authenticate the identi-

fier of the data file and its total number of data blocks. The details of the FileTagSigGen algo-

rithm have been given in Algorithm 4.

Using the D3U protocol, the user uploads the non-duplicated data with its associated tags

to multiple PCSes. Fig 5 shows how the D3U protocol is executed by illustrating its sub-proto-

cols. The protocol consists of four sub-protocols, namely, L2DataDeduplication,

Fig 4. The D3U architecture.

https://doi.org/10.1371/journal.pone.0244731.g004
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TagsUploading, DataTagsUploading and En_IDTagsUploading. The sub-protocols and their

messages are shown in Fig 6.

LoA1 Data Verification (LoA1DV)

The LoA1DV architecture shown in Fig 7 includes a group of components and the following

four types of entities, i.e. the user, the L-TPA, the non leader TPA and the non leader provider.

The user, in LoA1DV, is only responsible for delegating the L-TPA to perform the public

verification.

A detail the algorithms that are used to implement the components of the LoA1DV are

given below.

PubChalGen algorithm: The PubChalGen algorithm is used for implementing the opera-

tions of the PublicChallange-Generator component. It is used for generating public verifica-

tion challenges. Before generating the public verification challenges, the signature of FileTag

Fig 5. The D3U protocol suite.

https://doi.org/10.1371/journal.pone.0244731.g005

Fig 6. D3U protocol: Sub-protocols and their messages.

https://doi.org/10.1371/journal.pone.0244731.g006
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should be verified to authenticate a file ID and its total number of data blocks. Thus the algo-

rithm takes file tag signature, i.e. FileTagSig, and a public key used for decrypting FileTagSig,
Pbkey, as the inputs, and it outputs public challenges, {PubChallj} (which each TPA has one

PubChall), and a tag of an aggregated value of nonces (i.e. {ProofNoncei}), AggProofNonceTag
using Eq(28) and AS (Table 3 presents all equations are used in LoA1DV). The PubChallj con-

sists of two sets, i.e., a set of indexes of C data blocks, {Ii}, 0� i< C, and a set of the nonces

({ProofNoncei}), and the following three items: a nonce value (PCSNoncej), its tag (PCSNonce-
Tagj) is computed using AS, and the ID of File (FileID). The {Ii} values are used to indicate the

positions of the chosen data blocks among the file blocks. For each Ii, ProofNoncei is chosen

and for each PCS, PCSNoncej, is chosen. The two sets of nonces, {ProofNoncei} and {PCSNon-
cej}, are used to help to the replay attack prevention and the frame attack detection. The details

of the PubChalGen algorithm have been given in Algorithm 5.

PubProofsGen algorithm: The PubProofsGen algorithm is used for implementing the

operations of the PublicProofs-Generator component. It is used for generating public proofs.

The algorithm takes PubChallj and three sets of items, a set of the chosen data blocks,

{En_DBi} and their associated tags, {DBTagi} and {DBTagTagi}, as the inputs. It outputs public

proofs, i.e. PubDBProofj, PubDBTagProofj, and DBTagTagProofj, using Eq(11), Eq(12) and Eq

(14), respectively. The details of PubProofsGen algorithm are given in Algorithm 6.

DBProofTagGen algorithm: The DBProofTagGen algorithm is used for implementing the

operations of the DBProofTag-Generator component. It is used for generating a tag of Pub-
DBProof. Thus, the algorithm takes a set of PubDBProofs, {PubDBProofj}, where PubDBProofj
is generated by PCSj provider, and a set of En_IDTags, {En_IDTagi}, that are associated with

Fig 7. The LoA1DV architecture.

https://doi.org/10.1371/journal.pone.0244731.g007
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the chosen data blocks in the PubChall as the inputs. Its outputs are the tag of PubDBProof,
BDProofTag, using AS and an aggregated value of {En_IDTagi}, AggEn_IDTag, using Eq(8).

The details of the DBProofTagGen algorithm are given in Algorithm 7.

DBTagProofVer algorithm: The DBTagProofVer algorithm is used for implementing the

operations of the DBTagProof-Verification component. It is for verifying the PubDBTagProof.
The algorithm takes DBProofTag, PubDBTagProofj, AggEn_IDTag, PCSNonceTagj, AggProof-
NonceTag, and the Paillier encryption key (ppkEn), as the inputs. It outputs DBTagProofVerRe-
sultj (0/1), the DBTagProof verification result, using Eq(15), Eq(16), Eq(17) and Eq(18). The

details of the DBTagProofVer algorithm have been given in Algorithm 8.

DBTagProofMap algorithm: The DBTagProofMap algorithm is used for implementing

the operations of the DBTagProof-Mapping component. It is used for computing a map value

of DBTagProofj, DBTagProofMapValuej. The algorithm takes the following: PubDBTagProofj,
MappingSecertkey, PCSNonceTagj and {ProofNoncei} as the inputs. It outputs DBTagProofMap-
Valuej using Eq(19). The details of the DBTagProofMap algorithm have been given in Algo-

rithm 9.

DBTagTagProofVer algorithm: The DBTagTagProofVer algorithm is used for imple-

menting the operations of the DBTagTagProof-Verification component. The algorithm takes

the five sets of items: {DBTagProofVerResultj}, {PCSNoncej}, {En_IDTagi}, {ProofNoncei}, and

{DBTagProofMapValuej}, as the inputs. The algorithm outputs the DBTagTagProof verification

result, DBTagTagProofVerResultj, using Eq(20), Eq(21) and Eq(22). The algorithm has been

detailed in Algorithm 10.

The LoA1DV protocol is executed to allow the user to delegate the L-TPA to perform, con-

trol and manage the public verification among multiple non leader TPAs. The L-TPA forwards

the result to the user. Fig 8 shows how the LoA1DV protocol is executed by illustrating its sub-

protocols. The protocol consists of four sub-protocols, namely, PublicDataVerification,

Table 3. Math equations for public verification.

FileTagSig ¼ EPkeyðFileTagjjFileTagHÞ; where FileTagH is hash value of FileTag;E is an encryption algorithm ð10Þ

PubDBProofj ¼
XC� 1

i¼0

ðEn� DBi þ ProofNonceiÞ ð11Þ

PubDBTagProofj ¼ fPubDBTagProofjig; 0 � i < C; ; where PubDBTagProofji ¼ DBTagi þ PCSNonceTagj ð12Þ

AggDBTagProof ¼
XC� 1

i¼0

ðPubDBTagProofjiÞ þ AggProofNonceTag ð13Þ

PubDBTagTagProofj ¼ ð
YC� 1

i¼0

DBTagTagProofNonceii Þ
PCSNoncej ð14Þ

DBProofTag 0 ¼ DBProofTagj þ ðC � PCSNonceTagjÞ ð15Þ

En DBProofTag ¼ EnðDBProofTag 0Þ ð16Þ

En AggDBTagProof 0 ¼ AggEn IDTag � En DBProofTag ð17Þ

En AggDBTagProof ¼¼ En AggDBTagProof 0 ð18Þ

DBTagProofMapValuej ¼
XC� 1

i¼0

DBTagMapValueProofNonceiji ð19Þ

AggPCSNonce ¼
Xn� 2

j¼0

PCSNoncej ð20Þ

AggDBTagTagProof ¼ ð
Yn� 2

j¼0

PubDBTagTagProofjÞ
1=AggPCSNonce

ð21Þ

eðAggDBTagTagProof ; g2Þ ¼¼ eð
YC� 1

i¼0

HðEn IDTagiÞ
ProofNoncei � uDBTagProofMapValue; ppkÞ ð22Þ

https://doi.org/10.1371/journal.pone.0244731.t003
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PublicProofsFromTPA, PublicProofsFromPCS, DBTagProofVerification. The sub-protocols

and their messages are presented in Fig 9.

LoA2 Data Verification (LoA2DV)

The LoA2DV is used for performing both verification types, public and private. The LoA2DV

architecture, as shown in Fig 10 consists of two sub-blocks. The first one is identical to the

LoA1DV architecture which contains the same entities and components used for performing

public verification. The second block is used for performing private verification. The second sub-

block involves three types of entities; the user, the leader provider and the non leader provider.

Fig 8. The LoA1DV protocol suite.

https://doi.org/10.1371/journal.pone.0244731.g008

Fig 9. LoA1DV protocol: Sub-protocols and their messages.

https://doi.org/10.1371/journal.pone.0244731.g009
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A detail of the algorithms used in the LoA2DV protocol. There are ten algorithms. The first

six algorithms are identical to the ones of the LoA1DV, while the details of the latter four algo-

rithms have been given below.

PriChalGen algorithm: The PriChalGen algorithm is used for implementing the opera-

tions of PrivateChallenge-Generator. It is used for the purpose of generating a challenge mes-

sage for private verification. To generate the private proofs, it should determine which data

blocks and their associated tags are used for their computing. The user and all of the TPAs ask

the providers about the same data blocks. Thus the algorithm takes the indexes of the data

blocks and their associated nonces that are in PubChall, {Ii, ProofNoncei}, as the inputs. It out-

puts a private challenge (PriChall) and a random value is used as a nonce for the leader pro-

vider (LPCSNonce). The PriChall consists of the following items: (1) {Ii}, (2) {ProofNoncei}, and

(3) a tag of LPCSNonce, i.e. LPCSNonceTag, using Eq(23) (Tables 3 and 4 present all equations

that are used in the LoA2DV). The details of the algorithm have been given in Algorithm 11.

PriProofsGen algorithm: The PriProofsGen algorithm is used for implementing the opera-

tions of the PrivateProofs-Generator. It is used for generating private proofs. The algorithm

takes two sets from the private challenge ({Ii} and {ProofNoncei}), the requested data blocks,

{En-DBi}, their associated tags ({DBTagi}) and PCSNonceTagj, as the inputs. It outputs the pri-

vate proofs, PriDBProofj and PriDBTagProofj, using Eq(24) and Eq(25), receptively. The algo-

rithm has been detailed in Algorithm 12.

Fig 10. The LoA2DV architecture.

https://doi.org/10.1371/journal.pone.0244731.g010
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FPriProofsGen algorithm: The FPriProofsGen algorithm is used for implementing the

operations of the FinalisedPrivateProofs-Generator component. It is used for generating the

final private proofs. The algorithm takes the private proofs from all the non leader providers

({PriDBProofj}, and {PriDBTagProofj}, 0� j< n − 1), the private proofs from the leader pro-

vider (PriDBProofL and PriDBTagProofL), as the inputs. The outputs are the final private

proofs, FPriDBProof and FPriDBTagProof, using Eq(26) and Eq(27), respectively. The details

of the algorithm have been given in Algorithm 13.

FPriProofsVer algorithm: The FPriProofsVer algorithm is used for implementing the

operations of the FPriProof verification. It is used for verifying the correctness of the final pri-

vate proofs. The algorithm takes five values: FPriDBProof, FPriDBTagProof, LPCSNonceTag,
AggPCSNonceTag and DBTagTagProofVerResult, in addition to the set of IDTags, i.e. {IDTagi},
as the inputs. It outputs the final verification result, FVerResult, using Eq(28), Eq(29), Eq(30)

and Eq31. The FVerResult is either positive or true (denoted as 1) which means that the integ-

rity of the file is said to be assured. Otherwise, it is negative or false (0). This means that the

integrity of the file is said to be unassured. The details of the FPriProofsVer algorithm have

been given in Algorithm 14.

