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A B S T R A C T   

Purpose: Altered gene methylation precedes altered gene expression and the onset of disease. This 
study aimed to develop a potential model for predicting recurrence of early to mid-stage hepa
tocellular carcinoma (HCC) using methylation loci. 
Methods: We used data from early to mid-stage HCC patients (TNM I-II) in the TCGA-LIHC dataset 
and lasso-cox regression model to identify an 18-DNA methylation site panel from which to 
calculate the riskScore of patients. The correlation of high/low riskScore with recurrence-free 
survival (RFS) and immune microenvironment in HCC patients was analyzed by bioinformatics. 
It was also validated in the GSE56588 dataset and the final dynamic nomogram was constructed. 
Results: The results showed that riskScore was significantly correlated with RFS in HCC patients. 
The differential mutated genes between the two groups of HCC patients with high/low riskScore 
were mainly enriched in the TP53 signaling pathway. The immune microenvironment was better 
in HCC patients in the low-riskScore group compared to the high-riskScore group. This was 
validated in the GSE56588 dataset. Based on the subgroup stratification analysis of the rela
tionship between high/low riskScore and RFS, as well as univariate and multivariate cox analyses, 
the riskScore was found to be independent of clinical indicators. We found that riskScore, 
vascular invasion and cirrhosis status could effectively differentiate RFS in HCC patients, and we 
also constructed prediction model based on these three factors. The model we constructed were 
validated in the TCGA-LIHC database and a web calculator was built for clinical use. 
Conclusion: The methylation riskScore is a predictor of RFS independent of clinical factors and can 
be used as a marker to predict recurrence in HCC patients.   

1. Introduction 

Liver cancer is the sixth most commonly diagnosed cancer and the fourth leading cause of cancer death, with hepatocellular 
carcinoma (HCC) being the most common primary liver cancer [1]. HCC is an extremely heterogeneous tumor with a unique pattern of 
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somatic genomic alterations [2]. In recent years, with the improvement of surveillance and imaging technology, more and more 
patients with hepatocellular carcinoma can be diagnosed in the early or mid-stage and undergo radical resection [3]. A study that 
analyzed a nationwide database in Japan showed that long-term recurrence-free survival (RFS) was achieved after HCC resection [4]. 
Furthermore, immune checkpoint inhibitor therapy increased the likelihood of achieving complete remissions [5]. However, the 
prognosis of HCC is poor, RFS is a key factor in developing individual treatment plans, and RFS varies among patients with HCC in the 
early to middle stages [6,7]. Therefore, it is crucial to stratify the risk of recurrence in patients who undergo surgery in early to 
mid-stage. 

Emerging biomarkers such as PD-L1 expression, tumor mutational burden, microsatellite instability, gut microbiota, and DNA 
methylation have been advocated for their application in determining the immunotherapy response in HCC [8,9]. Aberrant DNA 
methylation is an early event in the development of cancer, and alterations in gene methylation precedes altered gene expression and 
disease onset [10]. Better predictions can be made by constructing DNA methylation models or finding relevant signatures. By con
structing a diagnostic prediction model and a prognostic prediction model for survival, xu et al. demonstrated that ctDNA methylation 
markers have high diagnostic specificity and sensitivity in the diagnosis, monitoring, and prognosis of HCC [11]. In addition, it was 
shown that genome-wide DNA methylation profiles can accurately distinguish different histological stages of human hep
atocarcinogenesis [12]. In a study by Yang and colleagues, DNA methylation of SOCS2-1-90 was found using next-generation 
sequencing to predict the recurrence of HCC after liver transplantation [13]. Similar methylation applications exist in other can
cers, including cervical, breast and prostate cancers [14–16]. 

In this study, we used the TCGA database to construct a genome-wide model using methylation sites that can be used to diagnose 
and predict RFS in patients with early or mid-stage HCC. We also constructed a Nomogram based on methylation riskScore and clinical 
factors, which provides a new possible idea for clinical use in stratifying the risk of recurrence of HCC in the early and middle stages. 

2. Method 

2.1. Data collection and processing 

Methylation data, DNA mutation data, expression data and related clinical information of patients with hepatocellular carcinoma 
were obtained from the TCGA database. Validation datasets GSE113019 (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=
GSE113019), GSE35069 (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc= GSE35069) and GSE56588 (https://www.ncbi.nlm.nih. 
gov/geo/geo2r/?acc= GSE56588) were downloaded from the GEO database. DNA methylation data were preprocessed and quality 
controlled using the ChAMP package. Methylation-based tumor purity calculations were performed using the InfiniumPurify package. 
Immune cell infiltration was calculated using the MethylCIBERSORT package. DNA mutation correlation analysis and visualization 
were done using the maftools package. 

