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Abstract: Abnormal energy metabolism associated with mitochondrial dysfunction is thought to be a
major contributor to the progression of neurodegenerative diseases such as Parkinson’s disease (PD).
Recent advancements in the field of magnetic resonance (MR) based metabolic imaging provide state-
of-the-art technologies for non-invasively probing cerebral energy metabolism under various brain
conditions. In this proof-of-principle clinical study, we employed quantitative 31P MR spectroscopy
(MRS) imaging techniques to determine a constellation of metabolic and bioenergetic parameters,
including cerebral adenosine triphosphate (ATP) and other phosphorous metabolite concentrations,
intracellular pH and nicotinamide adenine dinucleotide (NAD) redox ratio, and ATP production
rates in the occipital lobe of cognitive-normal PD patients, and then we compared them with age-sex
matched healthy controls. Small but statistically significant differences in intracellular pH, NAD
and ATP contents and ATPase enzyme activity between the two groups were detected, suggesting
that subtle defects in energy metabolism and mitochondrial function are quantifiable before regional
neurological deficits or pathogenesis begin to occur in these patients. Pilot data aiming to evaluate
the bioenergetic effect of mitochondrial-protective bile acid, ursodeoxycholic acid (UDCA) were also
obtained. These results collectively demonstrated that in vivo 31P MRS-based neuroimaging can
non-invasively and quantitatively assess key metabolic-energetic metrics in the human brain. This
provides an exciting opportunity to better understand neurodegenerative diseases, their progression
and response to treatment.

Keywords: cerebral ATP energy metabolism; human brain; in vivo 31P MRS-based metabolic
imaging; neurodegenerative disease; ursodeoxycholic acid (UDCA)

1. Introduction

Energy metabolism is a fundamental process of life, and adenosine triphosphate (ATP)
produced by mitochondrial oxidative phosphorylation (OXPHOS) is the main source of
chemical energy for all cellular activities in the brain [1–3]. Due to various cellular defects
or mitochondrial abnormalities, brain cells may fail to meet the energy requirements,
which can lead to cerebral dysfunction and neurodegeneration [4]. A growing body of
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evidence suggests that neurodegenerative diseases such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD) are associated with abnormal mitochondrial function and
impaired cerebral energy metabolism, which evolve over time and play a critical role in
the pathogenesis and progression of the disease [5–7]. Therefore, monitoring bioenergetic
changes in diseased brains could be an effective way to study neurodegeneration, its
progression and the effectiveness of treatment modalities. However, direct and quantitative
measurement of bioenergetics in human brain is challenging due to the lack of appropriate
neuroimaging tools.

Positron emission tomography (PET) has been established to evaluate regional brain
glucose or oxygen utilization, neurochemical changes and inflammation in AD and PD
brains [8–11], but it is limited in assessing mitochondrial enzymatic activities and ATP
bioenergetics. Magnetic resonance (MR) spectroscopy (MRS) is capable of non-invasively
identifying neurochemical information via detection of major metabolites in the living
human brain [12–16]; and it has been applied to investigate abnormal cerebral metabolism
and bioenergetics in human patients [17–21]. In particular, in vivo 31P MRS can directly de-
tect constituents of endogenous phosphorous metabolites, including ATP, phosphocreatine
(PCr), inorganic phosphate (Pi), phosphoethanolamine (PE) and glycerophosphocholine
(GPC), as well as intracellular pH and free magnesium content ([Mg2+]). It should, therefore,
provide an ideal tool for assessing the link between energy failure and neurodegenerative
diseases [4,22]. Nevertheless, only a small number of such studies have been reported and
most of them were performed on relatively low-field (≤3 Tesla (T)) MR imaging (MRI) scan-
ners with limited signal-to-noise ratio (SNR) and sub-optimal spectral quality [18,23–31].
In addition, although absolute quantification is desired, it is not easy to accomplish [32];
and thus, most previous studies only provide qualitative information by reporting signals
or concentration ratios between different metabolites. This makes it difficult to interpret
results, especially in the absence of any reliable internal metabolite reference in the diseased
state.

