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Background. The nucleus and the centrosomes (spindle pole bodies; SPBs in yeast) are believed to play key roles in the
organization of various cellular structures, such as the actomyosin ring and microtubules. The ability to generate cells lacking
nuclei and centrosomes (SPBs) is key to the elucidation of the role of these structures in various cellular processes.
Methodology/Principal Findings. Here we describe a genetic method, using the Schizosaccharomyces pombe cdc16-116
mutant, to reliably and efficiently generate fission yeast cells lacking nuclei and SPBs. We use this approach to show that the
assembly of microtubules does not require nuclear associated microtubule organizing centers and SPBs. We also show that
actomyosin rings can assemble albeit inefficiently in the absence of nuclei and SPBs. Conclusion. We conclude that key
cytoskeletal elements can be assembled in the absence of nuclei and SPBs. In addition, the approach we describe, taken
together with physical approaches such as centrifugation, should facilitate the investigation of the role of the nucleus and
SPBs in the assembly and inheritance of various cellular structures and organelles.
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INTRODUCTION
The nucleus and the centrosomes (or their functional analog in

yeast, the SPBs) are believed to play key roles in induction of the

cleavage furrow and organization of microtubules. Whether

nuclei, chromosomes, and centrosomes are essential for cleavage

furrow and microtubule assembly is an actively debated topic [1–

9]. Central to ascertaining the role of nuclei and centrosomes (or

spindle pole bodies) is the ability to reliably generate cell fragments

lacking these structures. In animal cells, microsurgery and laser

ablation have been widely used to generate cells lacking nuclei and

centrosomes [2,3,7]. However, these methods have some limita-

tions. For example, microsurgery might physically damage the

cells and fragments of chromosomes and kinetochores might not

be inactivated during the procedure.

Cells of the fission yeast Schizosaccharomyces pombe have many

fundamental properties in common with cells of higher organisms,

and therefore have been used to study many cellular processes. In

fission yeast, a centrifugation method has been developed to

misplace the nucleus away from the cell center. Such cells with

a misplaced nucleus, divide to produce a daughter cell with two

nuclei and another with none [8–10]. The centrifugation method

applied in fission yeast, though powerful, is not very efficient. It has

been reported that only 4% of cells in a population subjected to

centrifugation lacked nuclei [8].

In this study, we have used the cdc16-116 mutant, in which

cytokinesis remains constitutively active, to generate anucleate

cells. The cdc16-116 mutant was chosen for the current study for

reasons described herein. In S. pombe, an actomyosin ring that

divides the cell during cytokinesis is assembled upon entry into

mitosis and its maintenance and constriction depend on the

septation initiation network (SIN), a signaling protein network

whose components localize to the SPBs and the cell division site

[11]. A key component of the SIN is the GTPase Spg1p, which

promotes actomyosin ring assembly and maintenance as well as

septation when bound to GTP [12]. Spg1p is regulated by Cdc16p

and Byr4p, a two-component GTPase activating protein (GAP)

complex [13]. Loss of function of the cdc16 gene leads to

constitutive SIN signaling and multiple waves of actomyosin ring

assembly and septation [14] even in the absence of mitosis [15]. As

a result, cdc16-116 mutant cells shifted to the restrictive tempera-

ture during G1, S, or G2 phases assemble actomyosin rings and un-

cleaved septa to produce two connected daughter cells, one of

which lacks a nucleus and SPBs [15].

In this study, through the use of anucleate cells lacking SPBs

generated in the cdc16-116 mutant background, we show that

microtubules and actomyosin rings can assemble in the absence of

nuclei and SPBs.

MATERIALS AND METHODS

Yeast strains and growth conditions
Yeast strains used in this study are listed in table I. Cells were

cultivated and maintained as described previously [16]. To arrest

cells in S phase, cells were first treated with 12 mM hydroxyurea

(HU; Sigma) for four hours, then treated with the same amount of

HU for an additional two hours.
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Fluorescence recovery after photobleaching (FRAP)

assay
Photobleaching was performed on a Zeiss LSM 510 laser scanning

confocal microscope, equipped with a 63X/1.4NA PlanApo

objective lens. An Argon/Krypton laser with ,10 mW at

488 nm was used for imaging (0.05% power) and photobleaching

(100% power). A long pass 505 nm filter was used for visualizing

cells.

