
We highlight previous incompletely 
understood cell biology data in the 
STAT3 signaling field with respect to 
interleukin-6 (IL-6)-induced activation 
of this transcription factor in hepa-
toma cells to generate cytoplasmic 
and nuclear STAT3 bodies. We provide 
a novel re-interpretation of the previ-
ous observations. We show that IL-6- 
induced GFP-STAT3/PY-STAT3 cytoplas- 
mic and nuclear bodies represent 
phase-separated biomolecular con-
densates. These structures repre-
sent examples of a  cytokine-induced 
phase transition which occurs within 
10–15 min of exposure to the cyto-
kine, and which was Tyr phosphor-
ylation dependent. Evidence that 
these IL-6-induced cytoplasmic and 
nuclear GFP-STAT3 bodies in live cells 
represented phase-separated conden-
sates came from the observation that 
1,6-hexanediol caused their disassem-
bly within 30–60 seconds. Moreover, 
these STAT3 condensates also showed 
rapid tonicity-driven phase transitions 
– disassembly under hypotonic con-
ditions and reassembly when cells 
were returned to isotonic medium. 
That STAT3 condensates were rapid-
ly disassembled in hypotonic buffer 
commonly used for cell fractionation 
points to a  limitation of studies of 
STAT3 biochemistry using hypotonic 
swelling and mechanical breakage. 
Overall, the new data help reinterpret 
IL-6-induced cytoplasmic and nuclear 
STAT3 bodies as phase-separated bio-
molecular condensates, and bring the 
concept of membrane-less organelles 
to the cytokine-induced STAT tran-
scription factor field and cancer cell 
biology.
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Introduction

In addition to the well-known membrane-bound subcellular organelles 
in eukaryotic cells, there is now great attention focused on membrane-less 
cytoplasmic and nuclear structures comprising biomolecular condensates 
(also called supramolecular assemblies) of proteins and nucleic acids which 
form functional organelles [1–5]. These condensate structures develop 
through phase-separation mechanisms in both the cytoplasm and the nucle-
us [1–5]. Such condensates organize subcellular biochemistry in novel ways 
and provide spatial segregation of biochemical and signaling pathways. The 
liquid-like internal nature of these structures assists in increased efficien-
cy of cellular biochemical processes because these allow for co-presence 
of functionally related proteins and nucleic acids through the process of co-
ordinated phase transitions and their rapid mixing [1–5]. Examples of such 
membrane-less organelles include the nucleolus, nuclear speckles, P bodies, 
stress granules, and more recent discoveries such as cytoplasmic conden-
sates of synapsin or of the DNA sensor cyclic GMP-AMP synthase (cGAS) 
[1–9], and even of viral replication complexes [10, and citations therein]. 
Overall, these condensates are metastable, changing to a gel or to filaments 
commensurate with the cytoplasmic environment (temperature, physical 
deformation, or cytoplasmic “crowding”) [1–10]. 

Especially relevant to the present discussion is the discovery that tran-
scription factors and RNA polymerase II exist in the nucleus in condensates 
which efficiently associate with transcriptionally active DNA, often at tran-
scription pause sites [9, 11]. RNA polymerase II subunits and transcription 
regulatory proteins such as BRD4 and MED1 associate at these punctate 
condensates [9, 11]. The liquid-like nature of such condensates is typically 
demonstrated by rapid fluorescence recovery after photo-bleaching (FRAP) 
experiments as well as by their rapid disassembly (in 15–60 seconds) by 
1,6-hexanediol [3, 11, 12]. This rapid sensitivity to hexanediol (3–5%) is now 
used as a simple test for the liquid-like state of the interior of biomolecular 
condensates [11, 12].