The integrity checking of the data on PCSes is done using one of two integrity protection

levels. The user can choose the integrity protection level, i.e. LoA1 or LoA2. In the LoA2DV,

the LoA2 is chosen. The execution of the LoA2DV suite is performed in two phases. The first

phase (Phase 1) is similar to the one in the LoA1DV protocol. It is used for performing the

public verification. Meanwhile, in the second phase (Phase 2) is for the private verification. Fig

11 shows how the LoA2DV protocol is executed by illustrating its sub-protocols. Phase 2 con-

sists of two sub-protocols, namely, PrivateProofsFromLPCS, and PrivateProofsFromPCS. The

sub-protocols and their messages are shown in Fig 12.

Data Updating (DU)

The architecture of the DU, as shown in Fig 13, includes four types of entities, the user, the

leader provider, the non leader provider and the L-TPA. With the DU protocol, the user can

update his/her outsourced data with associated tags on multiple PCSes.

Table 4. Math equations for private verification.

LPCSNonceTag ¼ ASðLPCSNonceÞ ð23Þ

PriDBProofj ¼
XC� 1

i¼0

ðEn� DBi þ ProofNonceiÞ ð24Þ

PriDBTagProofj ¼
XC� 1

i¼0

ðDBTagi þ PCSNonceTagjÞ ð25Þ

FPriDBProof ¼
Xn� 2

j¼0

PriDBProofj þ PriDBProofL ð26Þ

FPriDBTagProof ¼
Xn� 2

j¼0

PriDBTagProofj þ PriDBTagProofL ð27Þ

AggProofNonce ¼
XC� 1

i¼0

ProofNoncei ð28Þ

FPriDBTagProof1 ¼ n� AggIDTag þ ASðFPriDBProof Þ þ C� ðAggPCSNonceTag þ LPCSNonceTagÞ ð29Þ

FPriDBTagProof2 ¼ FPriDBTagProof þ n� AggProofNonceTag ð30Þ

FPriDBTagProof1 ¼¼ FPriDBTagProof2 ð31Þ

https://doi.org/10.1371/journal.pone.0244731.t004
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Fig 11. The LoA2DV protocol suite.

https://doi.org/10.1371/journal.pone.0244731.g011

Fig 12. LoA2DV protocol: Sub-protocols and their messages.

https://doi.org/10.1371/journal.pone.0244731.g012
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A detail o the algorithms that are used in the DU protocol. There are six algorithms and

their details are given below.

DataUpdateReqGen: The DataUpdateReqGen algorithm is used for implementing the

operations of the DataUpdateRequestGenerator. It is used for generating an update request.

The update request, DataUpdateReq, involves some of the information that providers needs

for updating the outsourced data in the PCSes, e.g. the type of update operation, insert, modify

or delete, a data block, a position of the data block among the data file, etc. Thus, the algorithm

takes a data file identifier (FileID), a secret user key that is used for encryption and decryption

of the data block (sk), a data block (DB), its position (Index), and operation type, OpType,
(modify = 0, insert = 1, and delete = 2), as the inputs. It outputs DataUpdateReq. In the case of

modification operation, DB is the old version of the data block that has position Index = i in

the data file, i.e. En_DBi. This data block should first be decrypted using sk, modified to the

new version and then encrypted using the same key, En DB0i. For the insertion operation, DB is

a new data block that should be inserted after position, i, which is encrypted using sk to have

En_DBi+ 1. Regarding the deletion case, DB is an empty value. To delete En_DBi, there are

no encryption or decryption operations that need to be performed. The algorithm has been

detailed in Algorithm 15.

DataUpdate: The DataUpdate is used for implementing the operations of the DataUpdate.

It is used for executing an update request that has been received from the user. First, it checks

to see if the updated data block is duplicated and/or linked to other existing blocks. Following

this, it can update the M2T data structure. In the case where the request is a modification, it

checks to see if the old version of the data block is linked to the files or not and if the new ver-

sion data block is duplicated or not. Then one of the modification cases (Mod-Case_1, Mod-

Fig 13. The DU architecture.

https://doi.org/10.1371/journal.pone.0244731.g013
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Case_2, Mod-Case_3, and Mod-Case_4) mentioned in Building Blocks Section can be per-

formed. This is true of both the insertion and deletion requests. Based on the duplication or

linking result of the new or deleted data block, one of the insertion or deletion cases (i.e. Ins-

Case_1, Ins-Case_2, Del-Case_1, Del-Case_2) is performed for the process of updating. Thus

the algorithm takes DataUpdateReq, as the input and outputs UpdateResult. The UpdateResult
involves the duplication result and its associated ID in the case where its updated data block is

duplicated (in the case of modification or insertion). The algorithm has been detailed in Algo-

rithm 16.

TagsOfUpdatedDataGen: The TagsOfUpdatedDataGen is used for implementing the

operations of the TagsOfUpdatedDataGenerator. It is used for generating tags for the updated

data blocks, in the case of modification or insertion. Based on the UpdateResult, tags for the

updated data block can be generated as well as updating User-M2T (by performing one of

insert, modify and delete cases) and generating an update request for updating LTPA-M2T.

Thus the algorithm takes DataUpdateReq, UpdateResult, the user ID (UserID), the user BLS pri-

vate key (x), the random number (υ), the Paillier encryption key (ppkID), and the total number

of data blocks in the data file (K), as the inputs. It outputs UpdatedTags, En_IDTagUpdateReq.

The UpdatedTags contains the DBTagi and DBTagTagi of the updated data block or a value 1

in the case of having the duplicated data block, while the En_IDTagUpdateReq involves the

En_IDTagi for updated data block, the operation type, the ID of En_IDTagi in the case where

the updated data block is duplicated and whether one of the existing En_IDTags should be

deleted or not. The algorithm has been detailed in Algorithm 17.

PCSUpdateReqGen: The PCSUpdateReqGen is used for implementing the operations of

the PCSUpdateRequest-Generator. It is used for generating an update request that is sent to

the non leader providers to update their M2Ts. The algorithm takes DataUpdateReq, UpdateR-
esult and UpdatedTags as the inputs, and it outputs PCSUpdateReq. The PCSUpdateReq
involves information, e.g., the operation type, the ID of DB in the case of the updated data

block is duplicated, or the data block value and its associated tags, in the case of the updated

data block is non-duplicated. The algorithm has been detailed in Algorithm 18.

DataTagsUpdate: The DataTagsUpdate is used for implementing the operations of the in

DataTags-Update. It is used for updating the non leader provider’s M2T. The algorithm takes

PCSUpdateReq as the input, and it outputs ACK. Based on the information in PCSUpdateReq,

one of the modification, insertion and deletion cases is performed. The algorithm has been

detailed in Algorithm 19.

En_IDTagUpdate: The En_IDTagUpdate is used for implementing the operations of the

En_IDTag-Update. It is used for updating the LTPA’s M2T. The algorithm takes En_IDTa-
gUpdateReq as the input, and it outputs ACK. Based on the information in En_IDTagUpda-
teReq, one case of the modification, insertion and deletion cases is performed. The algorithm

has been detailed in Algorithm 20.

Fig 14 shows how the DU protocol is executed by illustrating its sub-protocols. The proto-

col consists of four sub-protocols, namely, DataUpdating, TagsOfUpdatedDataUploading,

DataTagsUpdating, En_IDTagOfUpdatedDataUploading. The sub-protocols and their mes-

sages are shown in Fig 15.

Correctness and security of the DIA-MTTP verification protocols

In this section, we analyse the correctness and the security of DIA-MTTPverification proto-

cols, i.e. LoA1DV and LoA2DV. The security analysis makes use of the security requirements

specified in Requirement Specification Section.
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Correctness of LoA1DV and LoA2DV

Theorem 1: Given the proofs (i.e. DBProof, DBTagProof (public and private) and DBTagTag-

Proof), the verifier (i.e. the user or the TPAs) can verify the integrity of the data file using

LoA1DV or LoA2DV protocol.

Proof: Proving the correctness of our protocols, i.e. LoA1DV and LoA2DV, is equivalent to

proving the correctness of following equations, Eq(18), Eq(22) and Eq(31). Based on the prop-

erty of algebraic signature [50], the homomorphic addition property in Paillier algorithm [49]

and the bilinear property [51], all the three equations hold (see S4 File).

ASðDB1Þ þ ASðDB2Þ ¼ ASðDB1 þ DB2Þ ð32Þ

EðDB1 þ DB2Þ ¼ EðDB1Þ � EðDB2Þ ð33Þ

Fig 14. The DU protocol suite.

https://doi.org/10.1371/journal.pone.0244731.g014

Fig 15. DU protocol: Sub-protocols and their messages.

https://doi.org/10.1371/journal.pone.0244731.g015
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eðWa;RÞ ¼ eðW;RaÞ for W 2 G1; R 2 G2 and a 2 Zp ð34Þ

Data confidentially preservation

In DIA-MTTP, the providers and TPAs are authorised to manage and verify the integrity of

the data. However, they should not have the privilege to access the content of the data. Taking

into account that: (1) the use of the TOD method, (2) the assumption that the cryptographic

keys are securely generated and stored (i.e. A4), and (3) the assumption that the communica-

tion channels that connect the entities in the DIA-MTTP are secure and authenticated (i.e.

A1). Our two protocols, LoA1DV and LoA2DV, can provide data confidentiality preservation.

The data blocks in a data file are encrypted with a symmetric key, and this key is only known

to the user (the data owner) before being sent to the PCSes. Without this key, any other enti-

ties, including the providers or TPAs, are not able to access the plain-text data. Additionally,

the encrypted data are used in tags generation. When verifying the integrity of the data file, the

provider and the verifier (TPA) do not have access to the plain-text of the data file, or any of its

data blocks.

Resistance to cheating attacks by PCS providers

The providers can launch attacks, forgery, replace and replay in order to cheat a verifier (a user

or TPA). This is to hide the fact that the data integrity was compromised to allow it to pass ver-

ification. We need to prove that our verification protocols are secure against these attacks,

where providers cannot generate proofs without querying the real data or where they cannot

modify the data and the associated tags without detection. In other words, the providers can

compute proofs related to passing the data integrity verification only if all of the requested

data and their associated tags are correctly stored in PCSes. In the following, we discuss these

attacks and how our protocols can satisfy the requirement (S1).

In a forgery attack, the providers try to forge proofs by forging the tags used by and that

have been generated by a user, who in this case is the data owner. Taking into account that: (1)

use the TOD method, and (2) assuming that the cryptographic keys are securely generated and

stored (A4), therefore, our two protocols, LoA1DV and LoA2DV, can resist the forgery attack.

The TOD method can generate forgery resistant tags, private tags ({DBTagi}) and public tags

({DBTagTagi}) [47].

For the data verification, a provider can use data blocks and their associated tags when com-

puting public or private proofs that are different from those that user or L-TPA has deter-

mined in a challenge message or use an old version of the data blocks and their associated tags.

Thus, they launch the replace attack. Taking into account that: (1) use the TOD method, and

(2) the same data blocks are requested from multiple PCSes in each verification time, (3) use

the distributed data structures, i.e. M2Ts. Our two protocols, LoA1DV and LoA2DV, can pro-

vide resistance against replace attacks.

