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A novel approach GRNTSTE 
to reconstruct gene regulatory 
interactions applied to a case study 
for rat pineal rhythm gene
Zhenyu Liu1,3, Jing Gao1,2,3*, Tao Li4*, Yi Jing5, Cheng Xu1,3, Zhengtong Zhu1,3, 
Dongshi Zuo1,3 & Junjie Chen1,3

Accurate inference and prediction of gene regulatory network are very important for understanding 
dynamic cellular processes. The large-scale time series genomics data are helpful to reveal the 
molecular dynamics and dynamic biological processes of complex biological systems. Firstly, we 
collected the time series data of the rat pineal gland tissue in the natural state according to a fixed 
sampling rate, and performed whole-genome sequencing. The large-scale time-series sequencing data 
set of rat pineal gland was constructed, which includes 480 time points, the time interval between 
adjacent time points is 3 min, and the sampling period is 24 h. Then, we proposed a new method of 
constructing gene expression regulatory network, named the gene regulatory network based on time 
series data and entropy transfer (GRNTSTE) method. The method is based on transfer entropy and 
large-scale time-series gene expression data to infer the causal regulatory relationship between genes 
in a data-driven mode. The comparative experiments prove that GRNTSTE has better performance 
than dynamical gene network inference with ensemble of trees (dynGENIE3) and SCRIBE, and has 
similar performance to TENET. Meanwhile, we proved that the performance of GRNTSTE is slightly 
lower than that of SINCERITIES method and better than other gene regulatory network construction 
methods in BEELINE framework, which is based on the BEELINE data set. Finally, the rat pineal 
rhythm gene expression regulatory network was constructed by us based on the GRNTSTE method, 
which provides an important reference for the study of the pineal rhythm mechanism, and is of great 
significance to the study of the pineal rhythm mechanism.

With the development of sequencing technology, the cost of gene sequencing is getting lower and lower. It is no 
longer difficult to obtain a large amount of gene sequencing data according to the experimental design. However, 
large-scale time series genomic data can better understand and study the principles of biological dynamics and 
molecular dynamics1–5. So far, the mechanism of transcriptional regulation in complex systems is still difficult. 
The main reason is that experiments to verify protein-DNA interactions and their role in regulation are expensive 
and difficult to replicate6,7. Therefore, the methods based on predictive models instead of biological experiments 
have become one of the effective methods. For example, the inference method of the gene regulatory network 
(GRN). The GRN can vividly describe the dynamics and biological physiological state of transcription changes. 
It plays an important role in understanding the genetic basis of phenotypic traits8–11.

In the research of gene interaction, the cluster analysis of the whole gene expression profile is one of the 
important methods to study the expression relationship between genes. First of all, genes with similar transcrip-
tional responses are put together by clustering algorithm, which can explore the interaction of genes involved 
in similar cellular processes12. For example, the co-expression cluster obtained by this method can provide a 
rough network representation and the co-expression relationship between genes. But, there are only correlations 
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between genes. The causal regulatory relationship between genes cannot be identified. Therefore, the causal 
regulatory relationship between genes cannot be constructed.

In the past few years, the main process of constructing gene regulatory network is to capture the genes 
interaction relationships as a network model. The nodes of the network are genes, and the edges represent the 
interaction relationships between genes13–15. In the gene regulation network, the direct interaction between 
genes represents the causal regulatory relationship between genes. The definition of the network edge depends 
on the selected method16. For example, the linear correlation model based on estimated mRNA abundance can 
determine the relationship between genes. This method not only lead to false positive edges, but also lose non-
linear interaction relationship. Therefore, these models cannot provide reliable biological conclusions based on 
gene expression data.

In order to reliably reveal dynamic biological processes, the methods for constructing gene regulatory net-
works are emerging one after another. For example, the ARACNE and MRNET methods are based on mutual 
information to capture the nonlinear dynamics of gene regulation17–19. The BLARS infers the relationship between 
genes based on punitive linear regression20,21. In addition, the GENIE3 of gene network inference with ensemble 
of trees (GENIE3)22 can infer network relationships based on machine learning method. However, in recent years, 
some new ideas for constructing gene regulatory networks have been proposed, which are based on time series 
data to infer the direct gene interaction relationships of gene regulatory networks. For example, as an upgraded 
version of GENIE3, the dynamical GENIE3 (dynGENIE3)23 can provide functions for processing short time 
series data. Moreover, the SWING correlation method proposed based on the Granger causality framework can 
infer gene regulatory networks based on short time series data24.

In addition, the transfer entropy (TE)25 is a method for simultaneously estimating linear and nonlinear 
interactions. It can construct the causal relationship between variables without any assumptions. Because of its 
advantages and effectiveness in analyzing nonlinear complex systems, it has been widely used in different fields. 
The transfer entropy has made great achievements for the construction of causality in various fields, such as the 
field of science and engineering26–29, the field of industry30, the field of financial31–39, the field of brain science40–45, 
the field of climate46,47, etc. In addition, transfer entropy is tried to be applied to gene relationship inference48,49. 
For example, the transfer entropy is used to construct the gene regulation network of eukaryotic Saccharomyces 
cerevisiae by Juan Camilo Castro50. In addition, Junil Kim et al.51 reconstructed the single-cell gene regulatory 
network based on transfer entropy, and revealed key regulatory factors from single-cell transcriptome data, which 
also verified the effectiveness of transfer entropy in constructing gene regulatory networks.

