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The foot epithelium of the gastropod Haliotis tuberculata is studied by light and electron microscopy in order to contribute to the
understanding of the anatomy and functional morphology of the mollusks integument. Study of the external surface by scanning
electron microscopy reveals that the side foot epithelium is characterized by a microvillus border with a very scant presence of small
ciliary tufts, but the sole foot epithelium bears a dense field of long cilia. Ultrastructural examination by transmission electron
microscopy of the side epithelial cells shows deeply pigmented cells with high electron-dense granular content which are not
observed in the epithelial sole cells. Along the pedal epithelium, seven types of secretory cells are present; furthermore, two types
of subepithelial glands are located just in the sole foot. The presence and composition of glycoconjugates in the secretory cells and
subepithelial glands are analyzed by conventional and lectin histochemistry. Subepithelial glands contain mainly N-glycoproteins
rich in fucose and mannose whereas secretory cells present mostly acidic sulphated glycoconjugates such as glycosaminoglycans
and mucins, which are rich in galactose, N-acetyl-galactosamine, and N-acetyl-glucosamine. No sialic acid is present in the foot

epithelium.

1. Introduction

The epithelium of mollusks usually consists of a prismatic
single layer of three main cell types: microvillous, ciliated,
and glandular cells. This general common structure is diver-
sified and enriched by different cell types depending on the
specialization of the epithelia to particular functions. The
variations in structure and functions of mollusk integument
have been well summarized by Bubel [1] and Simkiss [2]
who describe how different functions correspond to different
cell types, diverse secretions of the glandular cells, and the
existence of ciliated or microvilli-bearing epithelial cells.
Studies on structure and function of gastropod epithelia
have been performed regarding the epithelium of specialized
organs such as mantle [3-5], tentacles [6], and defensive
glands [7]. Regarding the gastropod foot some research

has focused on histological studies in muscular [8-11] and
connective tissues [12]. However, although the epithelium
of the foot has received much more attention [13-18], his-
tochemical and ultrarstructural studies on the vestigatropod
pedal epithelium are scarce [19, 20].

Typically the gastropod foot is covered by a mucus layer
important to a range of functions including lubrication, lo-
comotion, protection, and adhesion to the substrate [21]. It
has been showed the viscoelastic properties of limpet mucus
can be modified in different ways when a specific function
is required [22, 23]. Moreover, the mucus layer has an
important ecological role in the community behavior [24]
and in the ecosystem, as defense or attraction. It also provides
a habitat for microorganisms as it has been described in
Haliotis diversicolor [25].
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The mucus layer covering the gastropods foot is pro-
duced by epithelial secretory cells and subepithelial glands.
The diversity of these cell types, their composition, and dis-
tribution vary from species to species. For instance Grenon
and Walker [14] distinguished nine types of secretory cells
in the foot epithelium of the marine gastropod, Patella
vulgata, but a different distribution of secretory cells has
been found by the same authors in another limpet Acmaea
tessulata. However Shirbhate and Cook [18] described ten
secretory cell types in another marine gastropod Litforina
littorea. The conventional histochemical methods used in
these studies revealed different types of secretory cells
containing acidic and neutral glycoconjugates, but they yield
incomplete information on the structural details of glycans.
The presence of glycosaminoglycans and glycoprotein has
been demonstrated, by using lectins, in the epithelium of a
few mollusks [26, 27], but no data exist in the literature on
the nature and distribution of glycoconjugates in the foot of
the Haliotis species.

In addition to the secretory system, gastropods have
been described as containing a variety of pigments in
their epithelial cells, including carotenoid, melanin, and
bilichromes among others [28]. In a previous study by
using light microscopy, Bravo et al. [29] have characterized
two types of pigmented cells located in the crests and
grooves of the unfolded side foot of Haliotis tuberculata (Lin-
naeus, 1758). These cells contained respectively melanin and
phycobiliprotein-like pigment, which give this integument its
appearance and characteristic color.

The aim of this work is to characterize ultrastructurally
the different cell types found in both side and sole foot
epithelia of Haliotis tuberculata. In addition we analyze
by using conventional and lectin histochemistry methods
the distribution and composition of glycoconjugates in this
epithelium in order to contribute to the understanding of
the anatomy and functional morphology of the mollusks
integument.