In this attack, the provider can exploit the collisions between the outsourced tags. The

TOD method can generate collision resistant tags that are either private, {DBTagi}, or public,

{DBTagTagi} [47]. The identifier of the tags, i.e. IDTags or their encrypted forms, i.e. En_ID-
Tags for each data block, are used for collision resistance. This is where each data block has a

unique IDTags and En_IDTags. Furthermore, in both protocols, all TPAs request the same

data blocks from all providers each verification time. This means that they should be identical.

The L-TPA compares all of these values when generating a tag for the PubDBProofs, that have
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been received from the TPAs. If the data blocks are different in the PubDBProofs then conse-

quently, different PubDBProofs are received.

In the DIA-MTTP, each entity has its data structure (User-M2T, PCS-M2T and LTPA-

M2T). In each update, these data structures should be updated. As mentioned in Section, the

linkages between the data blocks of the data files and their associated IDTags or En_IDTags are

updated, in the case of duplicated data blocks. On the other hand, if updated data blocks are

not duplicated, new tags should be generated. Each entity, that of the user, the L-TPA and the

provider, should update its associated M2T by storing the tags in the NonDuplicatedDB/Tag

table and linking the data blocks of the data file in the Linker table with these tags. All entities

can track the update operation, not only the provider. This can help to detect if the provider is

cheating.

A replay attack can be launched by sending previously generated proofs. In other words, if

the TPA re-requests the same data, then the provider can send the old proofs that have been

generated in any previous challenge, without real access to the data and their associated tags.

Taking account of using: (1) the random sample strategy, and (2) nonces (i.e. {ProofNoncei}
and {PCSNoncej}). This is so then the attack can be detected in the process of the data verifica-

tion. Our two protocols, LoA1DV and LoA2DV, can be secured against the replay attack. The

L-TPA chooses the data blocks randomly each data integrity verification time. Consequently,

there is a high number of combinations that can be selected before re-choosing the same data

blocks. On the other hand, in the case where the L-TPA re-requests the same data blocks, the

use of {ProofNoncei} and {PCSNoncej} can help to prevent the attack. The nonces are different

for each data verification time. The L-TPA chooses these nonces and all providers should use

refreshed ones and include them in the proof generation as shown in Eq(11), Eq(12), Eq(14),

Eq(24) and Eq(25).

Resistance to cheating attacks by TPAs

TPAs can launch some types of attacks, i.e. collusion attacks and frame attacks to cheat a user.

The TPAs generate an unreliable verification result. In the following, we need to prove that

our protocols are secure against these attacks to satisfy the requirement S2.

In a collusion attack, the TPA works with its associated provider to commit fraud. Even if

the data integrity that is comprised, the TPA lies and sends the data is correctly stored in the

PCS without any integrity violations. Thus, the data in the PCS has been unauthorised altered

and lost without detection.

Taking into account that: (1) the use of the collaborative verification approach, (2) the use

of nonces ({ProofNoncei}) in the verification, (3) the use of dual verification, public and private,

and (4) the assumption of the keys are securely shared (A2), consequently, our two protocols

(LoA1DV and LoA2DV) can be secured against collusion attacks.

In the LoA1DV protocol, the process of checking the correctness of the proof are distrib-

uted between multiple TPAs (the non leader TPAs) and the L-TPA. In other words, the data

verification result is not approved by one entity (the L-TPA or TPAs). Public verification con-

sists of two sub-verifications; PubDBTagProof verification and PubDBTagTagProof verifica-

tion. Each TPA verifies its associated PubDBTagProof, while the L-TPA verifies all of the

PubDBTagTagProofs. The TPA cannot verify PubDBTagProof without having the DBProofTag.
This value only can be generated by the L-TPA. The L-TPA computes the DBProofTag using

the algebraic signature that its parameters system only shared with the L-TPA. The same is

true when verifying the PubDBTagTagProof. The L-TPA cannot verify it without having the

DBTagProofMapValue. This value only can be generated using a key-based hash function,
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DBTagProofMap algorithm. The key is used in the algorithm and it can only be shared with

the TPA, thus the L-TPA cannot generate this value.

The TPA may try to defraud the L-TPA by sending a positive result for the DBTagProof ver-

ification regardless of whether the verification holds or not or an old generated DBTagProof-
MapValue. However, the TPA should send the DBTagProofMapValue, along with the result

verification of PubDBTagProof to the L-TPA. Furthermore, the TPA should use {ProofNoncei}
when generating the DBTagProofMapValue where they are different {ProofNoncei} each verifi-

cation time. This can help the L-TPA to detect replay attacks from the TPA.

The LoA2DV protocol can be more resistant to a collusion attack compared to the

LoA1DV protocol. In addition to the above mentioned remarks, the user performs the private

verification along with public verification using the TPAs in the LoA2DV. In the private verifi-

cation, the user requests the same data blocks and their associated tags from the providers that

are used in computing the public proofs.

The frame attack may be launched by the TPA to destroy the provider’s reputation even if

the data integrity at the PCS is preserved. The data at the PCS has not been changed, but the

TPA lies and sends the proof of the provider failing the verification as in Eq(18) or Eq(22).

Taking account of using: (1) the collaborative verification approach, (2) nonces ({PCSNon-
cej}), and (3) the dual verification, the LoA1DV and LoA2DV protocols can be secured against

frame attacks.

In the LoA1DV protocol, as mentioned above, the data verification is approved using multi-

ple entities (L-TPA and TPAs). Therefore, it can help to have a low probability of an attack

occurring. In the LoA2DV protocol, in addition to the collaborative verification approach, the

dual verification and nonces ({PCSNoncej}) are used. These can help the user to detect a frame

attack and they can make the LoA2DV protocol more frame attack resistant. {PCSNoncej} are

generated by the L-TPA, and each TPA should send PCSNoncej to its associated provider,

which are different for each separate verification time. The user does not send the nonces, and

the providers should include the receiving ones in their proofs (both private and public). Fur-

thermore, the user has a tag of an aggregated value of the nonces to prevent their forgery.

These nonces can thus be used as evidence that the TPAs have communicated with their asso-

ciated providers and sent fresh nonces.

Resistance to cheating attacks by PCS users

Dishonest users may repudiate the generation of tags or updating the data at PCSes and they

can also refuse a data verification result that has been received from the L-TPA in an attempt

to maximise their benefits, such as by trying to discredit the providers and/or TPAs to seek

financial advantages.

Taking into account that use: (1) the TOD method, and (2) the distributed data structures,

the LoA1DV and LoA2DV protocols can be secured against the cheating attacks conducted by

a user. The TOD method uses a BLS signature in the tag generation, thus, it can provide a

non-repudiation property. If this verification holds when using the user’s public key as in Eq

(22), then the user cannot deny that he does not sign the DBTagTags further. Furthermore, as

{DBTagi} is used when generating and verifying DBTagTags, thus, the user cannot falsely deny

that he has generated the tags, i.e. {DBTagi}, too.

In a dynamic data case, the user may cheat by refusing to update the data. However, each

entity in the DIA-MTTP system has its M2T for tracking the update operations. Furthermore,

for each updated item of data, the user generates tags for the data using the TOD method.

Therefore, the user cannot repudiate the updated data.

PLOS ONE A novel approach to data integrity auditing in PCS: Minimising any Trust on Third Parties (DIA-MTTP)

PLOS ONE | https://doi.org/10.1371/journal.pone.0244731 January 7, 2021 27 / 54

https://doi.org/10.1371/journal.pone.0244731


Performance evaluation of the DIA-MTTP

This section first analyses detection probability and then evaluates the overhead cost of the

DIA-MTTP. The overhead cost evaluation for the DIA-MTTP was performed by measuring

introduced costs in terms of computation and communication according to each functional

block (i.e., D3U, LoA1DV, LoA2DV and DU) and the storage cost of the entities of the

DIA-MTTP.

We have also carried out experiments to investigate the performance costs of DIA-MTTP,

the computational costs. The experiments were implemented using a desktop computer run-

ning a system with Intel Core i5 at 2.4 GHz and 4GB RAM (a single-machine set-up). Further-

more, the experiment was based on a single user data request to verify one data file. The

software used to implement the DIA-MTTP was Java Platform, Standard Edition (Java SE)

[52]. To implement the cryptographic primitives required in the DIA-MTTP such as, a secure

random number generator, a hash function (e.g. SHA256), and digital signatures (e.g. RSA

and BLS), Java Cryptography Extension (JCE) [53] and Java Pairing-Based Cryptography

(JPBC) [54] were used. MySQL [55] was used to implement the M2T data structure.

We conducted two experiments. In the first experiment (Exp1), we measured the computa-

tional cost by calculating the time of the execution of the cryptographic operations, e.g. multi-

plication in G1, hashing, etc. Table 5 lists the basic operations: their symbols and timing

measurement. In the second experiment (Exp2), we measured the computational cost by cal-

culating the time that it took each entity from receiving a request message up until before a

response was sent.

Detection probability

Both of the data verification protocols, LoA1DV and LoA2DV, have been constructed as a ran-

dom sampling strategy from efficient and security perspectives. The random sampling strategy

is used to reduce the workload of the provider in terms of a proof generation and communica-

tion cost, in addition to preventing the provider from cheating the verifier, i.e. the user or

TPAs, using replay attacks. In the random sampling technique, the data file is divided into

multiple data blocks (K) and a number of blocks (C) are chosen randomly by the verifier to

perform data verification. We analyse the probability of misbehaviour in the detection of our

protocols, LoA1DV and LoA2DV data verification, based on the blocks sampling.

Table 5. Cryptographic operations and their computational time (in seconds).

Notation Description Timing measurements

MultG1
Multiplication in G1 6.2 × 10−4

EXPG1
Exponentiation in G1 4.7 × 10−3

PairG1 ;G2
Bilinear pairing e(x, y), x 2 G1, y 2 G2 1.2 × 10−2

H1 Cryptographic hashing, i.e. H1() 2.5 × 10−4

HG1
Hashing to G1, i.e. H() 2.9 × 10−3

AddZp Addition in Zp 2.1 × 10−5

MultZp Multiplication in Zp 3.8 × 10−5

ExpZp Exponentiation in Zp 6.9 × 10−4

MultZn2
Multiplication in Zn2 2.3 × 10−5

ExpZn2
Exponentiation in Zn2 1 × 10−2

AddAS Addition in GF(2m) 2 × 10−6

AS-G Cost of GF(2m) 6.8 × 10−5

https://doi.org/10.1371/journal.pone.0244731.t005
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Suppose the provider tries to hide the modification of MD blocks out of the K outsourced

blocks. The probability of corrupted blocks at PCSj is equal to PMDPCSj
¼ MD=K. Let V indicate

the number of blocks chosen by the verifier matching the blocks modified by the provider.

According to [9], we computed the probability that at least one of the blocks picked by

the verifier matches one of the modified blocks at PCSj, which is PVPCSj
ðV � 1Þ, as fol-

lows:PVPCSj
ðV � 1Þ ¼ 1 � ð1 � PMDPCSj

Þ
C
. The probability of misbehaviour detection at n PCSes,

PDIA−MTTP, can be calculated as follows: PDIA� MTTP ¼
Qn� 1

j¼0
PVPCSj

¼ 1 �
Pn� 1

j¼0
ð1 � PMDPCSj

Þ
C
.