With recent technology advancement and increased availability of ultrahigh-field
(UHF, ≥7T) MRI scanners, the advantages of in vivo 31P MRS at UHF have been demon-
strated and well recognized. The substantial SNR gain and improved spectral resolution,
as well as markedly shortened longitudinal relaxation time (T1) of phosphorous metabo-
lites at UHF have greatly improved the sensitivity and accuracy of the in vivo 31P MRS
measurement with significantly reduced measurement time [33,34], which is critical for
patient studies. Furthermore, we have developed several novel in vivo 31P MRS based
neuroimaging techniques that can measure and quantify not only the concentration of
major phosphorous metabolites, but also cerebral ATP production rates and redox state of
nicotinamide adenine dinucleotide (NAD) in animal and human brains [35–39]. An experi-
mental protocol for quantifying a range of bioenergetic and neurophysiological parameters
has also been established for human brain application using a radiofrequency (RF) surface
coil [40]. Thus, it is possible to provide essential parameters and quantities of interest
in absolute units, so that the bioenergetic state of the human brain in different locations,
times and/or conditions can be directly evaluated and compared. These capabilities open
new opportunities for studying abnormal brain metabolism and bioenergetics in human
patients diagnosed with neurodegenerative diseases.

In this work, we conducted a proof-of-principle study on patients with mild to moder-
ate Parkinson’s disease using a 7T human MRI scanner. We selected the occipital lobe of
PD patients with normal cognitive function as the target area of this study based on the
considerations that (i) PD is a neurodegenerative disorder affecting many brain regions;
(ii) the current 31P MRS-based neuroimaging technology can achieve the best detection sen-
sitivity in the cortical brain regions; and (iii) we intended to test the feasibility of detecting
subtle metabolic and energetic changes at an early stage of neurodegeneration. In addition,
using the same methodology, pilot data were obtained from several PD patients to assess
the potential bioenergetic effects of the mitochondrial-protective bile acid ursodeoxycholic



Metabolites 2021, 11, 145 3 of 17

acid (UDCA) [41–43], a Food and Drug Administration (FDA)-approved drug for treating
primary biliary cholangitis.

2. Results
2.1. Characterization of the Study Participants

A total of 19 cognitively normal, mild to moderate PD patients and an equal number
of healthy control (CT) subjects participated in this study. They were recruited into two
separate cohorts for different 31P MRS-based metabolic imaging measurements (see details
below). The characteristics of the participants are summarized in Table 1. The age and sex
were well matched between the corresponding PD and CT groups, and their MoCA scores
were not significantly different. Table 1 also includes the UPDRS and MoCA scores of the
patients before and after UDCA treatment. Although a slight improvement with UDCA
was detected, the data did not reach a significant level due to the small sample size.

Table 1. Subject Characteristics.

Cohort I Cohort II Subset of Cohort II-PD

PD CT PD CT Pre-UDCA Post-UDCA

Subject Number 8 8 11 11 3 3

Gender 4M/4F 4M/4F 5M/6F 5M/6F 2M/1F 2M/1F

Age (years) 62 ± 7 60 ± 8 64 ± 8 61 ± 8 67 ± 11

UDPRS Score 24 ± 15 - 36 ± 11 - 40 ± 10 37 ± 12

MoCA Score 27 ± 3 29 ± 2 28 ± 2 29 ± 1 27 ± 2 28 ± 2

PD: Parkinson’s disease patient; CT: healthy control; M: male; F: females; UDPRS: Unified Parkinson Disease Rating Scale; and MoCA:
Montreal Cognitive Assessment. All data are presented as Mean ± SD.