In summary, the construction of gene regulatory networks based on large-scale time series genetic data has 
become one of the reliable methods for studying dynamic biological processes. Therefore, we propose a new 
gene regulation network construction method based on time series and transfer entropy, named GRNTSTE, 
which uses transfer entropy and a large amount of gene expression time series data. Then, we construct a gene 
regulation network for rat pineal rhythm genes based on GRNTSTE. The gene regulation network reveals the 
interaction between rat pineal rhythm genes under natural light conditions, which provides a hypothesis for 
biological experimental verification.

Methods
The core of GRNTSTE method is the transfer entropy method. However, the transfer entropy is an index pro-
posed based on information theory to measure the asymmetry between process variables. The information 
entropy and transfer entropy are described as follows.

Information entropy.  As the father of information theory, C. E. Shannon pointed out in the paper "A 
Mathematical Theory of Communication" published in 1948 that any information has redundancy, and the 
size of redundancy is related to the occurrence probability or uncertainty of each symbol (number, letter or 
word) in the information52. He borrowed the concept of thermodynamics, called the average amount of informa-
tion excluding redundancy as “Information entropy”. The mathematical expression for calculating information 
entropy is shown in Eq. (1).

where p(x) denotes probability and χ contains all the possible realizations of x . Information entropy is a quantity 
used to measure the uncertainty of the system. The more uncertain the system being observed, the greater the 
information entropy, and the more stable the system, the smaller the information entropy.

Transfer entropy algorithm.  In 2000, S. Thomas proposed the concept of transfer entropy25 based on the 
theory of information entropy. Transfer entropy is often used to describe the transfer of information between 
process variables, and it can be calculated how much this information transfer can reduce the uncertainty of the 
observed system. For example, when the transfer entropy from variable x to variable y is greater than the trans-
fer entropy from variable y to variable x , then x is called the cause and y is called the effect. Therefore, we can 
establish a causal driving relationship between two variables according to this rule. However, the application of 
transfer entropy needs a lot of time series data.

Since the application of transfer entropy requires a relatively large length of time series data, it can only 
be used in the analysis of neural signals and Electroencephalogram data in an era when the amount of data is 
generally small. However, with the development of the era of big data, data has gradually become an asset to be 
possessed. Therefore, various fields have gradually realized the importance of data, and collected and accumulated 

(1)Hx = −
∑

x∈χ

p(x) log2p(x)
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a large amount of time series data based on reasonable design. We believe that transfer entropy will become one 
of the important methods to analyze the causal driving relationship of time series data in the future.

The transfer entropy is used to measure the asymmetry between time series variables based on conditional 
distributions, which produces a causal relationship between drive and response. In addition, the equivalence 
between transfer entropy and Granger causality test has been proved. The transfer entropy can handle nonlinear 
time series data well and is very sensitive to Granger causality. Since transfer entropy considers the transfer of 
information between time series variables without assuming a specific relationship between variables, it has bet-
ter applicability than Wiener-Granger causality, especially for nonlinear systems. The formula for transferring 
entropy is shown in Eqs. (2) and (3).

where n is the length of the time series x and y , k and l  are the delay lengths of the variables x and y respectively, 
x
(k)
n  is the k previous states of x , and y(l)n  is the l  previous states of y.

The prerequisite for the application of transfer entropy is that the variables in the time series must satisfy the 
Markov property. When a random process is given the current state and all past states, the conditional probability 
distribution of its future state depends only on the current state. Let k = l  = 1, the variables x and y are first-order 
Markov processes, which effectively avoids the calculation of high-dimensional probability density functions. 
The formula is shown in Eq. (4).

where n is the length of the time series x and y , xn is the state of x , and yn is the state of y . The formula (4) reflects 
the calculation process of the transfer entropy from y to x when the time delay is 1. Similarly, the calculation 
formula for the transfer entropy from x to y is shown in Eq. (5).

Therefore, the transfer of information entropy in the network can be defined as (Ty→x − Tx→y) , when 
(Ty→x − Tx→y) > 0 , the information flow direction is from y to x , otherwise, the information flow direction 
is from x to y.

Therefore, we can get that the two-way information flow of entropy is asymmetry. According to the asymmetry 
of the information flow, the driving and response factors of the variables can be determined, so as to construct 
the causal driving relationship. The core advantage of transfer entropy is the direction. We can infer the direction 
of the causal driving relationship between variables based on time series data.

Comparison with existing algorithms.  Experiment on the datasets of DERAM3 challenge.  In order 
to evaluate the effectiveness and accuracy of the GRNTSTE method, We used the Ecoli simulation data set in 
the DERAM3 challenge for experimental verification. In addition, in order to avoid the randomness of the ex-
perimental results, we randomly selected 3 data sets containing 10 genes and 3 data sets containing 50 genes as 
the experimental data set. These data sets are time series gene expression data composed of 21 points. Then, we 
construct the sub-network topology interaction relationship of these 6 data sets, and compare and analyze the 
performance of the algorithms based on gold standards data.

In the sub-network, we regard the transfer entropy value as a directed side information flow. We set different 
thresholds to calculate the true positive rate and false positive rate at different thresholds, and then calculate 
the receiving operating characteristic (ROC) curve and calculate the area under the curve. In this way, we can 
easily evaluate the specificity of the algorithm through the ROC curve. However, it has been noted that small 
variations from a value of 1 area under the ROC curve can result in large number of false positives16. Therefore, 
the precision and recall (PR) curve and its corresponding area under the curve are also selected to evaluate 
the performance of the algorithm. In our experiments, we use both ROC and PR curves as metrics to evaluate 
algorithm performance.