Suppose the verifier divides the data file into 1000 blocks and outsources them to 10 PCSes.

Fig 16 shows the required number of picked data blocks for verification, C, that are used to

detect different numbers of modified blocks (MD) when the probability of misbehaviour

detection for one provider is selected from a set of PDIA−MTTP = {0.70, 0.80, 0.99}. For example,

if each provider modifies 1% of the outsourced blocks, then the verifier needs to randomly

select 458 blocks from each provider as a challenge to achieve a probability of at least 0.99. By

increasing the number of modified blocks, the lowest number of challenge blocks possible is

required to achieve such a probability of detection.

Introduced cost by the D3U

In the DIA-MTTP evaluation, we assume that there is a data file (DF) with K data blocks. After

cutting out the redundant data blocks (we only kept one copy of each data block), the number

of data blocks in a data file can be reduced to d1 (d1� K) by applying D3L1 among the data

blocks of the file itself, and to d2 (d2� d1) by D3L2 applied to the data blocks of all of the

Fig 16. Data corruption probability vs the number of requested blocks under different detection probabilities.

https://doi.org/10.1371/journal.pone.0244731.g016
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outsourced files in the PCSes. In the following, the computational and communication costs of

the D3U that incurred at each entity are presented in details.

The computational cost incurred by the user in the D3U comes from executing two sub

protocols, i.e. L2DataDeduplication and TagsUploading. In the L2DataDeduplication proto-

col, the user pre-possesses his data and generates d1 non-duplicated and encrypted data blocks

(DFProCost). In the TagsUploading protocol, the user computes d2 tags for the non-dupli-

cated data blocks (DFTagGenCost).

In prepossessing the data file, the highest incurred cost is due to the encryption. The user

divides the data file into multiple data blocks (K) and then encrypts them using the LiSHE

scheme. The encryption cost can be reduced, by applying the D3L1 among the data blocks,

from K to d1. Instead of encrypting K data blocks, it can only encrypt d1 data blocks. In other

words, the cost of the data block encryption can be reduced by (K − d1).

Upon receiving the duplication result of D3L2 from the leader provider, the user can gener-

ate the tags for the non-duplicated data blocks. Using the TOD method, each data block is

associated with a set of four tags, IDTag, DBTag, DBTagTag and En_IDTag. The number of

tags (i.e. sets) can be reduced by applying the D3L2 to d2. It is clear that the DFTagGenCost is

affected by the two levels of data deduplication (D3L1 and D3L2). This is where the tag num-

ber reduced by ((K—d1) + (d1—d2)).

Table 6 compares the number of encrypted data blocks and their associated tags with/with-

out applying deduplication. It shows that using block-level deduplication can lead to reducing

the DFProCost as the number of identical data blocks increases by reducing the total number

of data blocks in the file. In the file-level deduplication based and non-deduplication based

works, the DFProCost remains constant regardless of the number of identical data blocks. For

example, in the case of uploading one data file that has 1000 data blocks where the redundant

data blocks percentage is 50%, the user only needs to encrypt 501 data blocks using DIA-

MTTP instead of 1000 data blocks using the other works, i.e. file-level deduplication based and

non-deduplication based works. The table emphasises that the DFProCost complexity is based

on the redundant data block percentages (D3L1), O(d1). On the other hand, the DFTagGen-

Cost complexity is based on redundant data blocks percentages in D3L2, O(d2). For example,

for uploading one data file and the redundant data blocks parentage 20% in both levels of data

deduplication (i.e. D3L1 and D3L2), the user only needs to generate tags for 641 data blocks

instead of 1000 data blocks. When the number of the excluded data blocks increased under the

two levels of deduplication, the number of tags decreased, and consequently, the tag generation

cost can be reduced.

For each block size, from 2KB to 1024KB, we firstly fragmented the data file into multiple

blocks and generated their tags. We then calculated the time taken for the tag generation of the

data file by multiplying the total number of blocks by the time taken for the generation of one

tag for one data block. As illustrated in Table 8, the computational cost of the tag generation

Table 6. Number of encrypted data blocks and their associated tags: With/without the data deduplication approach.

3D3L1 Encrypted DBs Number D3L2 Tags Number

DIA-MTTP DIA work� DIA work�� DIA-MTTP DIA work� DIA work��

0% 1000 1000 1000 0% 1000 1000 1000

20% 801 1000 1000 20% 641 1000 1000

50% 501 1000 1000 50% 250 1000 1000

70% 301 1000 1000 70% 90 1000 1000

(� DIAs do not support data deduplication, �� DIAs support file-level deduplication)

https://doi.org/10.1371/journal.pone.0244731.t006
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for the same data file decreases almost linearly with the increasing block size. The number of

data blocks decreases accordingly. We tested the DFTagGenCost of 1 × 106 KB and 1 × 107 KB

data files. We found that, under the same block size, the cost of a 1 × 106 KB data file is nearly

ten times the cost of a 1 × 107 KB data file. This also demonstrates that the number of data

blocks dominates the computational cost of the tag generation. A small fragmentation refers to

a large number of data blocks. Therefore, it is better to choose a big block size for data frag-

mentation to an outsourced largesize data file. The details of complexities of computational

and communication cost in DIA-MTTP are given in S5 File.

Fig 17 compares the computational cost of the user in the D3U against the data block

number using Exp1 and Exp2. It shows how the costs increase as the number of data blocks

increases. Fig 18 compares the computational cost in D3U with/without the data deduplication

approaches. The figure shows that applying two levels in the deduplication approach (D3L1/

D3L2) can make the cost more efficient when compared with other approaches. With the

increasing redundant data rate, in both levels, the time of execution of D3U for the user

decreases as a result.

With DIA-MTTP, there can be multiple PCSes. Each one manages a copy of the user’s data

and the associated tags. In the case of using one TPA and a hierarchical approach, the user

may need to generate distinctive replicas of the data blocks and their associated tags for mak-

ing DIA more secure against the collusion attack between the providers. This is where each

provider has a distinctive replica, data and tags. Thus, the cost = n × (DFProCost+ DFTagGen-
Cost), where n is the number of providers. However, using multiple TPAs in DIA-MTTP, it

can help to reduce the cost. As one TPA communicates with one provider, therefore, the user

only needs to generate one replica for data blocks and their associated tags. Thus, the cost is

constant, i.e. DFProCost + DFTagGenCost, regardless of the number of PCSes.

In D3U, the computational cost that is introduced by the leader provider comes from the

L2DataDeduplication protocol execution. The leader provider performs D3L2 to eliminate

Fig 17. Computational cost of the user in the D3U vs the number of data blocks.

https://doi.org/10.1371/journal.pone.0244731.g017
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any identical data blocks among the uploading data blocks. In order to check the duplication,

the leader provider first generates a hash value for each of the data blocks and then compares

the values with the hash values of the outsourced data. Therefore, the overhead cost comes

from the hashing.

Fig 19 compares the computational cost of the leader provider in the D3U against the data

block number using two experiments, Exp1 and Exp2. The figure shows that the costs increase

as the number of data blocks increases. In the DIA-MTTP, the user applies D3L1 before send-

ing the data blocks to the leader provider. This can help to reduce the cost by (K − d1). Fig 20

shows how applying data deduplication can help to lessen the computational cost of the leader

provider. Under the settings with 500 data blocks and where the data redundancy in D3L1 is

10% and 20%, the cost with deduplication can be reduced by about 15% and 23%, respectively,

compared with non-deduplication. The more data redundancy there is under the same or

more data blocks or the more data blocks there are under the same the data redundancy, the

more there is a reduction in cost.

With regard to the computational cost incurred at other providers (non leaders), each pro-

vider in the D3U protocol only receives data and their associated tags from the leader provider

and stores in its storage. Fig 21 compares the computational cost of all providers in D3U with

and without applying the hierarchical approach using Exp1. The figure shows that use this

approach can help in terms of saving the cost incurred by the providers end, where it is con-

stant regardless of the number of PCSes.

In the D3U protocol, only the L-TPA is involved. The L-TPA receives the En_IDTags from

the user and it stores them. Therefore, the L-TPA has not incurred any costly operations.

We measured the communication cost of each entity in the D3U. This was done by

accounting how many kilobytes (KB) are sent from this entity.

Fig 18. Computational cost of the user in D3U vs the number of redundant data blocks (K = 1000, using Exp2).

https://doi.org/10.1371/journal.pone.0244731.g018
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The user communicates with the leader provider and the L-TPA in the D3U protocol,

where three messages are sent, Req.L2DataDeduplication in the L2DataDeduplication proto-

col, Req.TagsUploading in the TagsUploading protocol, and Req.En_IDTagsUploading in the

En_IDTagsUploading protocol. The data blocks of the data file are sent, {En_DBi}, in the Req.

L2DataDeduplication. The associated tags, DBTags and DBTagTags, in Req.TagsUploading

are sent to the leader provider. The user sends En_IDTags in Req.En_IDTagsUploading to the

L-TPA. The cost is therefore the sum of the following three messages: Req.L2DataDeduplica-

tion, Req.TagsUploading, Req.En_IDTagsUploading. The size of all three messages is based on

the number and size of the items involved, which in this case is the data blocks and their tags.

Each data block is encrypted using the LiSHA algorithm. DBTag is computed using the alge-

braic signature and DBTagTag is computed using the BLS signature and En_IDTag is an

encrypted form of IDTag using the Paillier scheme.

Fig 19. Computational cost of the leader provider in the D3U vs the total number of data blocks in the file.

https://doi.org/10.1371/journal.pone.0244731.g019

Fig 20. Computational cost of the leader provider in D3U: With/without the data deduplication approach.

https://doi.org/10.1371/journal.pone.0244731.g020
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Using data deduplication as well as the hierarchical approaches can help to save the com-

munication cost of the user. The number of data blocks and their tags can be reduced as the

redundant data rate increases using D3L1 and D3L2, respectively. Furthermore, the DIA-

MTTP system involves multiple PCSes. The user sends the data blocks and their tags only to

the leader provider who is responsible for distributing the copies to each provider.

Fig 22, by considering the number and bit-length of the items that are involved, compares

the communication cost of the user in D3U with and without data deduplication using p = 200

bits, m = 256 bits, G1 = 256 bits, and n2 = 2048 bits. Without using data deduplication, the cost

is constant regardless of the redundant data rate. In contrast, with data deduplication, the cost

decreases as the redundant data rate increases. Furthermore, the figure shows how the cost can

be reduced more when using the two levels of the data deduplication (D3L1 and D3L2) com-

pared to only using D3L1. For example, with a 2% redundant data rate, the cost was reduced

by 0.15% using D3L1, while it was reduced by 2.46% using both D3L1 and D3L2. The higher

the redundant data rate, the more that the cost can be reduced. Fig 23 compares the communi-

cation cost of the user in D3U using the hierarchical and non-hierarchical approaches. The fig-

ure shows that the cost increases linearly according to the number of PCSes/TPAs involved

when using the non-hierarchical approach. On the other hand, when using the hierarchical

approach, the cost is constant regardless of the number of PCSes and TPAs.

