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The suppressor of cytokine signaling (SOCS) family of intracellular checkpoint inhibitors
has received little recognition compared to other checkpoint inhibitors. Two members of
this family, SOCS1 and SOCS3, are indispensable, since SOCS1 knockout in mice results
in neonatal death due to interferon gamma (IFNg) induced inflammatory disease, and
SOCS3 knockout leads to embryonic lethality. We have shown that SOCS1 and SOCS3
(SOCS1/3) function as virus induced intrinsic virulence factors for influenza A virus, EMC
virus, herpes simplex virus 1 (HSV-1), and vaccinia virus infections. Other viruses such as
pathogenic pig enteric coronavirus and coronavirus induced severe acute respiratory
syndrome (SARS) spike protein also induce SOCS virus intrinsic virulence factors.
SOCS1/3 exert their viral virulence effect via inhibition of type I and type II interferon
(IFN) function. Specifically, the SOCS bind to the activation loop of receptor-associated
tyrosine kinases JAK2 and TYK2 through the SOCS kinase inhibitory region (KIR), which
inhibits STAT transcription factor activation by the kinases. Activated STATs are required
for IFN function. We have developed a small peptide antagonist of SOCS1/3 that blocks
SOCS1/3 inhibitory activity and prevents virus pathogenesis. The antagonist, pJAK2
(1001-1013), is comprised of the JAK2 activation loop, phosphorylated at tyrosine 1007
with a palmitate for cell penetration. The remarkable thing about SOCS1/3 is that it serves
as a broad, simple tool of perhaps most pathogenic viruses to avoid innate host IFN
defense. We suggest in this Perspective that SOCS1/3 antagonist is a simple counter
measure to SOCS1/3 and should be an effective mechanism as a prophylactic and/or
therapeutic against the COVID-19 pandemic that is caused by coronavirus SARS-CoV2.
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INTRODUCTION

Global public health is under siege as a result of a coronavirus infectious pandemic disease that may
have originated in Wuhan, China in late 2019 (1, 2), thus the acronym (COVID-19). The causative
viral agent of COVID-19, SARS-CoV2, is a variant of the 2002/2003 pandemic coronavirus, SARS-
CoV, where the acronym SARS represents severe acute respiratory syndrome (1, 2). Another relative
of SARS that was responsible for SARS-like syndrome epidemic in the Middle East in 2012 has the
acronym MERS-CoV (2). Thus, there are three relatively recent pandemics/epidemics involving
members of the betacoronavirus family (2). It therefore seems reasonable that additional
betacoronavirus variants or strains will cause some future virus induced pandemic.
org October 2020 | Volume 11 | Article 5821021
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Coronaviruses are not newly discovered respiratory
pathogens for humans as several strains are commonly
involved in “head cold” type of illness (3). The SARS viruses,
however, are a special case, particularly in the context of seasonal
influenza virus respiratory disease (4, 5). It is anticipated that at
some point these two groups of viruses will cause serious health
problems at the same time. Thus, in this Perspective, we will
address these health problems in the context of a recently
discovered virus induced intrinsic virulence system that plays a
key role in virus pathogenesis. The implication of this discovery
is that a common or single antiviral could be an effective
preventative/therapeutic against both SARS-CoV2 and
influenza viruses.

The virus induced non-specific intrinsic virulence system
consists of checkpoint inhibitors called suppressors of cytokine
signaling (SOCS) (6–8). SOCS consist of eight intracellular
proteins, SOCS1 to SOCS7, and cytokine-inducible Src
homology 2 protein, CIS. It is SOCS1 and 3 (SOCS1/3) that
function as virulence factors, but that is not their evolutionary
purpose, as both are required for viability. Knockout of SOCS1 in
mice results in neonatal death, primarily due to unregulated
inflammation caused by gamma interferon (IFNg) (9). SOCS3
knockout results in embryonic death (10). It is the neonatal
inflammation induced death that is intriguing. This is stark
evidence that these mice are not protected by other checkpoint
inhibitors absent SOCS1. Thus, SOCS1 is a key but under-
recognized immune checkpoint inhibitor.