2.2. Screening of candidate methylation sites and calculation of riskScore 

Lasso-Cox analysis of all methylation sites was performed using the glmnet package to screen for methylation sites associated with 
RFS at p < 0.001. These candidate methylation sites were subjected to a multivariate Cox stepwise regression method to construct a 
model. The methylation values of individual patients were then used to calculate the risk score of each patient for subsequent analysis. 
By employing the following formula, we are able to calculate the risk score for each patient: risk score =

∑n
i=1Coefi ∗ xi, where Coefi 

represents the risk coefficient associated with the methylation site included in the final multivariate Cox stepwise regression model, 
and xi denotes the specific methylation value attributed to the incorporated methylation site. The median of all riskScores in the 
training cohort was used as the cutoff value to differentiate patients into high-risk and low-risk groups, and patients were grouped in 
the validation cohort using the same cutoff values. 

Analysis of 28 cell subpopulations of immune cells and tumor immune-immune cycle based on mRNA calculation. 
To quantify the proportions of immune cells in the tumor microenvironment, we applied single-sample gene set enrichment 

analysis (ssGSEA) [17], allowing the assessment of 28 immune cell types. 
According to a previous study, the steps of the cancer-immunity cycle are described by eight axes of the immunogram score (IGS) as 

follows: IGS1, T cell immunity; IGS2, tumor antigenicity; IGS3, priming and activation; IGS4, trafficking and infiltration; IGS5, 
recognition of tumor cells; IGS6, inhibitor cells; IGS7, checkpoint expression; and IGS8, inhibitory molecules [18]. The gene sets IGS1, 
IGS2, IGS3, IGS4, IGS5, IGS6, IGS7, and IGS8 were used in a previous study [18]. 

2.3. Differential analysis and enrichment analysis of mRNA 

The counts matrix of the expression data downloaded from the TCGA database for hepatocellular carcinoma was analyzed for 
differences using the DEseq2 package, and selected p value < 0.05 difference genes were analyzed for GO enrichment using the 
clusterProfiler package. 

2.4. Evaluation of the construction of a nomogram and the construction of a web calculator 

Univariate and multivariate Cox risk analysis of recurrence-free survival was performed by combining riskScore with all clinical 
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information. Variables with p < 0.05 in the multivariate Cox analysis and cirrhosis status were included for multivariate Cox modeling. 
Nomogram were constructed using the model and the accuracy of the model was assessed using calibration curves, which were done 
using the rms package. To investigate the discriminatory efficacy of Nomogram in predicting recurrence at different times, we con
structed time_ROC curves using the timeROC package. Dynamic Nomogram was generated using the DynNom package. 

2.5. Statistical analysis 

Statistical analyses were conducted using R software (version 3.4.2.). Data were expressed as the median and interquartile range 
(IQR). Two group values were analyzed for the differences by Wilcoxon rank sum test. The Kruskal-Wallis test was used in more than 
two group to test differences. A log-rank test and Kaplan-Meier curves were used for comparison Recurrence free survival (RFS) using. 
P < 0.05 was considered significant with two-sided. 

3. Results 

3.1. Selection of candidate methylation loci and building a predictive methylation riskScore model 

The study was performed on 251 early-middle (TNM I and TNM II) HCC patients who were clinically and pathologically diagnosed 
with HCC. Of these patients, we randomly split these HCC patients with complete RFS information into training and validation data 
sets with an allocation of 1:1. Both cohorts have similar clinicopathological characteristics in many aspects except gender and his
tological grade (Table 1). 

Then, methylation loci associated with prognosis were screened for modeling using Lasso-cox regression analysis (Fig. 1). The final 
inclusion of 18 methylation loci in the risk model was shown in Table S1. Correspondingly, we found that 13 of the 18 methylation loci 
were significantly different in the methylation high/low-riskScore group (Fig. S1). The risk score for each HCC patient was derived 
from the model. 

Table 1 
Clinicopathological characteristics of HCC patients from TCGA.   