2. Material and Methods

2.1. Animals. Seven individual adults of Haliotis tuberculata
about 12 cm in length were collected in different seasons
along 2009 from different locations in the Ria of Vigo,
(NW Spain). The habitat of Haliotis is infralitoral so a diver
collected them from underwater rocks taking care not to
damage the animals, and they were placed in seawater with
aeration until they were processed into few hours. After they
were anesthetized by immersion in 5% MgCl, in seawater
[30], small pieces of the foot were cut from the medium edge
part of the animal body taken at the same time the lateral and
ventral part of the foot as it is showed in our previous paper
[29]. We analyzed in the same section the lateral part of the
foot integument named side foot and the sole foot which is
the surface of locomotion in contact with the substrate. All
procedures for animal experimentation were approved by the
animal care and use committee of the Regional Government
of Galicia (Xunta de Galicia) and conformed to the guidelines
of the European Community.
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2.2. Light Microscopy. Samples were fixed in formol Baker
(Prolabo) for 24-48 h at room temperature, washed in tap
water, and embedded in paraffin. Sections (8 ym thick) were
deparaffinized in xylene, rehydrated with graded ethanol,
and subjected to the following histochemical procedures for
the identification of glycoconjugates.

2.2.1. Conventional Histochemical Techniques. Sections were
stained with alcian blue (AB, pH 1 or 2.5, Sigma) to
demonstrate acidic glycoconjugates, and high iron diamine
(HID) combined with alcian blue (HID/AB) for separating
sulphated and carboxylated glycoconjugates. As a control
some sections were desulphated before stained with AB or
HID. Desulphation is a sequential process of methylation and
saponification specifically applied to remove sulphate-ester
groups [31].

Samples were also subjected to chemical method using
periodic acid-Schiff reactive (PAS, Merck) which is positive
for glycoconjugates containing neutral sugars and/or sialic
acid. In histochemistry, the presence of neutral monosac-
charide residues means that they do not have sulphate-ester,
carboxylic acid, or nitrogen-containing functional groups. In
order to know if the PAS-positive compounds were glycogen,
an amylase test was carried out by using rat liver sections
as a positive control. All staining protocols were performed
according to Kiernan [31] and Molist et al. [32].

2.2.2. Lectin Histochemistry. Lectins labeled with digoxigenin
(DIG), from Boehringer Mannheim Biochemica, and biotin
(Sigma) were used to identify specific sugar residues in glyco-
conjugates. Lectins conjugated with DIG were used following
the method previously described by Ferndndez-Rodriguez et
al. [33], but slightly modified. Briefly, sections were preincu-
bated overnight in a moist chamber with blocking solution
and rinsed twice in Tris buffer saline (TBS). Then, sections
were incubated for 2 h at room temperature with the follow-
ing DIG conjugated lectins: (Galanthus nivalis) GNA specific
for mannose, (Sambucus nigra) SNA and (Maackia amuren-
sis) MAA both specific for sialic acid, PNA (Arachis hypogaea)
which recognizes the sequence Galactose (beta 1-3) N-
acetyl-galactosamine, or (Aleuria aurantia) AAA specific
for fucose, diluted in TBS containing different salts (1 mM
MgCl,, I mM MnCl, and 1 mM CaCly). Afterwards, sec-
tions were rinsed three times in TBS, and incubated during
2h with anti-digoxigenin-alkaline phosphatase (anti-DIG-
AP) diluted 1: 1000 with TBS. Finally, after three washes with
TBS the AP activity was visualized with 5-bromo-4-cloro-
3-indolylphosphate (BCIP)/4-nitroblue tetrazolium chloride
(NBT), both from Boehringer Mannheim Biochemica. The
reaction was stopped with distilled water, and sections were
subsequently dehydrated, coverslipped, and analyzed with a
BX51 Olympus microscope.

Lectins conjugated with biotin were used as the follow-
ing: After inactivation of endogenous peroxidase activity
with 3% of H,O, in methanol for 30 min, sections were
washed in TBS and preincubated with 1% bovine serum
albumin in TBS to minimize nonspecific binding. Sub-
sequently, sections were incubated overnight at 4°C with
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FIGURE 1: Schematic drawing of the side (a) and sole (b) foot epithe-
lia. Secretory cells (A, B, C, D, E, and F), basal membrane (bm),
cilia (ci), Golgi complex (g), cell junctions (cj), microfilaments
(mf), mitochondria (mt), microvillus border (mv), nuclei (n), and
pigmented granules (pg). Bar: 10 ym (a), 5 ym (b).