Molecular tools such as gene transfection and siRNA have
played a major role in our functional understanding of SOCS
proteins where a key functional domain of 12 amino acids called
the kinase inhibitory region (KIR) has been identified on SOCS1
and SOCS3 (6). KIR plays a key role in inhibition of the JAK2
tyrosine kinase, which in turn plays a key role in cytokine
signaling. A peptide corresponding to KIR (SOCS1-KIR)
bound to the activation loop of JAK2 and inhibited tyrosine
phosphorylation of STAT1a transcription factor by the kinase.
Cell-internalized SOCS1-KIR is a potent therapeutic in
experimental allergic encephalomyelitis (EAE), a mouse model
of multiple sclerosis and showed promise in a psoriasis model
and a model of diabetes-associated cardiovascular disease (11–
13). By contrast, a peptide, pJAK2(1001-1013), that corresponds
to the activation loop of JAK2 is a SOCS1 and SOCS3 inhibitor
via KIR binding (7). In sections below, we show the power of
SOCS1/3 antagonist as an effective therapeutic against the
SOCS1 and SOCS3 virus induced virulence factors (Figure 1).
SOCS AND OTHER MEMBERS OF THE
CHECKPOINT INHIBITOR FAMILY

Checkpoint inhibitors are a complex network of cells, soluble
factors, and cell-associated proteins that govern and control the
immune response. As indicated with SOCS1, they prevent the
immune system from over-responding to both foreign and self-
antigenic stimuli (6, 7). Specifically, the checkpoint inhibitor
families consist of, but is not limited to, members of SOCS
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family, program death 1 cell protein (PD-1) and its cellular
ligand, PD-1L, and cytokine T lymphocyte antigen 4 (CTLA-4)
(14–17). CTLA-4 is a key effector molecule involved in Treg
function (15, 16). There is cross-talk between SOCS1 and
Forkhead box (FoxP3) positive natural or constitutive Tregs
which is important in peripheral Treg homeostasis (18).
Manipulation of PD-1 and CTLA-4 with inhibitory
monoclonal antibodies to reduce their immune inhibition is
widely used in immunotherapy of various cancers with
some success (19, 20). Thus, there is a complex network of
coordinated interactions among these various immune
checkpoint inhibitors that is important in immune homeostasis
that is ripe for manipulation in immunotherapeutic approaches
to cancer and immune deficiency disorders. Manipulation of
SOCS1 and SOCS3 should play a key role in viral infections,
particularly those caused by viruses that are associated with
respiratory diseases.
SOCS1/3 AND VARIOUS VIRAL
INFECTIONS

There is considerable evidence that SOCS1 and SOCS3 play
important roles in viral immune evasion involving a broad range
of viruses. In fact, it is our contention that SOCS1/3 is broadly
hijacked by viruses to function effectively as viral virulence factor(s).
Coronavirus transmissible gastroenteritis virus (TGEV), for
example, uses SOCS1 and SOCS3 to evade type I interferons
(IFN-I), but that does not actually affect IFN induction (21).
Replication of coronaviruses is closely tied to the endoplasmic
reticulum (ER); ER stress occurs as a result of TGEV and other
FIGURE 1 | SOCS1/3 antagonist. Scheme of how SOCS1/3 antagonist, pJAK2
(1001-1013), inhibits SOCS1 and 3 blockage of activation of JAK2 (or (TYK2) for
induction of antiviral activity of interferon. P, indicates phosphorylation.
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coronavirus infection of cells. The coronavirus TGEV study
defined the complex events involved in blocking IFN-I in host
defense (21). Details of the mechanism of TGEV induction of
SOCS1 and SOCS3 are presented below. Although TGEV is an
alphacoronavirus, while SARS-CoV2 is in the betacoronavirus
family, both viruses can attack the gut, which is significant in the
approach of attacking SARS-CoV2 in terms of SOCS1/3
virulence factors (21).

An immortalized chicken cell line provides a particularly
interesting example of the relationship between constitutively
elevated SOCS1 and innate immune responses (22). In a
comparison of immortalized chicken DF-1 cell line and
primary chicken embryo fibroblasts (CEFs), DF-1 cells had 16-
fold higher levels of SOCS1 than did CEFs. Consistent with the
SOCS pattern, treatment of these cells with chicken IFNa
resulted in decreased expression of IFN-stimulated genes in
DF-1 cells, compared to CEFs. Similarly, an attenuated chicken
bursal disease virus, PBF98, had a significantly higher yield in
IFN treated DF-1 cells than in CEFs. The authors found that
SOCS1 mediated these effects, but that the SOCS box domain
was not required for the SOCS1 effect. Specifically, siRNA
inhibition of SOCS1 mRNA with wild type or SOCS1 box
deletion siRNA constructs similarly inhibited the SOCS1 effects
in DF-1 cells. As indicated, we have developed a peptide that
corresponds to the KIR region of SOCS1, which we designated
SOCS1-KIR (18, 23). The mimetic is the complement or mirror
image of SOCS1/3 antagonist, indicating that KIR is the binding
site on SOCS1 and SOCS3 for the antagonist (23). As indicated,
SOCS1-KIR has been used to successfully treat autoimmune
disease in mouse models (11–13). The studies with the DF-1 cells
suggest that the KIR region of SOCS1 was sufficient to mediate
the SOCS1 effects in these cells.