Training dataset (n = 127) Validation dataset (n = 124) P-value Total (n = 251) 

Age (years)   0.944  
≤ 60 62 (48.8%) 59 (47.6%)  121 (48.2%) 
>60 65 (51.2%) 65 (52.4%)  130 (51.8%) 
Gender   0.0279  
female 29 (22.8%) 45 (36.3%)  74 (29.5%) 
male 98 (77.2%) 79 (63.7%)  177 (70.5%) 
Alpha-fetoprotein (ng/ml)   0.749  
≤ 20 62 (48.8%) 57 (46.0%)  119 (47.4%) 
>20 45 (35.4%) 47 (37.9%)  92 (36.7%) 
Missing 20 (15.7%) 20 (16.1%)  40 (15.9%) 
Liver cirrhosis   0.804  
No 52 (40.9%) 47 (37.9%)  99 (39.4%) 
Yes 30 (23.6%) 31 (25.0%)  61 (24.3%) 
Missing 45 (35.4%) 46 (37.1%)  91 (36.3%) 
Etiology   0.999  
Alcohol consumption 17 (13.4%) 17 (13.7%)  34 (13.5%) 
Hepatitis B 42 (33.1%) 42 (33.9%)  84 (33.5%) 
Hepatitis C 20 (15.7%) 19 (15.3%)  39 (15.5%) 
Other factors 40 (31.5%) 39 (31.5%)  79 (31.5%) 
Missing 8 (6.3%) 7 (5.6%)  15 (6.0%) 
Race   0.223  
Asian 55 (43.3%) 60 (48.4%)  115 (45.8%) 
Others 4 (3.1%) 9 (7.3%)  13 (5.2%) 
White 63 (49.6%) 53 (42.7%)  116 (46.2%) 
Missing 5 (3.9%) 2 (1.6%)  7 (2.8%) 
Histological grade   0.0482  
G1-G2 86 (67.7%) 68 (54.8%)  154 (61.4%) 
G3-G4 40 (31.5%) 55 (44.4%)  95 (37.8%) 
Missing 1 (0.8%) 1 (0.8%)  2 (0.8%) 
TNM stage   0.347  
I 90 (70.9%) 80 (64.5%)  170 (67.7%) 
II 37 (29.1%) 44 (35.5%)  81 (32.3%) 
Event   0.425  
Yes 46 (36.2%) 52 (41.9%)  98 (39.0%) 
No 81 (63.8%) 72 (58.1%)  153 (61.0%)  
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3.2. Methylation riskScore can be used as a diagnostic biomarker for HCC patients 

Firstly, we explored the potential role of methylation riskScore in diagnosing HCC patients. The results of paired tissue analysis of 
the included patients showed that methylation riskScore was higher in tumor tissues (Fig. 2A). Consistently, methylation riskScore was 
higher in tumor tissues among normal and tumor tissues in both groups of patients (Fig. 2B). Also, we obtained validation in the 
GSE113019 dataset, demonstrating a significant difference in riskScore in normal liver and hepatocellular carcinoma tissues (p =
0.00024, Fig. 2C). The ROC results showed promising methylation riskScore as a diagnostic biomarker for hepatocellular carcinoma 
(AUC = 0.742, Fig. 2D). Further analysis revealed that methylation riskScore also differed significantly in serum cfDNA of cirrhotic 
patients versus HCC patients with cirrhotic background (p = 0.00850, Fig. 2E). The ROC results showed that the optimal cut-off value 
of methylation riskScore in cfDNA was 23.927, and at the cut-off value riskScore had a good diagnostic ability for HCC patients (p <
0.001, Fig. 2F and G). 

HCC patients with low methylation risk scores have better RFS. 
Then, we examined the effect of methylation risk score on RFS in HCC patients. The results showed that RFS in the low-riskScore 

group was significantly better than that in the high-riskScore group in the training set (p < 0.001), indicating that low-riskScore could 
be a good prognostic factor for HCC (Fig. 3A–C). Consistently, in the validation set, we further confirmed that RFS was significantly 
better in the low-risk score group than in the high-riskScore group (Fig. 3D–F). Excitingly, we examined the relationship between high/ 
low-riskScore and RFS in each of the other subgroups. As shown in Fig. 4, patients in the low-risk group had significantly higher RFS 
than the high-risk group, regardless of other conditions such as concomitant HBV, HCV, alcohol consumption and so on. Moreover, the 
distribution of methylation riskScore among HCC patients was not related to any other clinical subgroups, such as AFP level, liver 
cirrhosis and race, except for differences in TNM classification (Fig. S2). Based on the hazard ratios in each subgroup, we concluded 
that the methylation riskScore could better differentiate patients with or without recurrence survival, especially in Asians with 
hepatitis B, cirrhosis, AFP>20 ng/ml and no family history in HCC patients. 