In the D3U protocol, the leader provider receives the data blocks and their associated tags

from the user in Req.L2DataDeduplication and Req.TagsUploading, receptively. Upon receiv-

ing Req.L2DataDeduplication, the leader provider first responds to the user by sending Res.

L2DataDeduplication. Then, it can send Req.DataTagsUploading to each non leader provider

when it has the tags. Finally, it sends Res.TagsUploading to confirm that the data blocks and

their associated tags are distributed and stored in all PCSes correctly. Res.L2DataDeduplica-

tion includes the duplication result. As shown in algorithm 2, in the case where the data block

is duplicated, the non leader provider sends the ID of a data block in M2T that is identical to

the received data block. Otherwise, it sends the empty value to indicate that the data block is

non-duplicated. In the PCS environment, the number of data blocks can be huge. We can use

64 bits or more to represent the IDs of the data blocks in M2T for each user. The size of Res.

L2DataDeduplication is based on the data redundancy rate. Res.TagsUploading includes the

acknowledgement that is used to indicate that the data are stored in the PCS correctly. It can

be represented using one bit, i.e. 1. Regarding the Req.DataTagsUploading message, it includes

three sets of En_DBs, DBTags and DBTagTags or the IDs of the data blocks in the case where

Fig 21. Computational cost of the providers (Leader and non leaders) in D3U: With/without the hierarchical

approach. (K = 1000 data blocks).

https://doi.org/10.1371/journal.pone.0244731.g021
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Fig 22. Communication cost of the user in D3U: With/without data deduplication.

https://doi.org/10.1371/journal.pone.0244731.g022

Fig 23. Communication cost of the user in D3U: Hierarchical approach vs non-hierarchical approach. (K = 1000).

https://doi.org/10.1371/journal.pone.0244731.g023
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they are duplicated. Upon receiving DataTagsUploading, each non leader provider stores the

data blocks, {En_DBi}, and their associated tags, {DBTagi} and {DBTagTagi} in its M2Ts. The

provider then sends Res.DataTagsUploading as a response. Res.DataTagsUploading is similar

to the Res.TagsUploading sent by the leader provider. Therefore, the non leader provider has

incurred a constant communication cost regardless of the number of data blocks and their

tags.

Fig 24 compares the communication cost incurred by the leader provider and the individual

non leader provider in the D3U using two approaches: Hierarchical and Non-Hierarchical

(without data deduplication). The figure shows that the cost increases as the data block num-

ber increases using the hierarchical approach. It is a constant using the Non-Hierarchical

approach and it is similar to the non leader provider. Fig 25 shows that the communication

cost incurred by the leader provider increases as the number of data blocks and the number of

PCSes increase. However, this lessens the communication cost for the user.

In the D3U protocol, only the L-TPA communicates with the user. The L-TPA receives the

set of En_IDTags, {En_IDTagi} in Req.En_IDTagsUploading. Then, it responds by sending the

Res.En_IDTagsUploading message. The Res.En_IDTagsUploading includes an acknowledge-

ment that the {En_IDTagi} are stored in the L-TPA correctly. As mentioned above, the

acknowledgement can be represented using one bit, 1. This means that L-TPA incurred a neg-

ligible and constant communication cost in the D3U protocol regardless of the number of the

uploaded data blocks.

Introduced cost by LoA1DV

In the following section, the computational and communication costs for each entity in

LoA1DV have been presented in detail.

Fig 24. Communication costs for the providers vs the number of data blocks: With/without a hierarchical approach. (n = 6 PCSes, � is Non-

Hierarchical approach).

https://doi.org/10.1371/journal.pone.0244731.g024
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In LoA1DV, as mentioned in LoA1DV Section, only public verification is performed. This

means that the user is not involved and so s/he has not incurred any cost in LoA1DV. The user

delegates the L-TPA and the non leader TPAs to perform the verification and send the verifica-

tion result to him/her.

The leader provider, like the user, as mentioned in LoA1DV Section, is not involved in the

LoA1DV protocol and so it has not incurred any cost. Thus, the non leader providers are

involved in LoA1DV. Each provider computes public proofs to send them to the associated

TPA. Therefore, the computational cost of the provider is the cost of the public proofs genera-

tion, PubProofGenCost. As mentioned in the PubProofsGen algorithm, three types of the pub-

lic proofs, PubDBProof, PubDBTagProof and PubDBTagTagProof, are calculated based on the

respective items, {En_DBi}, {DBTagi} and {DBTagTagi}, where, 0� i< C. Furthermore, for

replay attack prevention, the provider should use fresh nonces that have been sent by the TPA

in the proofs generation. Fig 26 compares the computational cost of PCS in LoA1DV with

and without nonces. The figure shows that the costs increase as the number of data blocks

increases. Furthermore, an additional cost is introduced when using nonces is negligible.

The public verification in LoA1DV is distributed between the L-TPA and the non leader

TPAs. The cost incurred by the L-TPA can be measured using three metrics: PubChallGenCost

(it is a cost incurred in generating a public challenge), DBProofTagGenCost (it is a cost

incurred in generating a tag for PubDBProof) and DBTagTagProofVerCost (it is a cost

incurred in verifying PubDBTagTagProof). The computational cost of the L-TPA in LoA1DV

is PubChallGenCost + DBProofTagGenCost + DBTagTagProofVerCost.

As shown in the PubChalGen algorithm, the L-TPA computes a tag for the aggregated

value of {ProofNoncei} as well as the tags for {PCSNoncej} using the AS. The DBProofTagGen-

Cost, as seen in the DBProofTagGen algorithm, is the cost of computing a tag for PubDBProof
using the algebraic signature. The L-TPA receives the PubDBProofs from all TPAs, but it

Fig 25. Communication cost incurred by the leader provider regarding the number of data blocks and PCSes.

https://doi.org/10.1371/journal.pone.0244731.g025
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generates a tag for only one copy of PubDBProof. DBProofTagGenCost is a constant regardless

of the number of receiving PubDBProofs, i.e. O(1). Furthermore, the L-TPA should compute

an aggregated En_IDTag value for the set {En_IDTagi}. {En_IDTagi} are associated with

{DBTagi} that are used for computing the PubDBTagProof.
As shown in the DBTagTagProofVer algorithm, the PubDBTagTagProof verification can be

performed in a batch manner. This in order to optimise the cost. This is where the L-TPA can

verify all PubDBTagTagProofs that are received from all of the TPAs in one operation. The cost

is based on the number of pairing operations (PairG1 ;G2
). This is which is the most costly opera-

tion. In batch verification, the number of the pairing operations is constant regardless of

the number of received DBTagTagProofs (the total number of TPAs), 2� PairG1 ;G2
. In the

individual verification, the number of pairing operations increases with the number of TPAs,

2� n� PairG1 ;G2
. By increasing the number of TPAs, the number of PairG1 ;G2

increases and the

computational cost of the PubDBTagTagProof verification increases, accordingly.

For the non leader TPAs, the incurred cost for each TPA can be measured using two

metrics, DBTagProofVerCost (a cost incurred when verifying PubDBTagProof) and DBTag-

MappingCost (a cost incurred when generating a map value for PubDBTagProof). The

computational cost is incurred on part of the TPA in the LoA1DV is DBTagVerCost+ DBTag-
MappingCost. PubDBTagProof is a set that consists of C items according to Eq(12) where each

item is a proof of one DBTag. The TPA computes a map value for each item of PubDBTag-
Proof. The cost is based on the number of PubDBTagProof, i.e. C.

Fig 26. Computational cost of PCS in LoA1DV: With/without nonces.

https://doi.org/10.1371/journal.pone.0244731.g026
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Using the collaborative verification approach can help lessen the cost of the verification

protocol. As mentioned above, the L-TPA verifies PubDBTagTagProofs, while the other

TPAs verify their associated PubDBTagProofs. By applying this approach, the total cost of the

verification protocol (LoA1DV) incurred at the TPAs including L-TPA is (n − 1) × (PubChall-
GenCost + DBTagProofVerCost + DBTagProofMapCost) + DBProofTagGenCost + DBTagTag-
ProofVerCost, compared to the cost without the aforementioned approach, i.e., it is n ×
(PubChallGenCost + DBProofTagGenCost + DBTagProofVerCost+ DBTagProofMapCost +

DBTagTagProofVerCost).
The user sends Req.PublicDataVerification, in the LoA1DV protocol, to the L-TPA to

instruct it to perform the public verification. This message includes the signature of the FileTag
which is associated with the file that the user wants to verify its integrity. This is in addition to

whichever verification level is required, i.e. LoA1 or LoA2. Thus, the communication cost that

is incurred by the user is |FileTagSig| + |LoA|. The FileTagSig can be computed using any pub-

lic key encryption, e.g. RSA. One bit can be used to represent the verification level; 0 for LoA1

and 1 for LoA2. For example, when using the 1024-RSA algorithm, the cost is 1024 +1 = 1025

bits� 0.13 KB. Thus, the total communication cost for the user in LoA1DV is a negligible con-

stant cost.

In LoA1DV, as mentioned above, only the non leader providers are involved. Each provider

sends Res.PublicProofsFromPCS to its associated TPA. This message includes PubDBProof,
PubDBTagProof, and PubDBTagTagProof. PubDBProof and PubDBTagTagProof are aggre-

gated values of C of En_DBs and DBTagTags, respectively. PubDBTagProof consists of C items,

{PubDBProofi}, as in Eq(12). Thus, the communication cost of the provider is |En_DB|+ (C ×
|DBTag|) + |DBTagTag|. This cost is based on the total number and the size of {DBTagi}. This

means that the cost increases as the number of DBTagi and its size increase.

In LoA1DV, the L-TPA sends the following three messages, Req.PublicProofsFromTPA,

Req.DBTagProofVerification, and Res.PublicDataVerification to the non leader TPAs and to

the user, respectively. The Req.PublicProofsFromTPA, which is sent to each non leader TPA,

includes two sets. The first set is made up of the indexes of the chosen data blocks (their posi-

tions). The second set is their associated ProofNonces. In addition to these sets, there is Agg-
ProofNonceTag, PCSNoncej and PCSNonceTagj. The Req.DBTagProofVerification message

includes two values DBProofTag and AggEn_IDTag. The DBProofTag is computed using the

algebraic signature, and the AggEn_IDTag is aggregated value using C of En_IDTags. Res.Pub-

licDataVerification in the LoA1DV protocol includes DBTagTagProofVerResult (i.e. the public

data verification result, 0/1). The communication cost of the L-TPA in the LoA1DV protocol,

CommLTPALoA1DVCost, is (n − 1) × (Req.PublicProofsFromTPA + Req.DBTagProofVerifi-

cation) + Res.PublicDataVerification, i.e. it is as follows (n − 1) × (C × (|Ii|+ |ProofNoncei|) +

|AggProofNonceTag| + |PCSProofj| + |PCSProofTagj| + |DBProofTag|+ |AggEn_IDTag|) +

|DBTagTagProofVerResult|. Fig 27 compares the communication cost of the L-TPA against the

number of TPAs and the data blocks. The cost increases significantly as the number of the

TPAs and the chosen data blocks increases. However, this is in order to save the bandwidth

cost of the user.