the following lectins: WGA (Triticum vulgare) specific for N-
acetyl-glucosamine, DBA (Dolichos biflorus) specific for N-
acetyl-galactosamine, UEA I (Ulex europaeus) and LTA (Lotus
tetragonolobus) both specific for fucose, or ConA (Canavalia
ensiformis) specific for mannose. Then, sections were rinsed
in TBS and incubated for 1h with the avidin biotin
peroxidase reagent (ABC Kit Vector Laboratories) diluted
1:100 in the same buffer. This complex was developed
with 3,3’ diaminobenzidine tetrahydrochloride (DAB, tablets
0,7 mg/mL, Sigma) and 0,03% H,O, in TBS for 5-10 min.
Finally sections were rinsed with TBS, dehydrated, and
mounted. Some sections were counterstained with Mayer’s
haematoxylin (Montplet & Esteban SA).

All lectins were employed at a concentration of 10 yg/mL
except for MAA and SNA, which were applied at three
different concentrations (10, 25, and 50 yg/mL). To ver-
ify the specificity of the lectins, two types of controls
were performed: A general control where the conjugated
lectin was substituted by buffer and a specific control by
preincubation during 1h of each lectin with its specific
mono/oligosaccharide (Sigma) at the appropriate concentra-
tions. In any case, no labeling was detected in the control
sections.

Moreover, desulphation treatment was used before incu-
bation with the lectins.

2.3. Scanning Electron Microscopy (SEM). Pieces approxi-
mately 3-4 mm? were fixed for 4h in 2.5% glutaraldehyde
(Merck) in filtered sea water. Samples were subsequently
washed in cacodylate buffer, dehydrated in a graded series

of ethanol, and isoamyl acetate (10 minutes each at room
temperature), critical point dried in CO,, coated with gold,
and examined with a Philips XL30 SEM.

2.4. Transmission Electron Microscopy (TEM). Small pieces of
the integument were fixed in 2% paraformaldehyde (Schar-
lau) and 2% glutaraldehyde in cacodylate buffer for approx-
imately 3h at 4°C. Then, tissues were washed three times
(1h each) in the same buffer and postfixed in 1% osmium
tetroxide in cacodylate buffer for 2h at 4°C. After rinsing
the tissues in buffer, they were then dehydrated in a graded
series of acetone and subsequently, embedded in Spurr’s
resin. Toluidine blue-(Sigma) stained semithin sections were
used to determine the area of study. Ultrathin sections were
stained with uranyl acetate and lead citrate and analyzed with
either a Philips CM20 or a Jeol JEM1010 TEM.

3. Results

3.1. General Features and Scanning Electron Microscopy.
The foot epithelium ultrastructure of Haliotis tuberculata is
schematized in the drawings shown in Figures 1(a) and 1(b).
The side foot is lined by two types of columnar epithelial
cells showing a prominent brush border interspersed with
ciliated cells and four different types of epithelial secretory
cells (Figure 1(a)). By contrast, the sole foot is characterized
by taller columnar ciliated cells with three kind of epithelial
secretory cells among them. Moreover clusters of secretory
cells are embedded in the subepithelial space of the sole foot,
and, due to their arrangement in glandular complexes, we
refer to them as subepithelial glands (Figure 1(b)).

The external surface of the side foot is relatively
rough containing many vertical folds that form crests and
grooves (Figure 2(a)). At SEM, microvillus epithelial cells
are observed alternating with the openings of secretory cells
(Figure 2(b)). Moreover, cells with small ciliary tufts occur
in a very low density separated from each other more than
100 ym. The diameter of ciliary tufts is around 4 ym, and
they are comprised of approximately 30 cilia surrounded
by microvilli (Figures 2(b) and 2(c)). However, the external
surface of the sole foot bears a dense field of long cilia, which
are generally covered by a thick layer of mucus (Figure 2(d)).
This layer of mucus is important to protect the foot during
locomotion as well as to help with the adhesion to the rock’s
surface.

3.2. Light Microscopy. The results of histochemistry analysis
reveal the presence of different types of glycoconjugates in
side and sole epithelial secretory cells and in subepithelial
glands of sole foot.