Fluorescence and time-lapse microscopy
Staining with DAPI, aniline blue and Alexa 488-conjugated

phalloidin was carried out as described previously [17]. Images

were captured using an Olympus IX71 microscope. Live cell

imaging methods were performed as previously described [18]. To

image Rlc1p-GFP, cells were observed on a Zeiss LSM 510

confocal microscope equipped with a 63X/1.4NA PlanApo

objective lens. Images were collected in 3D time-lapse mode (0.6

mm step size, 2.5 min intervals). To image GFP-Atb2p, cells were

observed on an Olympus 1671 microscope. Images were collected

in 3D time-lapse mode (0.5 mm step size, 15 seconds intervals).

RESULTS AND DISCUSSION

An efficient genetic method to generate anucleate

cells
Recently, a method has been described to produce anucleate

fission yeast cells [8–10]. This method employs centrifugation to

misplace the nucleus in asynchronously growing cells. The ensuing

cytokinesis divides the cell into one binucleate and one anucleate

daughter cell. However, formation of anucleate cells occurred at

low frequencies when the centrifugation method was used. As an

alternative, we made use of the temperature sensitive cdc16-116

mutant to generate a high number of cells lacking nuclei and SPBs.

The general strategy of this method is outlined in Figure 1A. It

utilizes the ability of cdc16 mutant cells to form division septa in

interphase, when the cell contains only one nucleus. To enrich the

population of cells in interphase, we treated cells with 12 mM

hydroxyurea (a drug that prevents DNA synthesis) at the

permissive temperature of 24uC. After six hours of incubation

with HU, the majority of cells were blocked in interphase due to

activation of the S-phase checkpoint. Cells were shifted to the

restrictive temperature 36uC in the presence of HU to inactivate

the function of cdc16, leading to formation of septa. As a result,

such cells were divided into two compartments, one with a single

nucleus, and the other without a nucleus (Figure 1B). The

compartment with a nucleus was usually larger than the one

lacking a nucleus. By this method, we increased the percentage of

anucleate cells in the population to 56.2%. Among septated cells,

94.6% of cells contained an anucleate compartment.

In fission yeast vegetative cells, the SPB is tightly associated with

the nucleus. To examine whether anucleate compartments in

cdc16-116 mutant cells contain SPBs, we visualized SPBs using the

SPB marker Pcp1p-GFP, a calmodulin-binding protein, which is

an essential component of SPB [19,20]. In wild type cells, Pcp1p-

GFP associates with SPBs throughout the cell cycle [19]. cdc16-116

cells expressing Pcp1p-GFP were treated with HU and then shifted

up as described. We found that Pcp1p-GFP associated with nuclei,

and Pcp1p-GFP signal was not detected in the anucleate

compartment (Figure 1c). This indicates that SPBs are absent in

anucleate compartments in cdc16-116 mutant cells.

FRAP revealed distinct nucleate and anucleate

compartments in cdc16-116 cells upon cytokinesis

induced in interphase
Although our method generates high numbers of anucleate cells

devoid of SPBs, we noted that during repeated rounds of

cytokinesis, the nucleate and anucleate compartments remained

attached after septation. To determine if the cytoplasm of the

anucleate compartment is discontinuous from that of the attached

nucleate compartment we performed fluorescence recovery after

photobleaching (FRAP) studies. cdc16-116 cells expressing

Rad24p-GFP, a 14-3-3 protein which resides largely in the

cytoplasm [21], were used in these studies. Cells at different stages

Table 1. Schizosaccharomyces pombe strains used in this study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Strain Relevant genotype
Source or
reference