To lessen the communication cost of the L-TPA, the L-TPA can send a key to the TPA,

which can be used to generate the values of the data block indexes set and their associated

ProofNonces, which is an alternative to sending the two sets separately. Fig 28 compares the

communication cost of the L-TPA in LoA1DV against the number of challenged blocks using

two approaches (NonKey-based and Key-based). From the result in the figure, it can be seen

that the cost using the NonKey-based approach increases as the data block number increases.

The cost using the Key-based approach is constant regardless of the number of data blocks.

Furthermore, It incurs less of a cost compared to the NonKey-based approach.
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Fig 27. Communication cost of the L-TPA in LoA1DV vs the TPAs and the number of data blocks. (|En_DB| = 0.025 KB and |DBTag| = 0.032 KB).

https://doi.org/10.1371/journal.pone.0244731.g027

Fig 28. Communication cost of the L-TPA in LoA1DV against the number of data blocks. (� is Key-based approach, n = 2).

https://doi.org/10.1371/journal.pone.0244731.g028
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Regarding the communication cost of a non leader TPA in the LoA1DV protocol, the cost

comes from sending Req.PublicProofsFromPCS, Res.PublicProofsFromTPA and Res.DBTag-
ProofVerification. The first message, Req.PublicProofsFromPCS, is similar to Req.PublicProofs-
FromTPA. The second message, Res.PublicProofsFromTPA, includes PubDBProof and

PubDBTagTagProof. These are the aggregated values, as mentioned above. The Res.DBTag-

ProofVerification includes PubDBTagProofVerResult and DBTagProofMapValue. The Pub-
DBTagProofVerResult can be 1 or 0 bit. The DBTagProofMapValue, as shown in Eq(19), is an

aggregated value of {DBTagProofMapValueji}. Thus, the cost is the sum of these messages i.e.

Req.PublicProofsFromPCS + Res.PublicProofsFromTPA + Res.DBTagProofVerification, it is as

follows (C × (|Ii| + |ProofNoncei|) + |PCSNoncej| + |PCSNonceTagj| + |PubDBTagProofVerRe-
sult| + |DBTagProofMapValue| + |PubDBProof| + |PubDBTagTagProof|. Using the Key-based

approach, the cost can be constant regardless of the number of data blocks, i.e. |Key| +

|PCSNoncej| + |PCSNonceTagj| + |PubDBTagProofVerResult| + |DBTagProofMapValue| +

|PubDBProof| + |PubDBTagTagProof|.

Introduced cost by LoA2DV

In the following section, the computational and communication costs for each entity in

LoA2DV have been presented in detail.

In the LoA2DV protocol, the user is involved. The total cost incurred by the user in

LoA2DV is PriChallGenCost + FPriProofVerCost. The PriChallGenCost is incurred as a part

of generating a private challenge, and the FPriProofVerCost is incurred as a part of performing

a private verification. The private challenge, as shown in the PriChalGen algorithm, depends

on the public verification that has been received from L-TPA. The user, in addition to using

the public challenge items, chooses a random number for the leader provider and then gener-

ates its tag using the AS. As shown in the FPriProofsVer algorithm, the user computes a fresh

FPriDBTagProof using FPriDBProof and aggregated value of the IDTags that is associated

with the data blocks in the proof (FPriDBProof) in order to compare it with the received

FPriDBTagProof.
Using the hierarchical approach can help to reduce the cost for the user, where it is not

including AddZp . It is a more costly operation when compared with AddAS and AS-G as shown

in Table 5. The cost in the second approach, i.e. without the hierarchical approach, increases as

the number of AddZp increases by increasing the number of PCSes. Without the hierarchical

approach, the user should first retrieve all of the proofs from all providers. He/she can then

verify them either collectively or individually.

In LoA2DV, the leader provider is involved in the data verification, unlike in LoA1DV.

Thus, the leader provider generates its proofs and then computes the final proofs using its own

proofs and the proofs of other providers. Regarding the non leader providers, each provider in

the LoA2DV in addition to the public proofs generation, should generate private proofs to

send to the leader provider. Fig 29 compares the computational cost of the leader provider and

the computational costs incurred by the non leader provider in both LoA1DV and LoA2DV.

These costs increase as the number of data blocks increases. Based on the results shown in the

figure, we can see that the cost introduced by the non leader provider in LoA1DV is less than

the cost introduced in the LoA2DV. Additionally, the cost of generating the final proofs

incurred by the leader provider is not a high cost. It is nearly equal to the cost of the non leader

provider in LoA1DV.

In the LoA2DV protocol, the public and private verifications are performed where the costs

incurred by the L-TPA and non leader TPAs are identical to the cost in the LoA1DV protocol.

PLOS ONE A novel approach to data integrity auditing in PCS: Minimising any Trust on Third Parties (DIA-MTTP)

PLOS ONE | https://doi.org/10.1371/journal.pone.0244731 January 7, 2021 41 / 54

https://doi.org/10.1371/journal.pone.0244731


They have incurred the same cost regardless of which verification protocol is executed, i.e.,

LoA1DV or LoA2DV.

The user in LoA2DV, as mentioned above, sends a delegation message to L-TPA as in the

LoA1DV. In addition to this message (Req.PublicDataVerification), the user communicates

with the leader provider by sending Req.PrivateProofsFromLPCS, the private challenge mes-

sage, in order to receive the private proofs from all providers. The private challenge message

consists of a set of data block identifiers and their associated nonces, ProofNonces and a tag

of LPCSNonce (LPCSNonceTag). Fig 30 compares the communication cost for the user in

LoA1DV and LoA2DV. From the results shown in the figure, it can be seen that the user

incurs a cost in LoA1DV that is about 16% of the cost in LoA2DV using the NonKey-based

approach. However, when using the Key-based approach, the cost of LoA2DV on the user is

about double its cost in LoA1DV. This means that when using this approach in LoA2DV, it

releases the user from being burdened with a high communication cost. When using the

hierarchical and Key-based approaches, this cost is constant regardless of the number of

PCSes.

In the LoA2DV protocol, before the leader provider responds to the user’s request (Req.Pri-

vateProofsFromLPCS), it first communicates with each provider to get its private proofs by

sending Req.PrivateProofsFromPCS. Then it sends Res.PrivateProofsFromLPCS. This mes-

sage includes the items of the private challenge, except the LPCSNonceTag. The Res.Private-

ProofsFromLPCS includes the final private proofs. As mentioned in Algorithm 13, the final

private proofs consist of PriDBProof and PriDBTagProof. The private proofs do not include

DBTagTagProof as the public proofs do. Furthermore, they are also a constant size because

they are all aggregated values. Thus the private proofs can be of a smaller size compared with

the public proofs.

Fig 29. Computational costs for the leader provider and the non leader provider in LoA1DV and LoA2DV vs the number of data blocks. (n = 20).

https://doi.org/10.1371/journal.pone.0244731.g029
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Fig 31 compares the communication costs of the leader provider and of a non leader pro-

vider in both LoA1DV and LoA2DV. From the results in the figure, we can see that the leader

provider has incurred a lesser cost compared to the non leader provider. Fig 32 compares the

communication cost for the non leader provider in LoA1DV and LoA2DV against the number

of data blocks. Both costs increase as the data block number increases. Additionally, the

LoA2DV does not incur a high cost on part of the non leader provider, as the cost is nearly

equal to the cost in the LoA1DV.

In the LoA2DV protocol, in addition to the verification result that sent in the message (Res.

PublicDataVerification), the L-TPA shares the challenge items, i.e. the indexes of the challeng-

ing data blocks and their associated ProofNonces or use a key to use in generating these values,

and the aggregated value, AggPCSNonceTag.
Regarding the communication cost of the other TPAs (non leaders), they incurred a cost

that is equal to the cost in the LoA1DV. In other words, the LoA1DV and LoA2DV protocols

Fig 30. Communication cost for the user in LoA1DV and LoA2DV. (� the NonKey-based approach, and C = 20 data

blocks).

https://doi.org/10.1371/journal.pone.0244731.g030

Fig 31. Communication cost for the leader provider and the non leader provider in LoA1DV and LoA2DV.

(C = 100, n = 2, |m| = |G1| = 0.032 KB, considering only the proofs cost).

https://doi.org/10.1371/journal.pone.0244731.g031
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have introduced the same cost as the TPAs in the DIA-MTTP. Table 7 summarises the com-

plexities of the communication costs for the L-TPA and the non leader TPA. Fig 33 compares

communication costs of the L-TPA and the TPA in both LoA1DV and LoA2DV. The commu-

nication cost incurred in the L-TPA in LoA2DV is a little more compared to the cost in the

LoA1DV. Furthermore, the communication cost of the TPA a is less than the communication

cost of the L-TPA a in both LoA1DV and LoA2DV.

Introduced cost by DU

In the following section, the computational and communication costs for each entity in the

DU have been presented in details.

In the DU, the user incurs a cost that is similar to the one in the D3U. As shown in Algo-

rithm 15, to insert data block, the user first encrypts the data block using the LiSHE scheme.

Then it is sent the data block to the leader provider to store in its M2T and for it to distribute

its copies to other providers. Meanwhile, to modify the existing data block, the user first

decrypts the data block, modifies, and then encrypts it again. In the data block deletion case,

the user does not incur a cost. Furthermore, the user computes a tag for the updated data

block as in modification and insertion cases. The DIA-MTTP supports a data update with data

deduplication. Therefore, the user does not generate a tag for the updated data block in the

case that it is duplicated, as shown in Algorithm 17.

Fig 32. Communication cost of the non leader provider in LoA1DV and LoA2DV vs the data block number.

https://doi.org/10.1371/journal.pone.0244731.g032

Table 7. Computational cost of tag generation against different sizes of data file and data block (in seconds).

Block Size 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB 1024 KB

Block numbers (1 × 106 KB) 5.2 × 105 2.6 × 105 1.3 × 105 6.6 × 104 3.3 × 104 1.6 × 104 3.2 × 103 4.1 × 103 2.1 × 103 1 × 103

Time of 1 × 106 KB 2.8 × 104 1.4 × 104 7 × 103 3.5 × 103 1.7 × 103 8.7 × 102 4.4 × 102 2.2 × 102 1.1 × 102 5.4 × 10

Block numbers (1 × 107 KB) 5.2 × 106 2.6 × 106 1.3 × 106 6.6 × 105 3.3 × 105 1.6 × 105 8.2 × 104 4.1 × 104 2.1 × 104 1 × 104

Time of 1 × 107 KB 2.8 × 105 1.4 × 105 7 × 104 3.5 × 104 1.7 × 104 8.7 × 103 4.4 × 103 2.2 × 103 1.1 × 103 5.4 × 102

https://doi.org/10.1371/journal.pone.0244731.t007
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Fig 34 compares the computational cost of the user in DU against the data block number in

three cases: data uploading (the first time a data file is being uploaded), data insertion and data

modification. The data blocks are updated individually as a part of non-batch operations.

Their costs increase linearly with the data block number. However, the costs in all cases

(upload, insert, and modify) can be reduced by applying data deduplication. From the results

of the figure, we can see that the data modification without a deduplication case can incur a

higher cost compared to the cost of the modification with the deduplication and the data

uploading and inserting with/without deduplication. The costs that are introduced in the

uploading and insertion of the data block, with and without deduplication, are identical. Fur-

thermore, the cost of the modification with the deduplication (where only the decryption and

encryption operations are performed) is much less than the uploading/insertion of the data

block without deduplication (where is in addition to the encryption operation, the tag of the

data block should be generated). This means that the highest cost for the user comes from the

tag generation operation. Thus this shows how to integrate the data update and data dedupli-

cation to help to reduce the cost for the user.