3.2.1. Conventional Histochemistry. Along the foot epithe-
lium quite abundant epithelial secretory cells are stained
with alcian blue (AB). However, subepithelial glands show a
weak positivity. After desulphation AB positivity disappears,
indicating that most of the AB-positive epithelial secre-
tory cells contain mostly glycoconjugates with O-sulphated
groups. The high iron diamine/alcian blue technique also



The Scientific World Journal

FIGURE 2: Scanning electron micrograph. (a) General view of the side foot showing the folds (f) in the external surface. Bar: 200 ym. (b)
Detail of the external surface of the side epithelium, ciliary tuft (ct), and opening of the secretory cells (sc). Bar: 5 ym. (c) Ciliary tuft in the
side foot. Bar: 2 ym. (d) General view of the sole foot showing the long field of cilia (ci) and the mucus layer (mu). Bar: 10 gm.

supports this result (Figures 3(a) and 3(b)). In addition,
some subepithelial glands (Figure 3(a)) and side secretory
cells (Figure 3(b)) are stained in blue with this technique,
which indicates that they contain carboxylated glycoconju-
gates. Moreover, at the border between the side and the sole
foot, two types of acidic glycoconjugates are detected in the
same secretory cell (Figure 3(b)). With the periodic-acid-
Schift (PAS) technique, a strong reaction is found in the
subepithelial glands (Figure 3(c)). The number of positive
epithelial secretory cells varies from scarce in the sole foot
(Figure 3(c)) to moderate in the side foot (Figure 3(d)). As
sections treated with alpha amylase-PAS technique exclude
the presence of glycogen in these cells, the PAS positivity is
due to neutral sugars and/or sialic acids.

3.2.2. Lectin Histochemistry. Results have been organized
by grouping lectins with similar carbohydrate specificity.
Regarding L-fucose binding lectins, L-fucose-residues are
detected in the subepithelial glands and the sole secretory
cells (Figure 3(e)) with the three lectins assayed (AAA, LTA,
and UEA-I). In the side foot, only the lectin AAA binds
moderately to some epithelial secretory cells (Figure 3(f)),
but increasing the number of positive cells and the intensity
of the staining after desulphation treatment (Figure 3(g)).
In the case of mannose-binding lectins (ConA and GNA),
strong positive labeling with both lectins is found in the
apical edge of all sole epithelial cells. Moreover, these two
lectins bind to the subepithelial glands (Figure 3(h)). In

contrast, sole secretory cells are unreactive with both of
them even after desulphation, whereas the side secretory
cells are reactive with GNA only after such treatment
(Figure 3(i)). With the lectin PNA no binding is detected
in the sole foot whereas scarce side secretory cells are
positive. After desulphation the number of positive side
secretory cells increases, and a few sole secretory cells are also
positive (Figures 3(j) and 3(k)). The N-acetyl-glucosamine
binding lectin (WGA) binds weakly to some secretory cells.
However, the staining pattern changes completely with the
desulphation treatment, which displays a strong reactivity for
this lectin in the sole and side secretory cells (Figures 3(1)
and 3(m)). Moreover, a small number of cells is also weakly
stained in the subepithelial glands following this treatment
(Figure 3(1)). Concerning the lectin DBA that recognizes
the terminal N-acetyl-galactosamine, no labeling is found
in either the subepithelial glands or the sole secretory cells.
However, some secretory cells of the side foot are reactive
with DBA, and the number of positive cells increases after
desulphation (Figure 3(n)). With this treatment, a high
number of positive epithelial secretory cells is found in
the sole foot (Figure 3(0)) whereas the subepithelial glands
remain unreactive.