The first use of SOCS1/3 antagonist in a virus infection
involved the double-stranded DNA virus, herpes simplex virus
(HSV-1) (24). Keratinocytes were refractory to IFNg induction of
an antiviral state to HSV-1 infection, while IFNg did induce an
antiviral state in fibroblasts (L929). RT-PCR showed that HSV-1
induced a 4-fold increase in SOCS1 mRNA in keratinocytes, but
only a negligible increase in fibroblasts. A similar pattern was
observed at the level of SOCS1 protein. Treatment of the
keratinocytes with palmitated (cell penetrating) pJAK2(1001-
1013) rendered both an antiviral state as well as a synergistic
effect when combined with IFNg treatment. These findings with
HSV-1 were rather remarkable. The question is whether the
HSV-1 findings with antagonist applies to other viruses. SOCS
showed similar antagonism against vaccinia virus and
encephalomyocarditis virus (EMCV), both in culture and in
mouse models of lethal virus infection (25). Vaccinia virus
(VV), like HSV-1 is a double stranded DNA virus, but with its
own set of genetic complexities. VV replicates in the cytoplasm,
while HSV-1 replicates in the nucleus. EMCV is a picornavirus
whose genome is plus-stranded RNA like that of coronaviruses
(25). It is particularly impressive that pJAK2(1001-1013)
protected VV and EMCV injected mice against acutely lethal
doses of viruses. This provided preclinical evidence of efficacy of
the SOCS antagonist as an antiviral (Figure 2).
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pJAK2(1001-1013) also possessed potent adjuvant activity at
both humoral and cellular levels against a protein antigen, bovine
serum albumin (BSA) (25). Potential significance of this
observation is that soluble BSA is not particularly effective at
inducing a cell mediated response. In conjunction with the
adjuvant properties, the SOCS antagonist also enhanced poly
(I:C) activation of TLR3.

In addition to the above viruses, the SOCS1/3 antagonist also
inhibited a type A influenza virus (26), a negative strand segmented
RNA virus (27). This virus is particularly important in the context of
the current pandemic with SARS-CoV2. SOCS1 has been shown to
be an influenza virus-induced virulence factor that enhances
infection of cells. The antagonist was protective in cell culture and
in influenza virus PR8 lethally infected C57BL/6 mice.

The SOCS antagonist also prevented adverse morbidity as
assessed by parameters, such as weight loss and drop in body
temperature, and showed potent induction of both the cellular
and humoral immune responses to the influenza virus candidate
universal antigen matrix protein 2 (M2e) (26). The SOCS
antagonist, thus protected mice against lethal influenza virus
infection and possessed potent adjuvancy against the M2e
candidate influenza virus universal vaccine antigen. Thus, an
inhibitor of both coronavirus and influenza A virus could reduce
the complexity of respiratory infections by these two viruses.
Dealing with these two viruses at the same time is a challenge
that we most likely will face.

There are several other virus strains or types that, like the viruses
above, use SOCS1 or SOCS3 as a virulence factor. These include at
least dengue virus (plus strand RNA (28), Zika virus (plus strand
RNA) (29), West Nile virus (also plus strand RNA) (30), and Ebola
virus (31). The role that SOCS1/3 plays in the pathogenesis of all
these viruses as well as the future challenges of potential epidemics/
FIGURE 2 | SOCS1/3 blocks IFN activity. Viruses with different mechanisms
of replication have been shown to upregulate or use constitutive SOCS1/3 as
virulence factors. SOCS1/3 antagonist peptide blocks the SOCS, thus freeing
the interferons (IFNs) to inhibit virus replication. HSV-1, herpes simplex virus 1;
VV, vaccinia virus; EMCV, encephalomyocarditis virus.
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pandemics that they and other viruses may cause places particular
importance on attacking the SOCS virulence factors.
SOCS1/3 ANTAGONIST AS A
THERAPEUTIC FOR COVID-19