The providers in the DU incur a cost that is similar to one in the D3U. The leader provider

receives the updated data from the user and checks the duplication. In other words, the leader

provider performs data deduplication to eliminate any redundant data blocks by generating

hash values for the updated data blocks, comparing them with hash values of the outsourced

data. Then, the leader provider sends the result to the user. Therefore, the computational cost

for the leader provider in the DU is based on the number of data blocks. The more updated

data blocks there are, the higher the cost. The non leader providers, like in the D3U protocol,

receive the updated data and their tags from the leader provider. Therefore, the computational

cost for the non leader provider is negligible compared with the cost to the leader provider.

The TPAs in the DU perform the same functions as in the D3U protocol. The L-TPA

receives the En_IDTag of the updated data block and stores it in its M2T. Therefore, the

L-TPA does not execute any costly operations and computational cost in the DU can be

Fig 33. Communication costs of the L-TPA and the non leader TPA in LoA1DV and LoA2DV. (n = 10, |m| = |G1| =

256 bits, |p| = 200 bits, using Key-based approach).

https://doi.org/10.1371/journal.pone.0244731.g033
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negligible. Regarding the computational cost of the non leader TPAs, they are not involved in

the DU so they have not introduced a cost.

Regrading to the communication cost of the user in DU, the user sends three messages, two

to the leader provider, Req.DataUpdating and Req.TagsUpdating, and one to the L-TPA, Req.

En_IDTagOfUpdatedDataUploading. The three messages are similar to Req.L2DataDedupli-

cation, Req.TagsUploading and En_IDTagsUploading in the D3U protocol. In Req.DataUp-

dating, the user sends the updated data block to store in the PCSes, while in the Req.

TagsUpdating, the associated tags, i.e. DBTag and DBTagTag, are sent. The En_IDTag of the

updated data block is sent in the Req.En_IDTagOfUpdatedDataUploading. In data block dele-

tion, the user does not need to send the data blocks or their tags, only their positions in a given

data file. Furthermore, by applying the data deduplication, it can save the user communication.

The user can be released from sending the tags in a case where the updated data blocks are

duplicated.

The leader provider sends the Req.DataTagsUpdating to each provider for them to update

their storage (M2Ts) while the Res.TagsUpdating is sent to the user. The former message

includes the updated data block and its associated tags, while the latter message includes the

acknowledgement to confirm that the outsourced data are updated on all PCSes. Therefore,

the communication cost incurred by the leader provider in the DU, CommLPCSDUCost,

is (n-1) × Req.DataTagsUpdating + Res.TagsUpdating. As the acknowledgement can be

respected using one bit, 1, the CommLPCSDUCost is based on the size of the data block and

their tags as well as the number of PCSes.

Each non leader provider only sends one message, i.e. Res.DataTagsUpdating to the leader

provider. This message is similar to Res.DataTagUploading in the D3U protocol. It includes

the acknowledgement in order to confirm that outsourced data have been updated in the PCS.

Fig 34. Computational cost of the user in DU vs the number of data blocks.

https://doi.org/10.1371/journal.pone.0244731.g034
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The communication costs that are introduced to the L-TPA and non leader TPAs are simi-

lar to the costs in the D3U. Only the L-TPA stores the En_IDTag and then sends the Res.

En_IDTagOfUpdatedDataUploading as a response to confirm that the En_IDTag has been

updated correctly. One bit is used for its representation. The communication cost at the

L-TPA in the DU, the CommLTPADUCost, is negligible and constant regardless of the num-

ber of updated data blocks.

Storage overhead for the entities in the DIA-MTTP

To measure the storage cost incurred by each entity in the DIA-MTTP system, we counted the

number of kilobytes (KB) that the entity stored locally.

The user uploads the data along with the associated tags, i.e. DBTags and DBTagTags to the

PCSes and En_IDTags in the L-TPA for the public verification. He/she keeps IDTags locally

to use in the private verification. Thus, the storage overhead incurred by the user for each

uploaded data file, the UserStorageCost, is dependent on the number and size of the IDTags
for one data file. The IDTags are generated using the algebraic signature scheme. The User-

StorageCost is K × |IDTag| = K × |m|. The UserStorageCost increases as the number of tags

and their length increase.

In the DIA-MTTP, each provider has two sets of tags: DBTags and DBTagTags. Thus, the

provider’s storage cost, PCSStorageCost, which is K × (|DBTag| + |DBTagTag|) = K × |m| +

|G1|. On the other hand, the leader provider has an additional set, hash values of the data

blocks set, to save on its computational cost. This set is used for performing D3L2 in the

L2DataDeduplication protocol. Thus, the storage cost of the leader provider, LPCSStorage-

Cost, is K × (|DBTag| + |DBTagTag| + |DBHash|). Without the hash values being set, the leader

provider should compute the hash values for the outsourced data blocks for each uploading

time. This can lead to an increase in the computation cost for the leader provider as the num-

ber of blocks increases.

Regarding the storage overheard incurred by the TPAs in the DIA-MTTP, the TPA stores

En_IDTags. The tag set is uploaded to the TPAs to save the computational and communication

costs on the user side. Without the En_IDTags, the user should generate En_IDTags for each

verification and send them to the TPAs or store them locally. In other words, keeping the

En_IDTags with the TPAs can release the user from being involved in the public verification.

By applying the collaborative verification approach in the DIA-MTTP, it can save on the

storage cost incurred by the TPAs. The L-TPA only keeps the En_IDTags. For each verifica-

tion, an aggregated value of the requested the En_IDTags that are associated with the challeng-

ing data blocks, is sent to each TPA. As it is an aggregated value, it does not burden the L-TPA

communication cost regardless of the number of requested En_IDTags. Thus, the storage cost

for the L-TPA, LTPAStorageCost, is K × |En_IDTag|. Without this approach, each TPA, along

with the L-TPA, should keep the En_IDTags. This can lead to increasing the storage cost on

the TPAs side, i.e. K × n × |En_IDTag|, where K is the total data block number, and n is the

TPAs number in the system.

Fig 35 compares the storage costs at the point of the TPAs (leader and non leaders) with/

without the collaborative verification approach. The figure shows how collaborative verifica-

tion can succeed in saving on the storage cost at TPAs side. With the collaborative verification

approach, the storage cost is about 10% of the cost without the approach. The DIA-MTTP can

incur of a less storage cost by keeping the En_IDTags with the L-TPA. Fig 36 compares the

storage costs of the DIA-MTTP entities against the number of data blocks. The costs increase

as the number of data blocks increases. Based on the results in the figure, we can see that the

user incurred the lowest cost.
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As the data deduplication is applied in the DIA-MTTP, it can minimise the storage costs.

Thus, the UserStorageCost, PCSStorageCost and LTPAStorageCost can be reduced by (K −
d2) × |IDTag|, (K − d2) × (|DBTag| + |DBTagTag|) and (K − d2) × |En_IDTag|, respectively.

Fig 37 compares the storage cost for each entity of the DIA-MTTP with and without data

deduplication. It shows that when using the two levels of data deduplication (D3L1 and D3L2),

it can save more of a cost compared with using only D3L1.

We compared the DIA-MTTP to the related works. Table 8 presents a summary of the

functional, security and reliability properties comparison. The table shows that in compression

with the existing DIA, the DIA-MTTP can satisfy all of the requirements. In terms of the func-

tional requirements, the DIA-MTTP supports data deduplication at the block-level, while

the existing works apply the data deduplication at the file-level. The DIA-MTTP uses data

Fig 35. Storage cost at the TPAs: With/without the collaborative verification approach. (10 TPAs, |n2| = 0.256 KB).

https://doi.org/10.1371/journal.pone.0244731.g035

Fig 36. Storage cost for the DIA-MTTP entities with a different number of data blocks. (10 TPAs, |m| = |G1| = 0.032 KB, |n2| = 0.256 KB, � without

the collaborative verification approach).

https://doi.org/10.1371/journal.pone.0244731.g036
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deduplication in data updating cases as well as when data uploading. For the security

requirements, the DIA-MTTP can address TPA attacks, in addition to provider attacks. The

DIA-MTTP uses multiple PCSes and multiple TPAs to address the data recovery and elasticity

requirements.

For the elasticity property, the DIA-MTTP can provide it more effectively. The non leader

TPAs do not keep any data locally, only the L-TPA send the aggregated value of En_IDTag
each verification time. This means that it is easy to add a new TPA. Furthermore, in the

DIA-MTTP, identical data replicas are used. The user does not incur any overheads in terms

of computational and communication costs if a new PCS is added. The leader provider can

send a copy of the outsourced data and their associated tags to the PCS. This means that unlike

existing works, the user in the DIA-MTTP does not need to re-process the data to generate a

new replica and its associated tags, nor does it needs to communicate with the new PCS to

upload them.

Table 9 presents a summary of the computational, communication and storage complexi-

ties of the DIA-MTTP and existing works. For the computational and communication costs

that are introduced to the user for uploading, the Curtmola CenPub-DIA, Saxena CenPub-

DIA and the DIA-MTTP are most efficient compared with other works. Unfortunately, Curt-

mola CenPub-DIA and Saxena CenPub-DIA do not address the TPA attacks, as shown in

Table 8. The TPA should be entirely honest. Furthermore, they do not support data deduplica-

tion and dynamic data like the DIA-MTTP.

For storage cost complexities, we only considered the number of tags of one data file. As

shown in the table, the DIA-MTTP can introduce more storage overheads in comparison with

the existing DIAs on a part of the user. The cost is used for enhancing the DIA’s security. How-

ever, through the data deduplication, this cost can be reduced.

Conclusion

This paper has proposed and evaluated a novel DIA framework. The framework deploys the

TOD method to support a two-level approach to integrity verification and data deduplication,

and uses a multi-entity hierarchical structure, the principle of the separation of duties and

Fig 37. Storage cost for each entity in the DIA-MTTP: With/without data deduplication. (The redundancy data

rate 20%).

https://doi.org/10.1371/journal.pone.0244731.g037
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collaborative verification to counter collusion attacks and to enhance data availability and an

integrated approach to data updating and data deduplication to support dynamic data and to

minimise costs imposed on the entities involved. The two-level approach can best balance the

trade-off between protection strength and overhead cost and maximise the benefits of data

deduplication. Furthermore, the novel data structure, M2T, has been proposed for supporting

the data updating and facilitating the data deduplication.

Our future work includes how we can address the storage overhead costs at the user and the

L-TPA. Additionally, how we can update the tags efficiently and securely in the case of their

key is exposed. The DIA framework could be extended to provide the DIA for sharing data,

where multiple users can access and update the same data in the PCS.

Table 8. Comparing the DIA-MTTP with existing DIAs against the functional, security and reliability requirements in requirement specification section.