We recently reported that the unexpected discovery that the human 
interferon (IFN)-inducible “myxovirus resistance protein A” (MxA), which 
displays antiviral activity against several RNA and DNA viruses, existed in 
the cytoplasm largely in membrane-less metastable condensates exhibit-
ing rapid reversible tonicity-driven phase transitions on the time-scale of 
1–3 min [13–15]. Exposing Huh7 hepatoma cells expressing GFP-MxA to hy-
potonic medium rapidly disassembled the cytoplasmic MxA structures with-
in 1–3 minutes. Re-exposure to isotonic medium rapidly reassembled such 
structures within 1–2 min. Moreover, the GFP-MxA condensates included the 
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DNA sensor cGAS [6]. Functionally, GFP-MxA expression 
inhibited DNA/cGAS-responsive ISG54-luciferase activity 
but enhanced the relative fold-inducibility of ISG54-luc 
by IFN-α, suggesting physical separation between con-
densate- and cytosol-based signaling pathways. Since 
regulated phase transitions of biomolecular condensates 
in the cytoplasm and nucleus are increasingly viewed as 
critical in diverse cellular functions [1–12], the unique 
discovery that cytoplasmic MxA condensates underwent 
rapid and reversible bulk disassembly and then reas-
sembly, each largely completed in a matter of less than 
1–3 min, in cells cycled through exposure to hypotonic 
and then isotonic buffers, was exceptionally striking. 
Mechanisms driving the observed MxA tonicity-driven  
condensate phase transitions would include physical 
events such as a decrease in cytoplasmic crowding [8, 12].

Cytokines and STAT3 in cancer cell biology

It is now well established that a large number of cyto-
kines that signal to the cell interior by activating the tran-
scription factor STAT3 are directly involved in the processes 
of carcinogenesis and of metastasis [16, 17]. This is espe-
cially true in the context of the local tumor microenviron-
ment, where interleukin-6 (IL-6) and activated STAT3 play 
key roles in cancer progression [16, 17]. Extensive studies 
of the IL-6/STAT3 pathway in hepatoma cell lines (Hep3B, 
HepG2), and other cell types, using GFP-STAT3, have re-
vealed the presence of IL-6-induced cytoplasmic and nu-
clear “bodies” [18–20].

In 2003, Herrmann et al. called attention to GFP-STAT3 
nuclear bodies in IL-6-treated Hep3B cells [18]. The appear-
ance of nuclear GFP-STAT3 bodies required IL-6 induction; 
these contained Tyr-P-STAT3 (PY-STAT3), and, by FRAP, were 
observed to contain a pool of GFP-STAT3 that was readi-
ly mobile [18]. The IL-6-induced nuclear STAT3 bodies also 
contained the CREB-binding protein (CBP) and histone H4, 
which are markers for transcriptionally active chroma-
tin. In contrast, these STAT3 nuclear bodies were distinct 
from the promyelocytic leukemia oncoprotein (PML) bod-
ies. Parenthetically, PML bodies also are now known to be 
phase-separated condensates [1–5].

In 2007, we called attention to GFP-STAT3 cytoplasmic 
bodies (we called these “STAT3 sequestering endosomes”) 
in IL-6-treated Hep3B cells [19]. These cytoplasmic STAT3 
bodies required IL-6 induction, contained PY-STAT3, re-
quired the Y705 tyrosine in STAT3, and were transient in 
that these disappeared in 2–3 hours. Moreover, their ap-
pearance was blocked by phosphorylation inhibitors such 
as genistein, staurosporine and indirubin E804, and by the 
microtubule inhibitor nocodazole [19]. These IL-6-inducible 
cytoplasmic STAT3 bodies were observed irrespective of 
the fluorescent tag used (GFP, YFP or DsRed) [19, 20]. Cu-
riously, we were unable to associate any of the known en-
dosome markers with these IL-6-induced cytoplasmic GFP-
STAT3 sequestering structures by co-localization assays 
using immunofluorescence techniques (data not shown). 
Moreover, extensive attempts to obtain subcellular frac-
tions enriched in such STAT3 sequestering “endosomes” 
were unsuccessful (data not shown). Critically, this is now 

no longer surprising in that we note that all such cell frac-
tionation experiments in our hands began with hypotonic 
swelling of IL-6-induced Hep3B cells followed by Dounce 
mechanical breakage of the cells (see Fig. 5 below). 

Interleukin-6-induced cytoplasmic and nuclear 
GFP-STAT3 bodies in Huh7 hepatoma cells

We have extended these previous GFP-STAT3 observa-
tions of nuclear bodies from the Heinrich laboratory [18] 
and of cytoplasmic bodies from our laboratory [19, 20], to 
Huh7 hepatoma cells. Figure 1 illustrates examples of un-
treated GFP-MxA expressing Huh7 cells as well as those 
exposed to IL-6 for 15–20 min. The latter cells showed 
extensive development of cytoplasmic and nuclear GFP-
STAT3 bodies.