In order to evaluate the effectiveness of our GRNTSTE method, we compared the GRNTSTE method with the 
SCRIBE53, TENET50 and dynGENIE3 algorithms. The SCRIBE, TENET and dynGENIE3 are effective methods 
to infer gene regulatory networks. For the 6 datasets of the DREAM3 challenge (The DREAM initiative organizes 
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an annual reverse engineering "competition" (we prefer to see it as a community experiment) called the DREAM 
challenges). The TENET is also a gene regulation network inference method based on transfer entropy. We 
reconstructed the gene regulatory network based on the SCRIBE, TENET, dynGENIE3 and GRNTSTE methods, 
respectively. We used the standard convention of calculating the area under the Precision Recall curve (AUPRC) 
and the area under the receiving operating characteristic (AUROC)54. The AUPRC determines the proportion of 
true positives among all positive predictions (prediction precision) versus the fraction of true positives retrieved 
among all correct predictions (recall) at varying thresholds. Conversely the AUROC estimates the average true 
positive rate versus the false positive rate. The Table 1 shows the AUPRC and AUROC values obtained for 3 
benchmark networks containing 10 genes. Figure 1 shows the average values of AUPRC and AUROC obtained 
by the SCRIBE, TENET, dynGENIE3 and GRNTSTE algorithms. It can be seen from Fig. 1 that the AUPRC 
and AUROC of GRNTSTE algorithm are slightly higher than the SCRIBE and dynGENIE3 algorithms. The 
GRNTTSTE and TENET algorithm have similar performance.

At the same time, we used dynGENIE3, TENET, SCRIBE and GRNTSTE algorithms to analyze 3 dream 
challenge datasets containing 50 genes. Table 2 shows the AUPRC and AUROC values obtained by 3 bench-
mark networks containing 50 genes. Figure 2 shows the average values of AUPRC and AUROC obtained by the 
dynGENIE3 TENET, SCRIBE and GRNTSTE algorithms. It can be clearly seen from Fig. 2 that the AUPRC and 
AUROC values of the GRNTSTE algorithm are significantly higher than those of the dynGENIE3 and SCRIBE 
algorithm. The GRNTTSTE and TENET algorithm have similar performance.

In summary, we conducted experimental verification based on the DREAM3 challenge open source data 
set, and the experimental results proved that the performance of the GRNTSTE method is significantly higher 
than that of the dynGENIE3 and SCRIBE algorithm. In addition, with the increase in the number of genes, the 
advantages of GRNTSTE are more obvious. However, GRNTSTE and TENET methods have similar performance. 

Table 1.   Values of AUPRC and AUROC obtained for GRNTSTE, dynGENIE3, SCRIBE and TENET 
algorithms on the datasets with 10 genes.

Dataset
GRNTSTE 
(AUPRC)

GRNTSTE 
(AUROC)

dynGENIE3 
(AUPRC)

dynGENIE3 
(AUROC) SCRIBE (AUPRC)

SCRIBE 
(AUROC) TENET (AUPRC)

TENET 
(AUROC)

Dataset 1 0.121 0.783 0.112 0.775 0.091 0.598 0.129 0.743

Dataset 2 0.134 0.756 0.101 0.740 0.078 0.659 0.112 0.798

Dataset 3 0.140 0.796 0.127 0.790 0.093 0.661 0.153 0.785

Average 0.132 0.778 0.113 0.768 0.087 0.639 0.131 0.775

Figure 1.   The average value of AUPRC and AUROC obtained for GRNTSTE, dynGENIE3, SCRIBE and 
TENET algorithms on the datasets with 10 genes.

Table 2.   Values of AUPRC and AUROC obtained for GRNTSTE, dynGENIE3, SCRIBE and TENET 
algorithms on the datasets with 50 genes.

Dataset
GRNTSTE 
(AUPR)

GRNTSTE 
(AUROC)

dynGENIE3 
(AUPR)

dynGENIE3 
(AUROC) SCRIBE (AUPR)

SCRIBE 
(AUROC) TENET (AUPR) TENET (AUROC)

Dataset 1 0.021 0.631 0.016 0.588 0.013 0.537 0.020 0.629

Dataset 2 0.021 0.659 0.014 0.547 0.013 0.480 0.018 0.611

Dataset 3 0.021 0.609 0.013 0.556 0.011 0.505 0.019 0.650

Average 0.021 0.633 0.015 0.564 0.012 0.507 0.019 0.630
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Both GRNTSTE and TENET are gene regulation network inference methods based on transfer entropy. It shows 
the effectiveness and superiority of transfer entropy in the inference of gene regulatory network.

Experiment on the datasets of BEELINE.  To further verify the performance of the GRNTSTE method, we 
conducted a comparative analysis of the gene regulatory network construction methods in the GRNTSTE and 
BEELINE frameworks55 and existing effective gene regulation methods. The BEELINE simulation datasets is 
single-cell gene expression data. The datasets from synthetic networks were created five datasets per parameter 
set, one each with 100, 200, 500, 2000 and 5000 cells by sampling one cell per simulation. These datasets include 
6 different data types, namely LI, linear; CY, cycle; LL, linear long; BF, bifurcating; BFC, bifurcating converging 
and TF, trifurcating. And we conducted experiments on different algorithms based on the BEELINE datasets, 
and evaluated the performance of different algorithms based on AUPRC.