Works F1 F2 S1 S2 S3 R1 R2 Tagging Methods Data Structure

Ateniese_1 [7] No No Yes^ - No Yes+ No Hashing based Method -

Chen [8] No No Yes^ - No No No AS based Method -

Sookhak [9] No Yes Yes^ - No No No AS based Method MIHT

Zhang [10] No Yes Yes^ - No No No MAC based Method BUT

Luo [35] No Yes Yes^ No No No No AS based Method IHT

Xu [11] No No Yes^ No No No No HomMAC based Method -

Krishra et al. [39] No No Yes No No No No Symmetric Encryption based Method -

Ateniese_2 [12] No No Yes No!! Yes Yes+ No RSA Method -

Erway [14] No Yes Yes No!! Yes Yes+ No RSA based Method RASL

Hanser [15] No No Yes No Yes Yes+ No ECDSA based Method -

Li_1 [16] No Yes Yes^ No Yes No No BLS based Method IHT

Liu_1 [17] No Yes Yes^ No Yes No No BLS based Method MHT

Wang [18–20] No Yes Yes^ No!! Yes No No BLS based Method MHT

Tian [40] No Yes Yes^ No!! Yes No No BLS based Method DHT

Yang [21] No Yes Yes^ No Yes No No BLS based Method IHT

Li_2 [41] No Yes Yes^ No Yes No No BLS based Method LBT

Liu_2 [56] No No Yes^ No Yes Yes++ No!! BLS based Method -

Abo alian_1 A [23] No No Yes No!! Yes Yes++ No BLS based Method -

Abo alian_2 [24] No Yes Yes No!! Yes Yes++ No BLS based Method RASL

Curtmola [25] No No Yes No Yes Yes++ No RSA based Method -

Yuan [26] Yes! No Yes^ No Yes No No BLS based Method -

Li_3 [27] Yes! No Yes No!! Yes No No BLS based Method -

Ma [28] Yes! Yes Yes No!! Yes No No BLS based Method MHT

He [29] Yes! No Yes No!! Yes No No BLS based Method -

Liu_3 [22] Yes! No Yes No!! Yes No No BLS based Method -

Abbdal [30] No Yes Yes No!! Yes No Yes� ECDSA based Method MHT

Saxena [31] No No No No No No Yes� AS based Method -

Jin [32] No Yes Yes^ No Yes No No BLS based Method Index Switcher

Yang_2 [21] No Yes Yes^ No Yes Yes+++ Yes�� BLS based Method IHT

Ni [13] No No Yes^ No Yes Yes+++ Yes�� RSA based Method -

Zhu [33] No No Yes^ No!! Yes Yes+++ Yes�� BLS Method -

Liu_4 [34] No Yes Yes^ No!! Yes Yes+++ Yes�� BLS based Method MHT

DIA-MTTP Yes Yes Yes Yes Yes Yes+++ Yes TOD Method M2T

(^no data confidentiality preservation, ! file-level deduplication, !! data confidentiality preservation, + encoding method, + + multiple replicas at one PCS, + + + multiple
replicas at multiple PCSes, � one PCS and Multiple TPAs, �� multiple PCSes and one TPA)

https://doi.org/10.1371/journal.pone.0244731.t008

PLOS ONE A novel approach to data integrity auditing in PCS: Minimising any Trust on Third Parties (DIA-MTTP)

PLOS ONE | https://doi.org/10.1371/journal.pone.0244731 January 7, 2021 50 / 54

https://doi.org/10.1371/journal.pone.0244731.t008
https://doi.org/10.1371/journal.pone.0244731


Supporting information

S1 File. Requirements of an effective, secure, reliable and efficient DIA.

(PDF)

S2 File. M2T and its operations.

(PDF)

S3 File. DIA-MTTP algorithms.

(PDF)

Table 9. Comparing the DIA-MTTP with existing works against the efficiency requirements in section.

Works Computational Overhead Communication Overhead Storage Overhead (P7)+

P1! P2!! P3� P4 + P5 at Provider P6 at User and Provider User Providers TPAs

Ateniese_1 [7] O(NT × T) O(1) - O(NT) O(1) - - O(NT) -

Chen [8] O(NT × T) O(1) - O(NT) O(1) - - O(NT) -

Sookhak [9] O(K) O(1) O(DT) O(K) O(1) O(DT)/ O(1) O(K) O(K) -

Zhang [10] O(K) O(1) O(1) O(K) O(1) O(1) - O(K) -

Luo [35] O(K) O(1) O(DT) O(K) O(1) O(DT)/ O(1) - - O(K)

Xu [11] O(K) O(1) - O(K) O(1) - - - O(K)

Krishra et al. [39] O(K) O(1) - O(K) O(1) - - - O(K)

Ateniese_2 [12] O(K+ E) O(1) - O(K+ E) O(1) - - O(K+ E) -

Erway [14] O(K+ E) O(NP × C) O(NP) O(K+ E) O(NP × C) O(1)/O(NP) - O(K+ E) -

Hanser [15] O(K+ E) O(1) - O(K+ E) O(1) - - O(K+ E) -

Li_1 [16] O(S × K) O(1) O(DT) O(K) O(1) O(DT)/ O(1) - O(K) -

Liu_1 [17] O(S × K) O(NP × C) O(NP) O(K) O(NP × C) O(1)/O(NP) - O(K) -

Wang [18–20] O(K) O(NP × C) O(NP) O(K) O(NP × C) O(NP) - O(K) -

Tian [40] O(K) O(1) O(1) O(K) O(1) O(1)/O(1) - O(K) O(K)

Yang_1 [21] O(S × K) O(1) O(DT) O(K) O(1) O(DT)/ O(1) - O(K) O(K)

Li_2 [41] O(K) O(NP × C) O(1) O(K) O(NP × C) O(1) - O(K) -

Liu_2 [56] O(R × K) O(1) - O(T) O(1) - - O(R × K) -

Abo alian_1 [23] O(R × K) O(1) - O(K) O(1) - - O(R × K) -

Abo alian_2 [24] O(R × K) O(NP × C) O(NP) O(K) O(NP × C) O(1)/O(NP) - O(R × K) -

Curtmola [25] O(R × K) O(1) - O(R × K) O(1) - - O(R × K) -

Yuan [26] O(K) O(1) - O(R × K) O(1) - - O(R × K) -

Li_3 [27] O(K) O(1) - O(R × K) O(1) - - O(R × K) -

Ma [28] O(K) O(NP × C) O(NP) O(K) O(NP × C) O(1)/O(NP) - O(K) -

He [29] O(K) O(1) - O(K) O(1) - - O(K) -

Liu_3 [22] O(1) O(1) - O(1) O(1) - - O(1) -

Abbdal [30] O(K) O(1) O(NP) O(K) O(K) - - O(K) -

Saxena [31] O(1) O(1) - O(K) O(1) - - O(K) -

Jin [32] O(K) O(1) O(1) O(K) O(1) O(1)/O(1) - O(K) -

Yang_2 [21] O(K) O(n) O(DT) O(n × K) O(n) O(n × DT)/O(1) - O(n × K) O(K)

Ni [13] O(K) O(1) - O(K) O(n) O(1)/O(NP) - O(n × K) -

Zhu [33] O(K) O(1) - O(K) O(1) - - O(n × K) -

Liu_4 [34] O(K+ n) O(NP × C) O(NP) O(K+ n) O(NP × C) O(1)/O(NP+ n) - O(n × (K+ 1)) -

DIA-MTTP O(d2) O(1)/O(C) O(1) O(d2) O(1)/O(C) O(1) O(d2) O(n × d2) O(d2)

(! Cost of tag generation, !!Cost incurred at a verifier in private and public, receptively, � Cost of updating one data block by the user, + Only tags of one data file)

https://doi.org/10.1371/journal.pone.0244731.t009

PLOS ONE A novel approach to data integrity auditing in PCS: Minimising any Trust on Third Parties (DIA-MTTP)

PLOS ONE | https://doi.org/10.1371/journal.pone.0244731 January 7, 2021 51 / 54

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244731.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244731.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244731.s003
https://doi.org/10.1371/journal.pone.0244731.t009
https://doi.org/10.1371/journal.pone.0244731


S4 File. Correctness of LoA1DV and LoA2DV protocols.

(PDF)

S5 File. Complexities of computational and communication cost in DIA-MTTP.

(PDF)

Author Contributions

Investigation: Reem Almarwani.

Methodology: Reem Almarwani.

Writing – original draft: Reem Almarwani.

Writing – review & editing: Ning Zhang, James Garside.

References
1. Cloud Security Alliance (CSA). Top Threats to Cloud Computing;. https://cloudsecurityalliance.org.

2. AbuKhousa E, Mohamed N, Al-Jaroodi J. e-Health Cloud: Opportunities and Challenges. Future Inter-

net. 2012; 4(3):621–645. https://doi.org/10.3390/fi4030621

3. Coventry L, Branley D. Cybersecurity in healthcare: A narrative review of trends, threats and ways for-

ward. Maturitas. 2018; 113(July):48–52. https://doi.org/10.1016/j.maturitas.2018.04.008

4. Al-Issa Y, Ottom MA, Tamrawi A. EHealth Cloud Security Challenges: A Survey. Journal of Healthcare

Engineering. 2019; 2019. https://doi.org/10.1155/2019/7516035

5. Juels A, Kaliski BS. Pors: Proofs of retrievability for large files. Proceedings of the ACM Conference on

Computer and Communications Security. 2007; p. 584–597. https://doi.org/10.1145/1315245.1315317

6. Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z, et al. Provable data possession at

untrusted stores. Proceedings of the 14th ACM conference on Computer and communications security

CCS 07. 2007; p. 598. https://doi.org/10.1145/1315245.1315318

7. Ateniese G, Di Pietro R, Mancini LV, Tsudik G. Scalable and efficient provable data possession. Pro-

ceedings of the 4th international conference on Security and privacy in communication netowrks—

SecureComm’08. 2008; p. 1. https://doi.org/10.1145/1460877.1460889

8. Chen L. “Using algebraic signatures to check data possession in cloud storage”. In: Future Generation

Computer Systems 29.7 (2013), pp. 1709–1715. https://doi.org/10.1016/j.future.2012.01.004

9. Sookhak M, Gani A, Khan MK, Buyya R. “Dynamic remote data auditing for securing big data storage in

cloud computing”. In: Information Sciences 380 (2017), pp. 101–116. https://doi.org/10.1016/j.ins.

2015.09.004

10. Zhang Y, Blanton M. Efficient dynamic provable possession of remote data via balanced update trees.

Proceedings of the 8th ACM SIGSAC symposium on Information, computer and communications secu-

rity—ASIA CCS’13. 2013; p. 183. https://doi.org/10.1145/2484313.2484339

11. Zhang X, Xu C, Zhang X. Efficient Pairing-Free Privacy-Preserving Auditing Scheme for Cloud Storage

in Distributed Sensor Networks. International Journal of Distributed Sensor Networks. 2015; 2015.

https://doi.org/10.1155/2015/593759

12. Ateniese G, Burns R, Curtmola R, Herring J, Khan O, Kissner L, et al. “Remote data checking using

provable data possession”. In: ACM Transactions on Information and System Security 14.1 (2011), pp.

1–34. https://doi.org/10.1145/1952982.1952994

13. Ni J, Lin X, Zhang K, Yu Y, Shen XS. Secure outsourced data transfer with integrity verification in cloud

storage. 2016 IEEE/CIC International Conference on Communications in China, ICCC 2016. 2016.

https://doi.org/10.1109/ICCChina.2016.7636866
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