Lectins specific for sialic acid (SNA and MAA) do not
bind to any type of cell in the foot epithelium of Haliotis
tuberculata, suggesting that sialic acid is not present in this
tissue. In this case three different concentrations (10, 25,
and 50 ug/mL) were assayed to verify the results. However,
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FiGure 3: Histochemistry of the sole and side foot (sections are oriented to the bottom for the sole foot and to the right for the side foot,
according their natural location) of Haliotis tuberculata. (a) and (b) HID/AB. The sole (a) and side (b) secretory cells in dark containing
sulphated acidic glycoconjugates, moreover some subepithelial glands (a, arrows) and side secretory cells (b) stain in blue revealing the
presence of carboxylated acidic glycoconjugates. Both glycoconjugates are present in a few secretory cells (b, arrow). Bar: 200 ym (a), 100 ym
(b) (c) and (d). PAS. Presence of neutral glycoconjugates in the sole secretory cells and subepithelial gland (c), and the side secretory cells (d)
Bar: 200 ym (c), 100 yum (d) (e) UEA I (fucose). The subepithelial glands are strongly reactive to the lectin, and a few secretory cells (arrow)
are also positive. Biotinylated lectin, counterstained with hematoxylin. Bar: 100 ym. (f) and (g) AAA (fucose). Some side secretory cells show
positivity (f) which increases after desulphation (g) Lectin labeled with digoxigenin. Bar: 100 ym. H. Con A (mannose). The apical portion
of the sole epithelial cells and subepithelial gland exhibit reactivity to mannose. Biotinylated lectin, counterstained with hematoxylin. Bar:
50 ym. (i) GNA (mannose). After desulphation GNA binds to some side secretory cells. Lectin labeled with digoxigenin. Bar: 50 ym. (j),
and (k) PNA (Galactose beta 1-3 N-acetyl-galactosamine). After desulphation the number of side secretory cells increases (j) and a few sole
secretory cells appear (k) Lectin labeled with digoxigenin. Bar: 50 ym. (1) and (m) WGA (N-acetyl-glucosamine). The weak reaction changes
after desulphation, increasing intensity and number of sole (1) and side (m) secretory cells. Subepithelial glands appear weakly stained (1).
Biotinylated lectin. Bar: 100 ym (1), 50 ygm (m) (n), and (o) DBA (N-acetyl-galactosamine). The number of positive side secretory cells
increases after desulphation (n) and a high number sole secretory cells appear (o) Bar: 50 ym.



staining with these lectins is detected in the connective tissue,
which confirms that the technique has been properly per-
formed.

3.3. Transmission Electron Microscopy. Under the electron
microscopy, different types of epithelial and secretory cells
are found between the side and the sole foot. The variability
of those cell types indicates differences at the functional level.

3.3.1. Epithelial Cell Types. The side epithelial cells are typ-
ically columnar with the lateral membrane highly infolded
(Figures 4(a) and 4(b)). Adjacent cells are joined together in
their apical regions by cellular junctions with the appearance
of zonula adherens; moreover, a high degree of interdigita-
tion occurs beneath the junctional complex (Figure 4(b)).
Small ciliary tufts, probably originated from a single cell,
are sparsely distributed among the microvilli (Figure 4(a)).
Bundles of microfilaments criss-cross the cytoplasm of
the cell and make up the core of microvilli (Figure 4(c)).
In addition, Golgi complex and mitochondria are mainly
distributed in the apical part of the cytoplasm (Figures 1(a),
4(c), and 4(d)). The nuclei are located either in the centre
or at the base of the epithelial cells. Small clumps of
electron-dense chromatin are distributed throughout the
nucleoplasm, particularly associated with the inner nuclear
membrane (Figure 4(a)). Moreover, it has distinguished two
different side epithelial cells which contain two types of
pigments. On the grooves, deeply pigmented melanin cells
containing a large number of cytoplasmic melanosomes are
found (Figures 4(a), 4(c), and 4(d)), which cause the brown
color of these areas observed at light microscopy or even
macroscopically. In addition to rounded melanosomes, there
are many partially melanized organelles that contain two
different electron-dense components and may correspond
to an early stage of melanosome development (Figure 4(d)).
Pigmented melanin cells also show many microfilaments
as well as an extensive Golgi complex with numerous
vesicles intermingled with the melanosomes (Figure 4(d)).
On the crests, the most common feature of the epithelial
cells is the varied granular content, from electron dense
to completely electron lucent. These cells have a reduced
content of melanosomes and most of them are partially
melanized (Figure 4(e)). Due to their location on the crests,
the other vesicles containing granular or finer material
may correspond to those containing a phycobilin-like pig-
ment (Figure 4(e)), as previously observed by fluorescence
microscopy [29].

The sole epithelial cells show differences in morphology
and pigmentation relative to the side foot epithelium. The
most noteworthy features of the sole epithelial cells are
the lack of pigmented cells and the profusion of cilia on
their apical domain (Figures 4(g) and 4(h)). A mucus layer
forming a blanket over the top of the ciliated cells can also be
observed (Figure 4(g)).