MBY286 cdc16-116 , leu1-32, ura4-D18, ade6-M210, h+ [14]; Paul Nurse

MBY3007 cdc16-116 Pcp1GFP::ura4 This study

MBY2949 cdc16-116 Rad24GFP::ura4 This study

MBY4330 cdc16-116 Pcp1GFP::ura4 with pPDQ105 (GFP-
Atb2p)

This study

MBY2603 cdc16-116 Uch2GFP::ura4 Rlc1GFP::leu1 This study

doi:10.1371/journal.pone.0000618.t001..
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Figure 1. A genetic method to generate anucleate cells. (a) Outline of
the strategy to generate anucleate cells. cdc16-116 mutant cells were
treated with HU for 6 hours at 24uC to arrest cells in interphase. In the
presence of HU, cells were shifted to 36uC to inactive Cdc16p, leading
to the formation of septa even when the cells were in interphase. The
formation of septa divides the cells into two compartments, one of
which lacks a nucleus. (b) cdc16-116 mutant cells, treated with HU as
described above, were fixed and stained with DAPI and aniline blue to
visualize nuclei and septa, respectively. Shown are the un-cleaved septa
formed in interphase cells dividing the cell into two compartments, one
of which lacks a nucleus. (c) Anucleate cells do not contain SPBs. cdc16-
116 cells expressing Pcp1p-GFP were shifted to the restrictive
temperature in the presence of HU, fixed and stained with DAPI and
aniline blue to visualize nuclei and septa, respectively. Pcp1p-GFP
(green) is associated with nuclei (red) and is not observed in anucleate
compartments. Scale, 5 mm.
doi:10.1371/journal.pone.0000618.g001

Anucleate Cell Biology

PLoS ONE | www.plosone.org 2 July 2007 | Issue 7 | e618



of septation are clearly distinguished by the cell wall staining with

aniline blue (Figure 2a). We performed FRAP on cells early in

septation (Figure 2b, cell d), halfway through septation (Figure 2b,

cell c), and cells that had completed septation (Figure 2b, cell e). In

cells which were in the process of septation, fluorescence recovery

(recovery half-time t1/2: ,8 s) was observed in the bleached half,

and the corresponding fluorescent decay was observed in the

unbleached half (Figure 2b, c&d). In contrast, in attached cells that

had completed septation, no evidence of fluorescence recovery was

observed (Figure 2b&e). To establish the limit of our error in

scoring cells with completed septa, we performed FRAP on 408

cells which showed completed septa as judged by aniline blue

staining as well as by differential interference contrast (DIC)

imaging. Only 4 of 408 cells showed partial recovery after

bleaching. This represents a ,1% error rate in our method of

scoring completely septated cells. The four cells that did show

weak fluorescence recovery out of 408 photobleached cells might

represent cells that were in the process of completion of septum

assembly in which the division septum resembled a complete

septum when visualized by anilin blue staining. Taken together,

our data indicated that septation in cdc16-116 cells produced

attached, but distinct, nucleate and anucleate cells. Thus, bona fide

anucleate cells could be reliably generated for subsequent

investigations of the role of nuclei and SPBs in various cellular

processes.

Dynamic microtubules in anucleate cells
We asked if fission yeast cells could organize the microtubule

cytoskeleton in the absence of nuclei and SPBs. There are three

major microtubule-organizing centers (MTOCs) in fission yeast–

the SPBs, the interphase MTOCs (iMTOCs), and the mitotic

equatorial MTOCs (eMTOCs). The SPBs and iMTOCs are

associated with the nuclear envelope [22,23], and the eMTOCs

are associated with the actomyosin ring [24]. It has been reported

that cdc16-116 cells blocked at S phase under non-permissive

temperature conditions failed to make eMTOCs [24].