As indicated, TGEV enteric coronavirus infection in pigs induced
SOCS1 and 3 (SOCS1/3) intrinsic virulence factors, which played a
role in virus immune evasion (21). In addition, the virus attacks a
microRNA, miR-30-5p, that regulates the expression of SOCS1 and
SOCS3 at the level of mRNA and protein induction. It was shown
that the evasion occurs as a result of virus activation of an
endoplasmic reticulum RNase that degrades miR-30-5p, resulting
in the release of SOCS1/3 mRNA to produce SOCS1/3 proteins,
which in turn block JAK2 and TYK2 tyrosine activation. Blocked
TYK2 results in failure of activation of the STAT transcription
factors that mediate type I IFN activity (32).

Rather than inhibition of induction of SOCS1/3, the SOCS1/3
antagonist, as indicated, blocks SOCS function by binding to the KIR
region of SOCS1 and SOCS3. Thus, JAK2 and TYK2 are activated for
subsequent activation of the STAT transcription factors that mediate
IFNg and type I IFN antiviral function, respectively.

As referenced, SARS-CoV and SARS-CoV2 are both
betacoronaviruses, so while the latter has not been examined for
SOCS1/3 induction, there is evidence for such induction by SARS
virus, SARS-CoV. Transfection of a human B cell lymphoma
(Toledo) with recombinant baculovirus vAtEpG5688 expressing
amino acids 17-688 of SARS-CoV spike protein on the surface of
the envelope induced over a 4-fold increase in SOCS3 over 48 h
(33). In another study, infection of heterogeneous human epithelial
colorectal cancer cells (Caco2) with SARS-CoV also induced SOCS3
but to a lesser extent than the B cell lymphoma cell line (34). None
of these limited studies focused in particular on the SOCS proteins,
and the findings were not interpreted in the context of the role of
SOCS3 in virus infection, as was done in the case of TGEV.

No such SOCS studies have been done with SARS-CoV2, not
to mention in the context of SOCS1/3 virus-induced intrinsic
virulence factors. Given the current circumstances of empirical
rather than mechanistic approaches to treating COVID-19, focus
on SOCS1/3 would seem both reasonable and rational.

For reasons not fully understood, a subset of the population
seems particularly susceptible to a life threatening severe form of
COVID-19 (5, 35). In the US, African-Americans are more likely
to die of COVID-19 than are Americans of European descent
(36, 37). Obesity coupled with type 2 diabetes, has also been
shown to be a risk factor for severe COVID-19 in terms of
morbidity and mortality (38, 39). Specific indicators beyond the
general observation that overweight people are less healthy than
non-fat people have not been definitively identified to suggest
enhanced susceptibility to COVID-19 in these groups, but one
meta-analysis indicates increased expression of ACE2, the
receptor for SARS-CoV2 in subcutaneous and visceral adipose
tissue (40). If one looks at COVID-19 in the obese, there may be a
SOCS connection. Specifically, SOCS3 has clearly been shown to
be associated with type 2 diabetes, and in fact is positively
Frontiers in Immunology | www.frontiersin.org 4
correlated with insulin resistance (41). Furthermore, the
incidence of influenza is higher in obese compared to non-
obese individuals (42). Thus, a virus virulence factor, SOCS3, is
expressed at a higher level in the obese, who are at greater risk of
the flu than are non-obese individuals. It would be of
considerable interest to therefore determine the role of elevated
SOCS3 in the obese in their greater susceptibility to COVID-19,
influenza, and other viral diseases in insulin resistant individuals.
SOCS1/3 ANTAGONIST AND SEVERE
COVID-19