3.3.2. Secretory Cell Types. Along the side foot, epithelial
secretory cells are scattered among epithelial cells. They
are similar in shape and appearance to goblet cells, and
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characterized by an apical surface swollen with secretory
granules and a narrow basal region with the nucleus
(Figure 1(a)). By TEM, four different types of secretory cells
(A, B, C, and D) are found, which are mostly distinguished
by the appearance and electron density of secretory granules.
The secretory granules of the cells identify here as type
“A” are completely electron-lucent, very tightly packed and
occupy the entire cytoplasm (Figures 4(a), 5(a), and 5(d)).
The type “B” secretory cell has electron-lucent granules
with finely granular material and a small nucleus located
basolaterally (Figure 4(a)). The type “C” contains secretory
granules with an unequal distribution of electron-dense
and electron-lucent material (Figure 5(a)). Their nuclei are
small and appear compressed in the basal part of the cell,
where bodies with tightly packed membrane can be observed
(Figure 5(b)). Moreover, a prominent rough endoplasmic
reticulum is found close to the nucleus (Figure 5(c)). Extru-
sion of secretory material from the cell is often observed,
and, occasionally, a number of granules remain apparent
outside (Figure 5(a)). The cell type “D” possesses atypical
secretory granules consisting of highly abundant tightly
packed and swirled membranes, which may correspond to
residual material (Figure 5(d)).

Three types of secretory cells are also observed in the
sole foot epithelium. One of them is similar to the type
B described in the side foot epithelium (Figure 4(h)). The
second one is more abundant and presents a secretory
product similar to that of type B cell, but it is concentrated
in denser granules. We identify this new secretory cell as type
E (Figures 4(g) and 4(h)). The third type (type F) possesses
small and dense grains (Figure 4(h)), with higher electron
density in the center than in the periphery.

In addition to these three types of epithelial secretory
cells, clusters of secretory cells localized in a subepithe-
lial position form multicellular glands on the sole foot
(Figure 5(e)). Under TEM microscopy, these multicellular
glands contain very dense granular material, which could be
discharged on the sole via neck openings located between
epithelial cells (Figures 1(b) and 4(i)). These secretory cells
are characterized by a very well-developed Golgi complex
arranged in a circular manner (Figures 5(e) and 5(f)).
Occasionally, subepithelial unicellular secretory glands have
been found with granules that resemble those found in the
epithelial secretory type B cells (Figure 5(g)).

4. Discussion

4.1. Epithelial Cells. The foot epithelium of Haliotis tuber-
culata presents unique features in both the side and the
sole foot epithelia. The side epithelial cells are highly pig-
mented with melanin and phycobilin granules and possess
a prominent microvillus border. A similar epithelium has
been described in the side foot of other gastropod, Patella
vulgata [14], but, in this case, only melanin granules were
observed. Pigmented cells containing mature and nonmature
melanosomes, similar to those observed in the epithelium of
the abalone (present results), have been reported in Sepia
officinalis [34]. However, in the case of similar pigmented
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FIGURE 4: Transmission electron microphotographs of the side (a—f) and sole (g—i) foot epithelia. (a) General view showing secretory cells
(types (a) and (b)) and pigmented epithelial cells with a prominent microvillus border (mv), a small group of cilia (ci) projecting from
the apical surface. Note the highly infolded lateral membrane (arrows). Nucleus (n), pigmented granules (pg). Bar: 5 ym. (b) Detail of the
apical region of adjacent cells, cell junctions which a zonula adherens can be observed (arrow). Bar: 0.5 ym. (c) Detail of microvillus border,
microfilaments (mf) extend from the apical surface and comprise the core of the microvilli. At the apical surface mitochondria (mt) and
melanosomes (m) are concentrated. Bar: 5 ym. (d) Melanosomes (m) and partially melanized granules (arrows) from a pigmented cell
located on a groove. Golgi complex (g) Bar: 1 ym. (e) A pigmented epithelial cell located on the crests showing phycobilin-like pigmented
granules (arrows) and a few melanosomes at different developmental stages (m) Bar: 0.3 ym. (f) Detail of both pigmented granules. Bar:
0.1 ym. (g) The mucus (mu) layer over the ciliated sole cells. Cilia (ci) Bar: 3 ym. (h) Three types of secretory cells (B, E, F) interspersed
with ciliated cells. Bar: 2 ym. (i) General view of the ciliated sole foot epithelium. Type (b) and (e) secretory cells are located among ciliated
epithelial cells. Observe the long necks (arrows) extending to the basal membrane. Bar: 3 ym.
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FIGURE 5: Transmission electron microphotographs of different types of side secretory cells (a—d) and subepithelial glands (e-g). (a) The
characteristic secretory granules of the type C remain outside the cell, forming the mucus (mu). Type A with partially secreted granules can
be observed. Bar: 5 ym. (b) Basal region of the type C cell showing a body with tightly packed membranes below the nucleus (n) Bar: 2 ym.
(c) Detail of latter microphotograph showing a prominent rough endoplasmic reticulum (r) between nucleus (n) and the body. Bar: 0.2 ym.
(d) A Type D cell with swirled membranous vesicles and a type A cell. Bar: 3 ym. (e) Subepithelial multicellular gland with a well-developed
Golgi complex (g) and dense secretory granules associated. Bar: 2 ym. F. Detail of the Golgi complex (g) in the subepithelial multicellular

gland. Bar. 0.5 ym. (g) Subepithelial unicellular gland. Bar: 2 ym.