We imaged anucleate cells expressing GFP-a-tubulin to

visualize microtubules. To identify the nucleate compartments,

the SPB marker Pcp1p-GFP, was also expressed in these cells. In

nucleate cells, we observed multiple robust and dynamic

microtubule bundles (Figure 3, arrows indicates the compartments

with nuclei). These microtubule bundles exhibited growth and

Figure 2. FRAP reveals distinct anucleate cells in the cdc16-116 mutant. (a) Merged pseudo-colors image of cdc16-116 cells expressing Rad24p-GFP
(green) stained with the cell wall tracer aniline blue (red). Temperature sensitive cdc16-116 cells were treated with hydroxyurea (HU) for 6 h to arrest
cells at S phase, and shifted to the non-permissive temperature of 36uC for 2 h. The three cells shown are in different stages of septation, ranging
from early septation (cell c) and mid-septation (cell d) with shared cytoplasm between the two daughter cell halves, to completed septation with
a distinct cell wall separating the two daughter cell halves (cell e). (b) Fluorescence recovery after photobleaching (FRAP) was performed on cells at
various stages of septation. Cell regions c, d, and e are regions that were photobleached (red dotted boxes). Shown is a time-lapse montage of the
behavior of Rad24p-GFP within 60 s after photobleaching. (c, d, e) Normalized fluorescence recovery curves of cell c, d, and e, respectively. Cell c and
d showed complete recovery within ,60 s after photobleaching (%1/2 ,8 s). The unbleached cell halves (blue lines) showed fluorescence decay as
a mirror image to the fluorescent recovery of the bleached cell halves (red lines). Cell e showed no significant recovery in the bleached half, and no
decay in the unbleached half. Scale, 5 mm.
doi:10.1371/journal.pone.0000618.g002
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shrinkage phases reminiscent of wild-type behavior. Interestingly,

dynamic cytoplasmic microtubules were also present in anucleate

compartments (Figure 3, arrowheads indicate the anucleate

compartments). The behavior of anucleate microtubules resem-

bled that of wild-type microtubules. This result is consistent with

the recently published data [8,9]. Taken together, these experi-

ments indicate that microtubules can self-assemble in the absence

of nuclei and SPBs.

Actomyosin ring assembly in assemble anucleate

cells
We then examined if the actomyosin ring can assemble in

anucleate cells. cdc16-116 cells expressing the nuclear envelope

marker Uch2p-GFP [25] were treated as above to generate

anucleate cells, and were stained with phalloidin to visualize F-

actin (Figure 4a). Strikingly, nucleate and anucleate compartments

were found to contain F-actin rings and/or cables. We observed F-

actin ring structures in 4.5% (9 out of 200) of anucleate cells. This

percentage is statistically higher than the 1% error rate (p,0.05),

and we therefore conclude that the F-actin ring structures are

indeed organizing in the anucleate cells. Figure 4a shows examples

of HU-arrested cdc16-116 cells, of which 6 contain rings of F-actin

in both the nucleate and anucleate compartments, and 3 contain

rings only in the anucleate compartment. F-actin rings in

anucleate cells appeared normally organized, although occasion-

ally we also observed cables of F-actin that were not integrated

into the F-actin ring (Figure 4a; F-actin rings/cables in the

anucleate compartments are indicated with arrows, while asterisks

identify the nucleate compartments).

To analyze if the rings organized in anucleate cells also

contained type II myosin, cdc16-116 cells expressing Uch2p-GFP

and Rlc1p-GFP [26], an actomyosin ring protein related to type II

myosin regulatory light chains, were treated as above and

subjected to live cell imaging. In nucleate cells, actomyosin rings

were organized and subsequently underwent constriction (Supple-

mental movies S1 and S2). These rings in the nucleate

compartments did not assemble at the geometric center of the

cell as shown previously for the division septa in interphase cdc16-

116 cells [14] (Supplemental Movie S3, shows several cells

assembling acentric rings upon S phase arrest). Consistent with

the presence of F-actin rings in anucleate compartments, ,10% (8

out of 77 cells) of anucleate cells were observed to form rings

containing Rlc1p-GFP (Supplemental movies S1 and S2). This

percentage is statistically higher than the 1% error rate (p,0.05),

and we therefore conclude that the Rlc1p-GFP ring structures are

indeed assembled in the anucleate cells. Some of these rings were

assembled in the anucleate compartment following assembly of an

additional septum in the adjacent nucleate compartment as shown

in time lapse images (Supplemental Movies S1 and S2). The rings

in anucleate cells also assembled at random locations (Figure 4a).