The discussion here addresses the potential downside of SOCS1/3
antagonist as virus inhibitor, with potential exacerbation of the
inflammatory condition that drives severe COVID-19. COVID-19
begins with SARS-CoV2 replication in the upper respiratory tract.
Currently (October 1, 2020), the USA has over 7,184,000 known
infections with more than 208,000 deaths. The fatality rate is thus
approximately 3%, which is 30 times greater than that of seasonal
influenza (43). Infection can be asymptomatic or of varying degrees
of severity. Severe COVID-19 that can result in death is
characterized by pulmonary as well as multi-organ disease
involving the heart, vascular system, kidneys as well as other
organs and tissues (44–48). The cell receptor for SARS-CoV2 is
angiotensin-converting enzyme 2 (ACE2), which is widely
expressed on endothelial and smooth muscle cells in almost
all organs (49). The lungs of patients who have died of
COVID-19 show diffuse alveolar damage, severe endothelial
injury associated with intracellular virus, and disrupted cell
membranes (44). Pulmonary vessels show widespread thrombosis
and microangiopathy. The inflammatory condition and thrombosis
extends in varying degrees to the heart, gut, and kidneys.
Importantly, SARS-CoV2 presence is associated with pathologic
profile. The inflammatory illness in children is consistent with the
vascular cell target of SARS-CoV2 (50). SARS2-CoV2 infection in
children results in autoimmune and autoinflammatory responses
that are termed as pediatric inflammatory multisystem syndrome
(PIMS) or multisystem inflammatory syndrome in children (MISC-
C) (45, 51, 52). The immune and inflammatory cells as well as
inflammatory cytokine profile has resulted in the phrase “cytokine
storm” in the severe disease. Particular interest is placed on the
cytokines of interleukin (IL)-6, IL-1, and tumor necrosis factor
(TNF)-a (53–57). A reasonable question pertaining to the SOCS1/3
antagonist is whether it would exacerbate the cytokine storm and
other hyperimmune aspects of COVID-19, particularly so as there
are considerable efforts to improve disease outcomes by anti-
inflammatory and anti-clotting approaches (46, 47, 49, 54, 55).
We will address this after briefly presenting some current
approaches to COVID-19.

Antiviral drug, remdesivir, was introduced early and has
shown slight improvement in severe but non-fatal COVID-19
(58). Type I IFNs, IFNa, and IFNb, have shown antiviral and
clinical effects against SARS-CoV2, and COVID-19, but it is early
in their clinical use to draw firm conclusions (59–62). An
unusual aspect of SARS-CoV2 infection is the limited
October 2020 | Volume 11 | Article 582102
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induction of type I IFN following infection. This suppression
may be mediated in part by the viral ORF3b protein that
suppresses the induction of interferon (63). Paradoxically,
inhibition of a receptor-associated tyrosine kinase called JAK1
that is required for IFN signaling, has also been shown to have
some clinical efficacy against COVID-19 (62, 64, 65). The
paradox may be related to mechanism of action. IFN inhibits
virus replication, while JAK1 inhibitors probably inhibit some
aspects of the cytokine storm. As with IFN, the JAK family is also
involved in mechanisms of cytokine signaling in general and thus
the JAK inhibitors may block cytokine storm cytokines. The use
of monoclonal antibodies to inhibit the relevant cytokines in
severe COVID-19, however, have not been particularly effective
(66). In this regard, another antibody approach, the use of
convalescent serum with neutralizing antibodies to SARS-
CoV2 has also not significantly improved severe COVID-19 in
patients in spite of high profile political pronouncements and
promotion (67). There is limited indirect and direct evidence that
T regulatory cells (Tregs) have some therapeutic efficacy in
severe COVID-19. Il-2 induced Tregs as well as cord blood
derived Tregs appeared to rescue patients that were on
ventilators in limited studies (53, 68). There are other
prospective treatments in the pipeline, but the patterns are
similar to those of the above approaches. In fact, meta-analyses
sequential analyses found that beyond modest certainty of
evidence supporting dexamethasone and remdesivir, no other
evidence based treatment for COVID-19 currently exists (67).
Frontiers in Immunology | www.frontiersin.org 5
As indicated, it is reasonable to have concerns that SOCS1/3
antagonist could exacerbate the inflammatory reaction due to
adaptive immune cells, innate immune cells, and the interleukins
associated with the cytokine storm. SOCS1 and SOCS3 are key
checkpoint inhibitors or regulators of the immune system and they
are the targets of SOCS1/3 antagonist. It is worthwhile, however, to
remember that SARS-CoV2 is present in the cells of the lesions
associated with severe COVID-19. Thus, it is paramount to attack
the virus before it overwhelms the lungs and other tissues and
initiates the cytokine storm. It is our thesis that SOCS1/3 antagonist
can serve the function of limiting SARS-CoV2 load and that such
limiting should reduce the incidence of the self-destructive host
defense that is reflected by the cytokine storm.
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