cells which provided a red-purple color to the skin of
Aplysia californica [35], no melanin granules were described.
Moreover a high abundance of bluish-green pigment was
observed in the side epithelial cells located on the crests of the
folds, which has the characteristics of the phycobiliprotein
previously detected by using a fluorescence microscopy [29].
This type of pigmented granules content electron-lucent

finely granular material, that has not been described before
in any other gastropod. In a review on the biochromy of
the Mollusca, Fox [36] described in Haliotis a bilichrome
pigment known as haliotisrubin, which is accumulated from
the consumption of red algae. Therefore, a dietary origin is
also plausible for the pigment we detected in the epithelium
of Haliotis tuberculata.
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Moreover, the side foot of Haliotis tuberculata has been
also characterized by the presence of toxins in a type of
secretory cell [29]. It could be possible that pigmentation
together with toxicity play an important ecological role as
defense against depredators.

The presence of a brush border in the side epithelial
cells is, in general, indicative of absorptive functions, even
when the cell has another function. It has been demonstrated
that the molluscan integument can act as a site for the
active exchange of ions and metabolites [2]. Endocytosis
processes have also been described in the foot epithelium of
a terrestrial gastropod [37] and in the foot of the limpet [38].
Nevertheless, despite presenting prominent microvilli, no
evidence for endocytosis through the apical edge in Haliotis
tuberculata epithelial cells has been found in this study.
However the presence of mitochondria mainly distributed
at the epithelial cell’s surface could suggest high metabolic
activity.

The sole foot epithelium of Haliotis tuberculata (present
results) and of other aquatic gastropods [see [28] for review]
is characterized by the abundance of ciliated cells that are
probable used to distribute the mucus for mucus gliding
locomotion [21]. Some similar scattered cells have been
found in the side foot, but the significance of their function
is not well understood in this part of the body. In Haliotis,
sensory and water flux recirculation functions were described
for the ciliated cells of the tentacles [6, 28]. Other feature of
the sole foot is the presence of a more prominent mucus layer
than in the side foot, which is also important in locomotion
and adhesion to the substrate.

4.2. Epithelial Secretory Cells and Subepithelial Glands. His-
tochemical studies have revealed the presence of epithelial
secretory and subepithelial glandular cells in the gastropod
foot, but their number and chemical composition varied
greatly among the different species studied [28]. This is
probably due to the considerable variety of habitats they
occupy and to their different modes of life. It has been
proposed that limpets can secrete different forms of mucus
for mobility or adhesion to rocks [23] in response to their
tidal activity cycles. However, we cannot expect the same for
Haliotis who lives in the infralittoral area never exposed to
tide cycles [39].

Concerning the foot of Haliotis tuberculata, present
results corroborate the occurrence of neutral and acidic
(mostly sulphated) glycoconjugates that we have previously
described [29]; in addition, in this work the presence
and distribution of sugar residues in the oligosaccharide
side chains of glycoconjugates in its pedal epithelium were
investigated by using specific lectins.

Following classical carbohydrate histochemical tech-
niques, most epithelial secretory cells along the foot of
Haliotis are rich in acidic sulphated glycoconjugates (present
results), which is in neatly agreement with previous studies
describing that sulphate is a major component of the
gastropod mucus [14, 15, 18, 40]. By other hand, the
subepithelial glands showed intense staining with PAS and
weak affinity for AB, indicating that these cells produce a

mixture of glycoconjugates with the neutral glycoproteins
predominating over acidic glycoconjugates. In contrast in
the foot epithelium of some nudibranch, the subepithelial
glands called long-necked cells were the origin of the acidic
glycoconjugates [17] whereas the epithelial secretory cells
were PAS positive at both light and ultraestructural [41]
levels. The different histochemical pattern of these studies
may have been caused by the variety of secretory cell types
distributed over the gastropod foot.