These anucleate-cell rings were qualitatively less intense compared

to those in the nucleate cells and failed to constrict. Instead, they

disassembled approximately 20–50 minutes after assembly

(Figure 4b and supplementary movies S1 and S2). These rings

Figure 3. Dynamic cytoplasmic microtubules are present in anucleate
compartments. Shown are two time-lapse montages of cdc16-116
Pcp1p-GFP cells expressing GFP-Atb2p (a-tubulin). The larger nucleate
cells, indicated by arrows, have multiple robust and dynamic
microtubule bundles. In contrast, the smaller anucleate cells, indicated
by arrowheads, have fewer, yet dynamic microtubules. Scale, 5 mm.
doi:10.1371/journal.pone.0000618.g003

Figure 4. Assembly of cell division structures in anucleate cells. (a) F-
actin ring assembly. Shown is a collage of fixed cdc16-116 cells
expressing the nuclear membrane marker Uch2p-GFP stained with the
F-actin specific dye Alexa 488-phalloidin. F-actin rings/cables present in
the anucleate compartments are indicated with arrows, while asterisks
identify the nucleate compartments. Scale, 10 mm. (b) Actomyosin rings
in anucleate cells are unstable and do not constrict. Shown is a time-
lapse montage of a live cdc16-116 cell expressing the nuclear
membrane marker Uch2p-GFP and the actomyosin ring marker Rlc1p-
GFP. The connected but distinct cells have a nucleate half and an
anucleate half. During time point 0 min to 25 min, a newly formed
actomyosin ring was organized in the nucleate cell (arrow, 0 min). This
ring underwent complete constriction within ,30 min. In contrast,
although the anucleate cell organized an actomyosin ring (arrow,
40 min), this ring failed to undergo constriction during ,60 min of
observation. Scale, 5 mm.
doi:10.1371/journal.pone.0000618.g004
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also appeared less robust and might be unstable, given that upon

fixation only 9 out of 200 cells were found to contain F-actin rings,

whereas in live cell time lapse imaging experiments 8 out of 77

cells were found to be capable of assembling Rlc1p-GFP rings.

Thus, although the continued presence of nuclear-associated

structures such as SPBs, chromosomes, and/or additional un-

identified structures might be important for actomyosin ring

constriction and division septum assembly, these structures are

strictly not required for ring assembly.

In summary, in this report we have described an efficient

method for generation of anucleate fission yeast cells and used this

approach to show that the assembly of actomyosin rings and

microtubules can occur in the absence of nuclei and SPBs. Thus

self-organization mechanisms might play a key role in the

organization of cytoskeletal structures such as microtubules and

actomyosin rings. We believe this approach should also be useful

to the study the role of nuclei and SPBs in the inheritance of

mitochondria, endoplasmic reticulum, and Golgi apparatus.

SUPPORTING INFORMATION

Movie S1 Cells undergoing the first division to produce separate

nucleate and anucleate halves. Subsequently, the nucleate cells

divide again, organizing an actomyosin ring, which constricts and

forms a new division septum. In contrast, the anucleate cell

organizes an actomyosin ring, which does not constrict.

Found at: doi:10.1371/journal.pone.0000618.s001 (2.78 MB

MOV)

Movie S2 Cells undergoing the first division to produce separate

nucleate and anucleate halves. Subsequently, the nucleate cells

divide again, organizing an actomyosin ring, which constricts and

forms a new division septum. In contrast, the anucleate cell

organizes an actomyosin ring, which does not constrict.

Found at: doi:10.1371/journal.pone.0000618.s002 (6.26 MB

MOV)

Movie S3 The assembly of rings in interphase arrested cdc16-

116 cells. These rings are organized off-center and undergo

constriction to divide the cell into two unequal compartments, one

of which lacks a nucleus.

Found at: doi:10.1371/journal.pone.0000618.s003 (3.03 MB

MOV)
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