Figure 2A summarizes the rapidly inducible nature 
of the appearance of cytoplasmic GFP-STAT3 bodies of  
IL-6-treated Hep3B cells. The cytoplasmic bodies appeared 
by 10–15 min [19]. Moreover, Figure 2B summarizes the 
presence of PY-STAT3 in such cytoplasmic (and nuclear) 
GFP-STAT3 bodies [19]. We note that these GFP-STAT3 
structures, cytoplasmic and nuclear, were seen only in cells 
stimulated with cytokine. 

Similar to observations with condensates of cGAS [6] 
and of MxA [15], the data in Figure 3A (from 2007) show 
that cytoplasmic GFP-STAT3 bodies were resistant to dig-
itonin [19]. Moreover, Figure 3B shows that even native 
endogenous STAT3/PY-STAT3 formed punctate structures 
in the cytoplasm of IL-6-treated Hep3B cells that resisted 
digitonin, but were disassembled by Brij-58 [19].

Interleukin-6-induced cytoplasmic and nuclear 
bodies were tonicity-regulated biomolecular 
condensates

We applied our recent insights into the structure of GFP-
MxA condensates in Huh7 cells [14, 15] to the IL-6-induced 
GFP-STAT3 cytoplasmic and nuclear bodies. Figure 4 shows 
three independent experiments in which IL-6-induced GFP-
STAT3 cytoplasmic and nuclear bodies were disassembled 
in less than 1 min by exposure to hexanediol. These data 
provide evidence that the cytoplasmic and nuclear GFP-
STAT3 bodies comprised phase-separated biomolecular 
condensates with liquid-like properties. Even more striking 
was the discovery summarized in Figure 5 that the integrity 
of both the cytoplasmic and nuclear bodies was regulated 
by the tonicity of the culture medium. A switch to hypoton-
ic ELB medium led to disassembly of both cytoplasmic and 
nuclear GFP-STAT3 bodies within 1–3 min. Re-exposure to 
isotonic medium led to reassembly of cytoplasmic and nu-
clear GFP-STAT into discrete structures – but different from 
the starting structures. These observations recapitulate the 
tonicity-driven disassembly and reassembly of GFP-MxA in 
Huh7 cells observed by us [14, 15] and suggest that cyto-
plasmic “crowding” [4, 8] may be a likely mechanism regu-
lating these phase separations.

Practical implications

The discovery that the standard hypotonic buffer used 
by many investigators for cell swelling (as is typically the 
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first step prior to mechanical cell breakage in cell-fraction-
ation protocols) led to rapid and marked disassembly of 
IL-6-induced cytoplasmic and nuclear GFP-STAT3 conden-
sates (Fig. 5) has implications for interpreting hundreds of 
studies of the biochemistry of STAT3. We show by the data 
in Figure 5 that hypotonic cell swelling introduces a hith-
erto unrecognized limitation into all such studies – there 
occurs rapid disassembly of cytoplasmic protein conden-
sates under such fractionation conditions.

The recognition that IL-6-induced GFP-STAT3 existed, 
at least in part, in the cytoplasm and nucleus in biomo-
lecular condensates highlights the possibility of cross-talk 
between STAT3 and other signaling pathways. Herrmann 
et al., already in 2003 [18], pointed to the co-association of 
PY-STAT3 with CBP and histone H4 in IL-6-induced nuclear 
bodies (which we now identify as “biomolecular conden-
sates”). In line with our previous data on MxA condensates 
which included co-condensation with cyclic GMP-AMP 
synthase (cGAS) [15], we suggest that cytoplasmic con-
densates, such as of GFP-STAT3, might also allow for the 
physical/spatial segregation of signaling pathways in the 
cytoplasm as well as cross-talk with other novel signaling 
mechanisms. 

“STAT-masking”: another possible example 
of IL-6-induced wt p53-dependent STAT3 phase 
transition in hepatoma cells

In 1997–1998 we reported the curious phenomenon 
wherein bulk cytoplasmic STAT3 and STAT5 in Hep3B cells 
expressing wild-type p53 and then treated with IL-6 tran-
siently lost their ability to be detected by immunofluo-
rescence methods, even though there was no loss of the 
respective proteins [21, 22]. This phenomenon, dubbed 
“STAT-masking,” was evident in less than 30 min after 
IL-6 exposure and lasted 2–3 hours [21, 22]. IL-6-induced 
STAT-masking was selective in that it was observed for 
STAT3 and STAT5, but not STAT1. STAT-masking required IL-6- 
induced Tyr phosphorylation as well as wild-type p53 ex-
pression and protein synthesis for at least 6–8 hours prior 
to its successful elicitation [21, 22]. This loss of immunoac-
cessibility of STAT3 and STAT5 may represent a novel bulk 
phase transition mechanism dependent upon a p53-in-
duced cellular protein. That exposure of Hep3B cells to 
IL-6 leads to the development of large (1-2 MDa) complex-
es of GFP-STAT3 has been inferred from fluorescence cor-
relation spectroscopy of the cytoplasm of live cells [23].