Since the GRNTSTE method is based on time series datasets to infer gene regulatory networks. We first con-
structed a pseudo-time-series gene expression dataset based on the simulated dataset and time-lapse information. 
As shown in Table 3, we then calculated the AUPRC values separately for datasets with different data types and 
containing different numbers of cells. Figure 3 shows that the AUPRC values obtained by the GRNTSTE method 
become more stable as the number of cells increases.

Figure 2.   The average value of AUPRC and AUROC obtained for GRNTSTE, dynGENIE3, SCRIBE and 
TENET algorithms on the datasets with 50 genes.

Table 3.   The AUPRC for datasets with different types and containing different numbers of cells.

Number of cells

AUPRC

BF BFC CY LI LL TF

100 0.252 0.298 0.324 0.334 0.197 0.441

200 0.34 0.315 0.293 0.348 0.201 0.447

500 0.339 0.279 0.3 0.376 0.237 0.408

2000 0.360 0.329 0.348 0.391 0.286 0.455

5000 0.373 0.347 0.369 0.390 0.289 0.456

Figure 3.   The AUPRC for datasets with different types and containing different numbers of cells.
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Furthermore, to compare with existing gene regulatory network construction methods, we calculated AUPRC 
for datasets of 2000 and 5000 cells, respectively. The detailed results are shown in Table 4. As can be seen from the 
table, the GRNTSTE method significantly outperforms the SCODE, SCNS, SINGE, GRNBOOST2 and SCRIBE 
methods, among others. In addition, we further calculated the AUPRC mean of different datasets. It shows that 
in the BEELINE framework based on the BEELINE dataset, the performance of GRNTSTE is slightly lower than 
that of the SINCERITIES method, but better than other gene regulatory network construction methods. The 
experimental results also demonstrate the effectiveness and superiority of GRNTSTE in reconstructing gene 
regulatory networks based on single-cell gene expression data.

Validation on public datasets.  Furthermore, we further validate the effectiveness of our proposed gene 
regulatory network inference method GRNTSTE based on public datasets. The datasets named IRMA OFF/ON 
from Cantone et al.56. It includes five genes: SWI5, GAL80, GAL4, CBF1 and ASH1. The method we proposed is 
to infer the positive regulatory relationship based on time series data, so the IRMA ON data set is selected. Using 
the gene regulatory network inference method GRNTSTE proposed by us, we constructed the gene regulatory 
network, as shown in Fig. 4. In addition, we compared GRNTSTE with the ODE-Based Approach proposed by 
Cantone et al. The result of ODE-Based Approach is shown in Fig. 5. The PPV [Positive Predictive Value = TP/
(TP + FP)] and Se [Sensitivity = TP/(TP + FN)] values show the performance of the GRNTSTE and ODE-Based 
algorithm for an unsigned directed graph. TP, true positive; FN, false negative; FP, false positive. Comparing 
GRNTSTE and ODE-Based, we found that the GRNTSTE has higher sensitivity when PPV is similar. It shows 
the effectiveness and superiority of GRNTSTE in the inference of gene regulatory network.

Ethics approval and consent to participate.  All procedures on rat presented in this manuscript were 
approved by the Institutional Experimental Animal Welfare and Ethics Committee of Inner Mongolia Agricul-
tural University.

Table 4.   The AUPRC for BEELINE datasets with different types. Significant values are in bold.