In Haliotis, the subepithelial glands, together with the
sole secretory cells, showed reactivity with the three fucose-
specific lectins assayed; moreover, AAA binding was also
found in the side secretory cells. The lectins UEA I and
LTA label preferentially fucose residues located in the outer
region of the oligosaccharide chains [42], whereas AAA can
also bind to those fucose residues alpha(1-6) linked to the
innermost N-acetyl-glucosamine of the core of N-linked
oligosaccharides [43]. Therefore, our findings suggest that
the fucose residues present in the side foot and recognized
by AAA are linked to the core region of N-linked oligosac-
charides. This kind of fucosylation has been described in N-
glycoproteins from different aquatic and terrestrial species of
gastropods [44].

Mannose-specific lectins (ConA and GNA) bind to the
apical portion of the sole ciliated epithelial cells as well as
to the subepithelial glands. A moderate binding of these
lectins to the apical portion of ciliated duct cells has been
described in the digestive tubules of Mytilus [26]. The lectin
ConA binds to some specific classes of N-glycans and is
not known to bind O-glycans on animal cells glycoproteins
[45]. Our results suggest that the subepithelial glands contain
mainly N-glycoproteins. In the side secretory cells mannose
residues are only detected with GNA after desulphation
treatment demonstrating that sulphated mannose is present
in a terminal position.

Labeling with the lectins WGA and DBA indicates the
presence of sulphated residues of N-acetyl-glucosamine and
N-acetyl-galactosamine, respectively, in both the sole and
side secretory cells, but not in the subepithelial glands. These
monosaccharides are fundamental constituents of sulphated
glycosaminoglycans such as heparan sulphate, heparin, and
chondroitin sulphate, and of sulphated mucins. Sulphated
glycosaminoglycans and mucins have been described in other
gastropods [46—48] and could be responsible for an increased
viscosity of the secretions [21, 48]. The occurrence of acidic
sulphated glycoconjugates in the epithelial secretory cells, but
not in the subepithelial glands, found with lectins, agrees
with our results with classical histochemistry.

Glycans terminating with the sequence galactose (betal-
3) N-acetylgalactosamine (PNA reactivity) were found in
the side secretory cells only after desulphation treatment. A
similar result was described by Robledo et al. [26] in the
digestive gland of Mpytilus galloprovincialis, which indicates
the presence of terminal sulphated galactose in O-linked
oligosaccharides [49], most likely in sulphated mucins. If
the mucus secreted by the side foot has some similar
characteristics that one secreted by the digestive gland that
means that it could be indicated that it is involved in
protective and lubrication functions.
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Our results with the lectins SNA and MAA demonstrate
that sialic acid is not present in both side and sole foot
epithelium and in the subepithelial glands of Haliotis
tuberculata; however, it was detected in the connective tissue
of this gastropod. It has been long claimed that the sialic
acid is not present in gastropods, being replaced with N-
acetylmuramic acid [5, 50]; however, it was later detected
in different mollusks by using biochemical [51, 52] and
histochemical (present results) methods.

In general, our data suggest that the sole subepithelial
glands contain mainly N-glycoproteins. In contrast, the
sole secretory cells are characterized by the presence of
sulphated glycosaminoglycans which could be constituents
of proteoglycans, and the side secretory cells are rich in
mucins, mostly sulphated. The sole mucus is a mix of N-
glicoproteins and proteoglycans that Haliotis probably uses
to increase the protection and adhesion to the sustrate.
However the side mucus rich in sulphated mucins typically
increase the viscosity of the mucus and are very important in
protection.

In order to better understand the differences observed
in the glycoconjugates composition among the secretory cell
types of Haliotis tuberculata foot epithelium, we addressed
an ultrastructural study. The obtained results allowed us to
identify seven types of secretory intraepithelial cells and two
types of subepithelial glands, with the latter only present in
the sole foot. The secretory cells contain vesicles that are quite
variable in appearance and electron density. The structure of
these cells is similar to that previously described for other
secretory cells [6, 53], with the exception of the types C and
D, which are characteristic of the side foot. Secretion granules
with a similar ultrastructure to those present in type C, and
D cells were not previously reported.

In conclusion, the variations between the side and sole
Haliotis tuberculata foot epithelia concerning the ultrastruc-
ture of the epithelial and secretory cells, together with the
different types of glycoconjugates found on both parts,
indicate possible functional differences between both areas
of the abalone integument.
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