3.3. Altered biological processes and pathways in high- and low-risk subgroups 

At the same time, we also explored the biological processes and possible mechanisms behind riskScore from the DNA and RNA 
levels. We used bioinformatics analysis to examine mutant genes in high/low - risk groups. The global landscape of differential 
mutated genes in the two groups is shown in Fig. 5A, and the main enrichment pathway of the significantly different driver genes was 
TP53 (Fig. 5B). In addition, the volcano map showed that differential gene expression was also present in the high/low-risk group 
(Fig. 5C), and then these differential genes were subjected to GO analysis. The differential genes mainly consisted of antigen binding, 
which was involved in the process of humoral immune response and had the function of immunoglobulin complex (Fig. 5D). Taken 
together, these results suggested that riskScore may be involved in and influence the regulation of the immune system. Therefore, 
further investigations should be conducted to explore the relationship between RiskScore and the immune system. Further analysis of 
the immune cycle between the two groups with high/low-riskScore revealed significant differences in IGS1, IGS3, IGS6, IGS7 and IGS8 
between the two groups of patients (Fig. 6). In addition, there were significant differences in the immune microenvironment between 
the high/low-riskScore groups. As shown in Fig. 7, the contents of fibroblasts, immune cells, B cells, NK cells and CD8T cells were 
significantly different between the two groups, indicating that riskScore and the regulation of the immune microenvironment were 
related. Also, we validated the results in the GSE56588 dataset, which indicated that the contents of epithelial cells, fibroblasts, 
immune cells, B cells and CD8T cells were significantly different between the two groups of HCC patients with high/low -riskScore 
(Fig. S3). 

Fig. 1. Feature selection using least absolute shrinkage and selection operator (LASSO) COX regression. A. A coefficient profile plot was produced 
against the Log(lambda) sequence. B. Eighteen CpG sites with nonzero coefficients were selected by optimal lambda. By verifying the optimal 
parameter (lambda) in the LASSO model, the partial likelihood deviance curve was plotted versus log(lambda). At the optimal values log(lambda), 
where features are selected, dotted vertical lines are set using the minimum criteria and the one standard error of the minimum criteria. 
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Fig. 2. Analysis of RiskScore Differences in Hepatocellular Carcinoma A. Difference analysis of riskScore in TCGA-LIHC paired tissues; B. difference of riskScore in TCGA-LIHC normal tissues and tumor 
tissues; C. validation of riskScore differences in normal liver and hepatocellular carcinoma tissues in the GSE113019 dataset; D. ROC curves to analyze the ability of riskScore to differentiate TCGA-LIHC 
normal liver tissues from tumor tissues; E. analysis of riskScore differences in serum cfDNA in patients with cirrhosis versus hepatocellular carcinoma on a cirrhotic background in the GSE35069 dataset; 
F. Determination of the optimal cut-off value of riskScore in cfDNA using ROC curves; G. Diagnostic ability of riskScore in patients with hepatocellular carcinoma at the optimal cut-off value. 
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To characterize in more detail the changes in immune subpopulations in different risk subgroups, we assessed the contents of 28 
immune cell subsets in the high/low-riskScore groups using ssGSEA, and the results showed that the expression of 13 immune cell 
subsets, including activated B cells, activated CD8T cells, and effector memory CD8T cells, were significantly different between the two 
groups (Fig. 8). 

Fig. 3. Correlation of 18-DNA methylation panel in training set and validation set with RFS A. Distribution of riskScore in the training set; B. 
Relapse-free survival status of HCC patients with different riskScore in the training set; C. Relationship between high and low riskScore and RFS in 
the training set; D. Distribution of riskScore in the validation set; E. The status of relapse-free survival of HCC patients under different riskScore in 
the validation set; F. Relationship between high and low riskScore and RFS in the validation set. 
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3.4. Establishment of nomogram based on the riskScore 

Finally, the results of univariate and multivariate cox analysis showed that the methylation risk score and vascular invasion were 
significantly associated with RFS in HCC patients (Table 2). Cirrhosis is a recognized recurrence-related factor in HCC. Although 
cirrhosis was not statistically different in the two groups, we included it in our analysis. Then, we used the TCGA-LIHC dataset to 
establish a model for predicting HCC recurrence based on riskScore, vascular invasion and cirrhosis status. After that, we produced the 
corresponding nomogram and calibrated the actual 1–3 years RFS, showing that the model had high accuracy (Fig. 9A–D). Survival 
curve results showed that RFS was significantly higher in the low-risk group of HCC patients than in the high-risk and intermediate-risk 
groups (Fig. 9E). In addition, the model had less time-dependence and higher accuracy in predicting the recurrence of recurrence in 
HCC patients at 1, 2, and 3 years (Fig. 9F). We also constructed a dynamic nomogram for predicting recurrence to facilitate subsequent 
use (Fig. S4) (https://zhaolihua2008.shinyapps.io/DynNomapp1/). The likelihood of recurrence in HCC patients can be calculated by 
entering the corresponding content correct values in the dynamic nomogram. 