Algorithms

AUPRC

LI CY LL BF BFC TF Average

SINCERITIES 0.62 0.51 0.2 0.32 0.33 0.28 0.377

GRNTSTE 0.39 0.36 0.29 0.37 0.34 0.46 0.368

TENET 0.33 0.38 0.36 0.36 0.30 0.45 0.363

PPCOR 0.38 0.26 0.32 0.36 0.37 0.46 0.358

LEAP 0.56 0.25 0.37 0.23 0.33 0.4 0.357

PIDC 0.4 0.28 0.41 0.26 0.23 0.51 0.348

GENIE3 0.27 0.29 0.36 0.23 0.29 0.46 0.317

SCRIBE 0.37 0.35 0.18 0.38 0.32 0.3 0.317

GRNVBEM 0.51 0.23 0.35 0.22 0.27 0.32 0.317

GRISLI 0.57 0.23 0.14 0.19 0.37 0.34 0.307

GRNBOOST2 0.28 0.31 0.22 0.25 0.31 0.42 0.298

SINGE 0.34 0.36 0.21 0.23 0.18 0.29 0.268

SCNS 0.23 0.26 0.21 0.23 0.22 0.33 0.247

SCODE 0.22 0.31 0.04 0.27 0.19 0.31 0.223

Figure 4.   Reverse engineering of the IRMA gene network from time series experimental data using the 
GRNTSTE approach.
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Construction of rhythmic gene regulatory network in rat pineal gland
Animal model.  The study was carried out in compliance with the ARRIVE guidelines (Animal Research: 
Reporting of In Vivo Experiments). All procedures on rat presented in this manuscript were approved by the 
Institutional Experimental Animal Welfare and Ethics Committee of Inner Mongolia Agricultural University, 
based on the method of euthanasia for rat experiments. Then, open the skull, and take out the brain tissues. Next, 
the pineal gland in the rhythm center was isolated and the second microstructure was identified. Finally, the rat 
pineal gland was removed and put into a 2 ml Corning freezing tube. At the same time, the details of the sample 
were marked and immediately put into liquid nitrogen. All rat experiments in our work comply with the national 
"Experimental Animal Environment and Facilities" standard (GB14925-2010), and follow the "Experimental 
Animal Management Regulations" (No. 2 Order of the State Science and Technology Commission) and the Min-
istry of Science and Technology "Experimental Animal License Management Measures" [2001 No. 545]. In our 
work, we confirm that all our methods are performed in accordance with the above guidelines and regulations. A 
total of 480 male rats, aged 8 weeks, with an average body-mass index of 180 g, were selected from the rat aquatic 
breeding farm in Qingdao, Shandong Province. All experimental rats were kept in a 100 square meters inde-
pendent rat room for two weeks (free feeding, free drinking, and free lighting). In complete circadian rhythm 
cycle, the rat pineal gland was sampled every three minutes from 7:00 a.m. on November 15, 2020 to 7:00 a.m. 
on November 16, 2020. It was carried out continuously for 24 h until the end of the experiment. The sampled rat 
pineal gland was put in a 2 ml Corning Freezer Tube (430,659), cryopreserved in liquid nitrogen immediately. 
The total RNA was extracted using the Biomend RNApure Rapid RNA Kit (RA103-02). The total RNA extrac-
tion results were detected by agilent 2100 with integrity RIN value more than 9.0. A total amount of 3 µg RNA 
per sample was used as input material for the RNA sample preparations. Sequencing libraries were generated 
using NEBNext® UltraTM RNA Library Prep Kit (NEB, USA) following manufacturer’s recommendations and 
index codes were added to attribute sequences to each sample. Briefly, mRNA was purified from total RNA using 
poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under elevated 
temperature in NEBNext First Strand Synthesis Reaction Buffer (5 ×). First strand cDNA was synthesized using 
random hexamer primer and M-MuLV Reverse Transcriptase (RNase H-). Second strand cDNA synthesis was 
subsequently performed using DNA polymerase I and RNase H. Remaining overhangs were converted into 
blunt ends via exonuclease/polymerase activities. After adenylation of 3′ ends of DNA fragments, NEBNext 
Adaptor with hairpin loop structure were ligated to prepare for hybridization. In order to select cDNA fragments 
of preferentially 250 ~ 300 bp in length, the library fragments were purified with AMPure XP system (Beckman 
Coulter, Beverly, USA). Then 3 µl USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA 
at 37 °C for 15 min followed by 5 min at 95 °C before PCR. Then PCR was performed with Phusion High-Fidelity 
DNA polymerase, Universal PCR primers and Index (X) Primer. At last, PCR products were purified (AMPure 
XP system) and library quality was assessed on the Agilent Bioanalyzer 2100 system.

Pineal gland.  The pineal gland is the regulatory center of the biological clock. The pineal gland alternately 
secretes melatonin and serotonin with a distinct circadian rhythm. The pineal gland secretes serotonin during 
the day and melatonin at night. Since the secretion of melatonin is regulated by light and dark, the light and dark 
of the circadian cycle also periodically causes changes in melatonin secretion. Studies have shown that plasma 
melatonin concentrations decrease during the day and increase at night. Therefore, the pineal gland sends time 
signals to the central nervous system according to the circadian secretion of melatonin, which in turn triggers 
some time- or age-related biological clock phenomena. For example, sleep and wakefulness in humans, ovula-
tion in the menstrual cycle, and the onset of puberty. Therefore, rhythm genes in the pineal gland play an impor-
tant role in regulating the rhythmic cycle of organisms.

The construction of gene regulatory network.  In our work, we constructed the rhythm gene regula-
tory network of rat pineal gland based on GRNTSTE method. And the directed graph is used to describe the 
regulatory relationship between genes. In this paper, the construction process of gene expression regulatory 

Figure 5.   Reverse engineering of the IRMA gene network from time series experimental data using the ODE-
based approach.
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network is mainly composed of 6 stages. As shown in Fig. 6, it includes the collection of time series data, the 
selection of target genes, the calculation of transfer entropy, the selection of regulatory relationship and the con-
struction of gene expression regulatory network.

In the stage of sample collection based on time series. In order to understand and study the dynamic biological 
process of an organism, time series gene expression data can be used to study the state of biological processes at 
different time points, so as to discover the changing laws of biological processes. Currently, there are two main 
methods for obtaining time series data in the field of bioinformatics. The first method is single-cell sequencing 
technology, and the other method is sampling at fixed time intervals.

Single-cell sequencing technology constructs a time-series data set by sampling target tissues and isolating 
single cells at different growth stages for sequencing. However, there are usually errors in cell separation, and the 
collected tissue cells cannot construct an equally spaced time series data set, and the cost of single-cell sequenc-
ing technology is relatively high. However, there are usually errors in cell separation, and the result data after 
separation cannot construct an equally spaced time series data set. In addition, the cost of single-cell sequencing 
technology is very high.

However, the method of sampling by time point according to a fixed sampling rate is a process of sampling 
the observation target at equal time intervals. Compared with the single-cell sequencing technology, this method 
has a lower cost, and can obtain sample data at a specified time interval according to the sampling rate of the 
experimental design, so as to obtain a more accurate and richer sample data set.