Fig. 1. Interleukin (IL)-6-induced cytoplasmic and nuclear GFP-STAT3 bodies in Huh7 hepatoma cells. Just subconfluent cultures of Huh7 cells 
in 35 mm plates that had been transiently transfected with the pGFP-STAT3 expression vector one day earlier were imaged using live-cell 
microscopy without IL-6 exposure or after exposure to IL-6 (20 ng/ml) for 15–20 min using methods outlined by Xu et al. [19]. Nuc – nucleus, 
Cytopl – cytoplasm. Scale bar = 25 µm
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Fig. 2. Association of GFP-STAT3/PY-STAT3 with cytoplasmic structures in interleukin-6 (IL-6)-treated Hep3B hepatoma cells (this figure is an 
abbreviated version of Figure 1 of Xu et al. [19]). A) Hep3B cells cultured in 6-well plates were transfected with the pGFP-STAT3 construct and 
imaged 20 hours later using live-cell confocal microscopy. IL-6 (25 ng/ml final concentration) was added immediately after the “0 minutes” 
frame and the cells were imaged at 15 seconds intervals for the next 18 min. Selected frames from this time-lapse sequence at indicated 
times in minutes are illustrated. B and C) Hep3B cultures co-transfected with pGFP-STAT3 construct one day earlier were treated with IL-6 
for 30 min, fixed with paraformaldehyde and immunostained with anti-PY-STAT3 pAb. The two panels illustrate data from two independent 
experiments. All scale bars = 25 µm
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Fig. 3. Interleukin-6 (IL-6)-induced GFP-STAT3 and endogenous PY-STAT3-containing cytoplasmic bodies in Hep3B hepatoma cells were 
resistant to digitonin (this figure is an abbreviated version of Figure 2 of Xu et al. [19]). A) Hep3B cultures transfected with the pGFP-STAT3 
construct were first treated with IL-6 for 30 min in the presence of LysoTracker (in red) with GFP-STAT3 in green. These were then sequen-
tially imaged upon treatment with digitonin (50 µg/ml) as indicated. B) Replicate Hep3B cultures were exposed to IL-6 for 30 min and then 
sequentially to digitonin (50 µg/ml) in ice-cold 0.25 M sucrose/phosphate-buffered saline (sucrose buffer) or Brij58 (0.5% v/v in sucrose 
buffer), fixed with paraformaldehyde and immunostained for PY-STAT3. All scale bars = 25 µm
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 Conclusions

We provide a novel reinterpretation of previous incom-
pletely understood cell biology data in the STAT3 signaling 
field with respect to IL-6-induced activation of this tran-
scription factor in hepatoma cells and the formation of 
cytoplasmic and nuclear STAT3 bodies. We now recognize 
that the IL-6-induced GFP-STAT3/PY-STAT3 cytoplasmic and 
nuclear bodies represent phase-separated biomolecular 
condensates which disassembled rapidly in the presence 
of hexanediol. This IL-6-induced generation of these cyto-
plasmic and nuclear STAT3 bodies represents an example 
of a cytokine-triggered phase transition which is Tyr phos-
phorylation dependent and which occurred in less than 
10–15 min. Moreover, we observed that these STAT3 con-

densates showed rapid tonicity-driven phase transitions. 
The new insights extend the concepts of phase-separated 
biomolecular condensates to the cytokine-induced activa-
tion of STAT transcription factors in cancer cell biology, and 
point to a novel underlying biochemistry.
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Fig. 4. Interleukin-6 (IL-6)-induced cytoplasmic and nuclear GFP-STAT3 bodies are phase-separated condensates. Huh7 cultures in 35 mm 
plates transfected with pGFP-STAT3 vector one day earlier were treated with IL-6 (20 ng/ml) for 15–20 min. Live cells showing IL-6-induced 
cytoplasmic and nuclear bodies 15–20 min later identified, then exposed to hexanediol (5%) in phosphate-buffered saline (PBS) and imaged 
immediately thereafter. Figure illustrates three independent experiments. Scale bar = 25 µm
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