Fig. 4. Stratified analysis of the relationship between high/low riskScore and RFS. Kaplan-Meier analyses for RFS in subgroups stratified by 
different conditions as follows: A-D. different etiologies, E-F. presence or absence of liver cirrhosis, G-H. different levels of serum AFP, I-J. different 
grade, K-L. stage, M-N. race, and O–P. family history. 
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Fig. 5. A. Lanscape of differentially significant mutant gene mutations in high/low riskScore grouping; B. Enrichment analysis of mutations in 
significantly different driver gene. C. Differential analysis of gene expression in high/low riskScore grouping; D. GO enrichment analysis of dif
ferential genes. 
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4. Discussion 

Scientific and medical developments have led to major advances in the clinical management of HCC, with five-year survival rates of 
40%–60% after radical surgery. However, the high recurrence rate after surgery has become a major obstacle to further improving the 
prognosis, with a 5-year recurrence rate of 60% [19]. Several models have been developed to effectively predict survival and prognosis 
after radical resection of early HCC, including a metastasis prediction model based on 153 hepatocellular carcinomas and a metastasis 

Fig. 6. Differences in immune circulation between the two groups. The violin diagram showing the differences in every step of immune circulation 
between the two groups with high/low riskScore. 
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prediction model based on 17 validated immune factors [20,21]. In addition, it was shown that DNA hypermethylation is characteristic 
in the early development of HCC [22]. Long et al. successfully developed a diagnostic, prognostic and recurrence model for HCC 
through a comprehensive analysis of gene expression and DNA methylation data [23]. Unusually, the model we developed was based 
on the methylation riskScore, which is a predictor of RFS independent of clinical factors. This model is associated with the immune 
microenvironment as an independent risk predictor, and at the same time this provides a new possible idea for the stratification of the 
risk of recurrence of HCC in the early and middle stages. 

The generation of methylation gene risk scores is an evolving field. Recent studies showed that adding methylation risk scores to a 
metabolic syndrome risk assessment model further improved model fitting in studies used for score validation [24,25]. Our results 
showed that HCC patients with a high methylation riskScore had significantly shorter recurrence-free survival than the low-risk group, 
suggesting that it was a predictor of recurrence-free survival. Moreover, the distribution of methylation riskScore among HCC patients 
was not related to any other clinical subgroups except for differences in TNM classification. To explore the generalizability and 
applicability of the model to patients with HCC, different subgroups of patients with early or mid-stage in our TCGA-LIHC dataset were 
analyzed. The model was effective in distinguishing their RFS in a population of patients with different etiologies, with or without 
cirrhotic background, different serum AFP levels, different degrees of differentiation, pathological grading, race and with or without 
family history. However, we can see from the results that the differentiation is better in Asian patients with hepatitis B, cirrhotic 
background, AFP >20 ng/ml and no family history. 

We also explored the biological processes and possible mechanisms behind the riskScore at the DNA and RNA levels. We found that 