For our experimental data collection, we sample the pineal tissue of a rat with the same growth environment, 
age and sex every 3 min, and the time period is from 7:00 in the morning to 7:00 the next morning. Then, the 
samples were frozen in liquid nitrogen and sequenced. We collected samples for 24 h, so we obtained 480 rat 
pineal tissue samples. The n × t (where n is the number of genes and t is the time point) gene expression profile 
matrix is obtained by genes quantitative analysis.

In the preprocessing stage of gene time series data, due to the influence of objective environment, equip-
ment and man-made factors in the process of obtaining genetic time series data, there are usually outliers and 
random values in the data. As shown in Fig. 7, it can be found that there are some random or abnormal values 
in the gene time series data set.

The existence of outliers or random values will not only affect the accuracy of the calculation results, but also 
cause the calculation results to deviate from the essential trend of the time series. Therefore, preprocessing is one 
of the important steps in the data mining process. For the outliers in the time series data, we choose to use the 
moving average smoothing method to preprocess the collected time series big data, so as to reduce the influence 
of the outliers on the analysis results. The moving average formula is shown in Eq. (6).

where At represents the actual observed value at time t, Ft represents the predicted value at time t, and 2n + 1 
represents the size of the smoothing window. We use the moving average smoothing method to smooth the 
gene time series data, and the smoothing window size is 5, thereby effectively reducing the influence of outliers 
on the data analysis results. As shown in Fig. 8, it reflects the comparison of gene time series data before and 
after smoothing. It can be clearly reflected from the figure that the effect of time series data after smoothing is 

(6)Ft = (At−n + ...+ At−1 + At + At+1...+ At−n)/(2n+ 1)

Figure 6.   The construction process of gene regulatory network.
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better than before smoothing. Smoothing can effectively reduce the influence of random values on the trend of 
time series data.

In the stage of target gene selection, the target gene selection is an important process in the construction of 
gene regulatory networks. The target gene we took is the rhythm gene that regulates the secretion of melatonin 
in the rat pineal gland. In the previous research, the aromatic arylalkylamine N-acetyltransferase(AANAT) gene 
has been proven to be an important rate-limiting enzyme in the melatonin biosynthesis pathway. The melatonin 
is an important hormone secreted by pineal gland, and the secretion of melatonin has obvious periodic rhythm. 
In addition the rhythm of the synthesis of melatonin in the pineal gland is mainly controlled by light, and the 
change of light is an important sign of the change of day and night. The change trend of AANAT gene expression 
is shown in Fig. 9. We take the AANAT gene expression trend change pattern on the time axis as a reference, and 
select the target genes similar to the AANAT gene expression from the entire gene.

We select genes with the same expression patterns of AANAT genes based on pattern clustering. At present, 
the popular clustering methods of time series data include fuzzy c-means method, cosine similarity method 
and so on. For the gene expression profile matrix of rat pineal gland, we first filter out genes whose expression 
levels have not changed, have no significant changes, or have a standard deviation of 0 over time. Then, the 
remaining genes are analyzed by pattern clustering based on the fuzzy c-means method. We divided the genes 
into 12 categories, and the pattern clustering results are shown in Fig. 10. Finally, we take the category of genes 
containing AANAT as target genes. The AANAT gene is contained in cluster 4, and the number of genes is 883.

In order to obtain better clustering results, we also perform cluster analysis based on the method of cosine 
similarity clustering. Finally, we selected the category that contains AANAT genes, which contains 643 genes. In 
view of the results of the two clustering methods, we selected the genes shared by the two clustering methods, 
and 350 target rhythm genes were obtained in this process. Then we manually screened 350 genes and removed 

Figure 7.   Gene time series expression data, each black star represents the expressed value at the point of time.

Figure 8.   The comparison of gene time series data before and after smoothing, the blue curve represents 
the distribution of the original time series data, and the red curve represents the data distribution after data 
smoothing preprocessing.
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Figure 9.   The change trend of AANAT gene expression. The red curve represents the fitting curve, and the stars 
represent the expression value at the point of time.

Figure 10.   The results of cluster analysis.
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genes that did not meet the expression trend of AANAT genes on the time axis. The change trend of target gene 
expression is shown in Fig. 11. Finally, 124 genes were selected to construct a gene regulatory network.

In the stage of in the stage of calculating transfer entropy, we screened out 124 genes with similar expression 
patterns to AANAT genes, and each gene contains 480 time points of gene expression information. These genes 
can be represented by an expression profile matrix in n × t format, where n represents the number of genes and t 
represents the length of the time sequence. Therefore, the gene expression data we collected based on time series 
accord with the application advantages of transferring entropy to deal with large-scale time series, and the causal 
relationship between gene pairs can be established by transferring entropy.

The gene expression data we collected based on time series has the characteristics of large scale, which is in 
line with the application advantage of transfer entropy. In addition, the causal regulation relationship between 
gene pairs can be established based on the transfer of entropy. Due to the asymmetry of the transfer entropy, we 
need to calculate the two-way transfer entropy between the pair of genes. The calculation of the total number of 
transfer entropy is shown in Eq. (7).

where m represents the total number of relationships, n represents the number of genes. From formula (1), we 
can see that the total numbers of transfer entropy that needs to be calculated increases by n2. Therefore, we can 
obtain 15,252 gene regulatory relationships based on the analysis of 124 genes. In this process, we get the values 
of transfer entropy and p-value between all paired genes.

In the stage of in the stage of regulatory relationship screening, the screening of regulatory relationships 
between genes is one of the key steps in the constructing of gene regulatory networks. We screened gene regula-
tory relationships based on the transfer entropy and p-value between paired genes. We first screen the one-way 
regulatory relationship between the paired genes. As shown in Fig. 12, we retain the one-way regulatory rela-
tionship between the paired genes according to the value of transfer entropy. In this process, we have obtained 
7626 regulatory relationships.

Then, we screened according to the p-value value of the evaluation index of the transfer entropy between 
the paired genes. The regulatory relationship between paired genes that has extremely significant information 
transfer changes needs to be selected by us, so we retain the regulatory relationship with p-value < 0.001. In the 
process, we can get 7243 gene regulation relationships with statistical significance. Finally, we further screened 
gene regulation relationships with TE ≥ 0.5 and obtained 743 gene regulation relationships.

In the stage of gene regulation network construction, we need to screen the major gene regulation relation-
ships. As shown in Fig. 13, we first screened the strongest gene regulatory relationship of each gene to other genes.

We finally got 117 gene regulatory relationships based on the above screening methods. Finally, the Cytoscape 
software was used to construct the gene regulatory network, and the gene regulatory network is shown in Fig. 14.

(7)
m = A2

n

= n× (n− 1)

= n2 − n

Figure 11.   Some genes in the screening results.
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Figure 12.   Screening for one-way gene regulatory relationships.

Figure 13.   Screen the strongest gene regulatory relationship.

Figure 14.   The gene regulatory network.
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In addition, as shown in Fig. 15, we screened the strongest gene regulatory relationship of other genes to 
each gene.

We finally got 80 gene regulatory relationships based on the above screening methods. Finally, the Cytoscape 
software was used to construct the gene regulatory network, and the gene regulatory network is shown in Fig. 16.

In summary, our experimental analysis results show that the AANAT gene is the ultimate receptor gene and 
is highly related to the secretion of melatonin. It is consistent with the conclusion that Binkley57–61 found that the 
daily synthesis and secretion of melatonin in the rat pineal gland is highly correlated with N-acetyltransferase 
activity, which also shows the effectiveness of our method. In addition, many other rhythm genes (fcer1a, XBP1, 
FKBP5, camk1g, RCAN1, Per2 and so on) are also included in the gene regulatory network we constructed, which 
have been verified by researchers through experiments such as gene knockout. For example, Wang et al.62 proved 
that the fcer1a gene is an important rhythm gene, and the expression of fcer1a gene and FceRIa protein displayed 
a circadian pattern following serum shock, with mean periods of 18.9 and 28.6 h, respectively. Pan et al.63 show 
that in mouse liver, transcriptional regulation significantly contributes to the establishment of 12-h rhythms of 
mRNA expression in a manner dependent on Spliced Form of X-box Binding Protein 1 (XBP1s). Mechanistically, 
the motif stringency of XBP1s promoter binding sites dictates XBP1s’s ability to drive 12-h rhythms of nascent 
mRNA transcription at dawn and dusk. Terrelonge et al.64 KIBRA, MTNR1B, and FKBP5 play an important 
roles in the complex relationship between delirium, cognition, and sleep, and warrant further study in larger, 
more diverse populations. Secretion of the stress hormone cortisol follows a circadian rhythm and is stimulated 
following stress exposure. Yurtsever et al.65 studied the temporal association between unstimulated, diurnal 
cortisol secretion and the expression of selected GR-target genes (PER1, PER2, PER3, FKBP5, GILZ and SDPR) 
in vivo to determine the timing of the most pronounced coupling between cortisol and mRNA expression. Adi 
et al.66 have implicated one rhythmically expressed gene, camk1gb, in connecting the clock with downstream 
physiology of the pineal gland. Remarkably, knockdown of camk1gb disrupts locomotor activity in the whole 
larva, even though it is predominantly expressed within the pineal gland. Therefore, it appears that camk1gb 
plays a role in linking the pineal master clock with the periphery. Wong et al.67 demonstrated that both loss and 
aberrant gain of RCAN1precipitate anomalous light-entrained diurnal and circadian activity patterns emblem-
atic of DS, AD, and aging by gene knockout experiments. In conclusion, the above studies not only fully proved 
the effectiveness of GRNTSTE method, but also proved that the gene regulatory network we constructed has 
important reference value.

Discussion
In our work, in order to infer the gene regulation relationship from the massive time series gene expression data, 
we propose the GRNTSTE method, which uses transfer entropy to infer the regulatory relationship between 
genes. We compared GRNTSTE with the existing algorithms SCRBE, TENET and dynGENIE3, and the results 
show that GRNTSTE has better performance than dynGENIE3 and SCRBE. However, GRNTSTE and TENET 
have similar performance. At the same time, we prove the performance of GRNTSTE is slightly lower than that 
of the SINCERITIES method, and it outperforms other gene regulatory network construction methods in BEE-
LINE. It shows the superiority of GRNTSTE in reconstructing gene regulatory networks based on single-cell 
gene expression data. Then, we applied the GRNTSTE method to the construction of the rhythm gene regulatory 
network in rat pineal gland tissue. The gene regulatory network constructed based on large-scale time series gene 
expression data is helpful for studying the interaction between rhythm genes. It is great significance to explore the 
interaction between genes that secrete melatonin in the pineal gland. It is great significance to comprehensively 
explain the molecular mechanism of melatonin secretion. In addition, it can guide and treat diseases caused by 
the pineal gland, such as insomnia.