Fig. 7. Methylation data assess differences in the immune microenvironment between the two groups. The violin diagram showing the differences 
in different cell subpopulations between the two groups with high/low riskScore. 
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Fig. 8. ssGSEA assesses differences in 28 immune cell subpopulations between the two groups. The boxplot diagram showing the differences in different immune cell subpopulations between the two 
groups with high/low riskScore. 
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the mutation genes that were significantly different in the two groups of patients with high/low riskScore were mainly enriched in 
TP53, Hippo, wnt and Notch signaling pathways, suggesting that there are differences in immune aspects between the two groups of 
patients with high/low riskScore. Song et al. showed that high TP53 mutation frequency was associated with TSC2 mutation, which 
was independently associated with recurrence and poorer RFS within 1 year after hepatectomy [26]. The lncRNAs in a lncRNAs-based 
risk scoring system are mainly involved in Wnt signaling and can effectively predict RFS in cirrhotic HCC patients [27]. It was shown 
that Notch pathway are closely associated with finding prognostic biomarkers to predict RFS in HCC patients [28]. Meanwhile, this 
inference was supported by RNA differential analysis, enrichment analysis and tumor immune cycle analysis. We analyzed the dif
ferences in the immune microenvironment between the two groups, and found that patients in the low-riskScore group had a better 
immune microenvironment and were more inclined to "hot" tumors. In addition, we validated the effect of riskScore on the immune 
microenvironment in the dataset GSE56588. HCC exhibits an extremely heterogeneous immune microenvironment, leading to 
inconsistent outcomes in immunotherapy [29]. This study confirms the involvement of methylation risk scoring in influencing the 
immune microenvironment, thereby potentially aiding in maximizing the benefits of immune therapy for patients. Based on this, we 
built a dynamic nomogram based on riskScore, vascular invasion and cirrhosis status to facilitate its application in the clinical setting. 
This model focuses on early-stage HCC patients, providing them with more targeted diagnosis, treatment, and care, particularly for 
those at a higher risk of recurrence. Additionally, the model helps to avoid unnecessary medical interventions for low-risk HCC pa
tients, ensuring a balanced approach to their clinical management. Although we have developed and validated a risk score for dis
tinguishing HCC patients with recurrence-free survival and demonstrated its relationship with the immune microenvironment, there 
are still some limitations that should be acknowledged. Firstly, the methylation panel used in this study should be further optimized 
and validated in prospective cohorts. Secondly, the detailed mechanisms by which these methylation sites affect the immune 
microenvironment need to be explored further. 

In conclusion, we used the TCGA database to construct a model that can be used to diagnose and predict recurrence-free survival of 
HCC, which is related to the immune microenvironment. We also construct a nomogram based on riskScore and clinical factors, which 
gives a new possible idea for clinical use to stratify the risk of recurrence of HCC in the early and middle stages. Of course, the 
generalization and use of the model needs to be validated by a large number of subsequent clinical trials. Such validation studies will 
provide crucial insights into the model’s reliability and effectiveness in clinical settings. 
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Table 2 
Univariate and multivariate analyses of clinicopathological characteristics and Methylation risk score with RFS in the entire TCGA-LIHC dataset.  

Variables Univariate analysis Multivariate analysis 

HR (95% CI) P value HR (95% CI) P value 

Methylation risk score (High/Low) 3.47(2.49–4.83) 1.824e-13* 3.70 (2.57–5.34) <0.001* 
Vascular invasion (Yes/No) 1.41(1.03–1.93) 0.035* 1.52(1.01–2.28) 0.046 
Adjacent tissue inflammation (Yes/No) 1.32(0.95–1.83) 0.010   
Age (>60/≤60 years) 0.97(0.73–1.28) 0.813   
Albumin (≥4.0/<4.0 g/dl) 0.79(0.59–1.06) 0.112   
Creatinine (≥1.1/<1.1 mg/dl) 0.83(0.61–1.13) 0.239   
AFP (>20/≤20 ng/ml) 0.98(0.72–1.33) 0.881   
Liver cirrhosis (Yes/No) 1.38(1.00–1.93) 0.054   
Histological grade (G3-4/G1-2) 1.06(0.80–1.41) 0.689   
Platelet (≥200/<200 × 109/L) 1.03(0.77–1.38) 0.834   
Family history (Yes/No) 0.93(0.67–1.29) 0.667   
Gender (male/female) 1.09(0.8–1.485) 0.584   
Race (Asian/not Asian) 1.04(0.79–1.39) 0.765   
TNM stage (II/I) 1.40(1.05–1.87) 0.023* 0.96(0.64–1.43) 0.836 
BMI (≥25/<25 kg/m2) 0.95(0.71–1.27) 0.712   
HBV (Yes/No) 0.88(0.65–1.20) 0.416   
Alcohol consumption (Yes/No) 0.83 (0.53–1.30) 0.421   

Abbreviations: RFS, recurrence-free survival; HR, hazard ratio; 95% CI, 95% confidence interval. 
*Statistically significant; AFP, Alpha-fetoprotein; BMI, body mass index. 
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Fig. 9. RiskScore-based nomogram created and performance validated using the TCGA-LIHC dataset. A. Nomogram constructed using riskScore, 
vascular invasion, and liver cirrhosis for patients in the TCGA-LIHC dataset; B. Calibration curves for 1- year, 2- year, and 3-year RFS; C. RFS curve of 
high/medium/low risk HCC patients evaluated by column line plot; D. Validation of time-dependent ROC curve. 
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