Aromatic alkylamine N-acetyltransferase in the pineal gland is an important rate-limiting enzyme in the 
melatonin biosynthesis pathway. It may be involved in regulating the synthesis rhythm of melatonin, and it may 
play an important role in influencing the regulation of the photoperiod to the night peak of melatonin. In the 
pineal gland of normal rats, the AANAT is a soluble cytoplasmic protein. The enzyme activity of AANAT is high 
at night and low during the day. In addition, light can quickly reduce the AANAT enzyme activity, and compared 
with the activities of other enzymes in the process of melatonin synthesis, the AANAT activity is extremely low 
during the day. It shows that AANAT is the main rate-limiting enzyme in the process of melatonin synthesis. 

Figure 15.   Screen the strongest gene regulatory relationship.
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The periodic changes of AANAT activity in the pineal gland of most mammals can drive the circadian secretion 
of melatonin. Therefore, AANAT is called the melatonin rhythm-forming enzyme.

In order to study the regulatory relationship between rhythm genes in rat pineal tissue, we adopted the con-
trolled variable method. The sampling interval is 3 min, and the sampling time is 24 h. We obtained 480 rat pineal 
tissue samples to form a time series gene sample data set. Large-scale time series data serve as our basic data set 
for constructing gene regulatory networks. The method replaces the traditional two-state or a small amount of 
time points data with large-scale time series data. We break through the traditional genetic data analysis model 
and propose a new analysis method GRNTSTE for the study of dynamic biological processes.

Then, we choose the rate-limiting enzyme AANAT for melatonin synthesis as the starting point of the research 
object. We obtained the rhythm target genes similar to the expression pattern of the AANAT gene on the time 
axis based on the clustering method. And we construct a gene regulatory network of rhythm genes in rat pin-
eal tissue based on large-scale gene representation time series data and transfer entropy, in which the transfer 
entropy is used to infer the gene regulatory relationship. And our experimental results are highly consistent with 
existing research, which provides a very valuable reference basis for further biological experiment verification.

Figure 16.   The gene regulatory network.
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The GRNTSTE method breaks through the traditional way of gene regulatory network construction, and it is 
the first time to explore the regulatory network relationship between genes based on a data-driven model. And 
the construction of gene regulatory network by GRNTSTE method is based on large-scale data-driven analysis 
of genomics data, which effectively avoids the misleading caused by the randomness of gene expression data. In 
addition, large-scale time series data can effectively reflect the dynamic biological process information of gene 
expression levels. Therefore, the GRNTSTE method can not only effectively construct a gene expression regula-
tory network and provide a valuable basis for the in-depth exploration of biological experiments, but also can 
effectively avoid the huge cost waste caused by blind biological experiments. The method proposed in this paper 
provides a new analysis idea for the study of gene regulatory network, which has theoretical and practical value.

Conclusions
The systems biology method of constructing gene regulatory network based on large-scale time series data can 
provide reference basis and hypothesis for biological experiment verification. However, there are few methods 
to construct gene expression regulatory networks based on large-scale time-series gene expression data, and 
existing methods cannot well capture continuous cell dynamics and dynamic biological processes.

In this paper, we first collected the time series data of the rat pineal gland tissue in the natural state according 
to a fixed sampling rate, and performed whole-genome sequencing. The large-scale time-series sequencing data 
set of rat pineal gland was constructed, which includes 480 time points, the time interval between adjacent time 
points is 3 min, and the sampling period is 24 h.

Then, we proposes a method named GRNTSTE for constructing gene regulatory networks based on large-
scale time series data. We prove that the GRNTSTE algorithm has better performance than SCRIBE and dynG-
ENIE3 based on the DREAM3 challenge data set. However, GRNTSTE and TENET have similar performance. 
At the same time, we compare and analyze the gene regulatory network method in the BEELINE framework and 
GRNTSTE based on the BEELINE single-cell datasets. It proves that the performance of GRNTSTE is slightly 
lower than that of SINCERITIES method and better than other gene regulatory network construction methods 
in BEELINE framework, which is based on the BEELINE data set. It shows the effectiveness and superiority of 
GRNTSTE in reconstructing gene regulatory networks based on single-cell gene expression data. In addition, we 
further verify the effectiveness of our proposed gene regulatory network inference method GRNTSTE based on 
public datasets named IRMA OFF/ON from Cantone et al. Comparing ODE-Based, the GRNTSTE has higher 
sensitivity when PPV is similar.

Finally, take the rhythm gene in the pineal gland of the rat as an example, the transfer entropy is used to 
evaluate the regulatory relationship between gene pairs, and the rat pineal rhythm gene regulatory network is 
constructed based on the GRNTSTE algorithm. And in the gene regulatory network we constructed, many genes 
are consistent with the existing research results. It provides a valuable reference for the study of the regulation 
mechanism of pineal rhythm. It is of great significance to the study of dynamic biological processes.

Data availability
Our datasets has been uploaded to the NCBI public database. And we are also working on the database of rat 
rhythm center, so we will publish it later. SRA number of sequencing data: SRR18934928–SRR18935407.
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