2.2. Cerebral Phosphorous Metabolite Profiles of PD Patients and Controls

To accurately determine the contents of phosphorous metabolites and other key
physiological parameters in healthy and diseased brains, we acquired high quality 31P
spectra from each participant at UHF of 7T. Figure 1A indicates the position of the 31P
coil relative to human brain in a 1H MRI; and Figure 1B shows a typical 31P MR spectrum
obtained from the occipital lobe of a representative patient. Excellent sensitivity, spectral
resolution and fitting quality are evident from Figure 1C, which displays original and
spectral fitting of the α-ATP, oxidized (NAD+) and reduced (NADH) NAD resonance
signals with a very small residual. The superb quality of the 31P spectral data is also
confirmed by the high SNR and narrow linewidth (LW) of the PCr resonance peak and
their consistency as determined in Cohort I PD (SNRPCr = 268 ± 44 and LWPCr = 20 ± 1 Hz,
n = 8) and CT (SNRPCr = 273 ± 25 and LWPCr = 21 ± 5 Hz, n = 8) brains with p-values of
0.79 for SNRPCr and 0.38 for LWPCr, respectively.

Figure 2 summarizes the results obtained from Cohort I and indicates that the con-
centrations of ATP, PCr, PE, NAD+ and total NAD (=[NAD+] + [NADH]) in the occip-
ital lobe of the PD patients were lower than those of healthy controls, and the differ-
ences were statistically significant (p < 0.01, n = 8; Figure 2A,C). On the other hand,
no significant difference in the metabolites ratio of PCr/ATP, Pi/ATP, Pi/PCr, PE/ATP
and GPC/ATP between the two groups was detected (p > 0.2, n = 8; Figure 2B). The
NAD+/NADH redox ratio (RX, Figure 2D) and intracellular pH (Figure 2E) were slightly
lower in the PD brains (pHPD = 7.031 ± 0.003, RXPD = 4.29 ± 1.33, n = 8) than those of CT
(pHCT = 7.035 ± 0.006, RXCT = 4.52 ± 0.87, n = 8), which did not reach a statistical signifi-
cance (the p values were 0.09 and 0.68, respectively). The group-averaged concentrations
of NAD+ ([NAD+]PD = 0.34 ± 0.03 millimolar (mM), [NAD+]CT = 0.39 ± 0.02 mM, n = 8,
p = 0.0002), NADH ([NADH]PD = 0.09 ± 0.02 mM, [NADH]CT = 0.09 ± 0.02 mM, n = 8,
p = 0.66), and total NAD ([NADtotal]PD = 0.43± 0.03 mM, [NADtotal]CT = 0.48 ± 0.01 mM,
n = 8, p = 0.0006) are reported herein; and the distributions of the individual values of
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NAD+, NADH, total NAD and RX obtained from all participants in Cohort I can be found
in Figure S1. The NAD molar concentrations presented here were calculated after correct-
ing the saturation effect caused by a short repetition time used in acquiring the in vivo
31P MRS data, which are slightly higher than those reported in earlier studies. However,
this correction did not affect the RX values because both NAD+ and NADH levels were
corrected in the same way [37,39].

Metabolites 2021, 11, x FOR PEER REVIEW 3 of 17 
 

 

ursodeoxycholic acid (UDCA) [41–43], a Food and Drug Administration (FDA)-approved 

drug for treating primary biliary cholangitis. 

2. Results 

2.1. Characterization of the Study Participants 

A total of 19 cognitively normal, mild to moderate PD patients and an equal number 

of healthy control (CT) subjects participated in this study. They were recruited into two 

separate cohorts for different 31P MRS-based metabolic imaging measurements (see details 

below). The characteristics of the participants are summarized in Table 1. The age and sex 

were well matched between the corresponding PD and CT groups, and their MoCA scores 

were not significantly different. Table 1 also includes the UPDRS and MoCA scores of the 

patients before and after UDCA treatment. Although a slight improvement with UDCA 

was detected, the data did not reach a significant level due to the small sample size. 

Table 1. Subject Characteristics. 

 
Cohort I Cohort II Subset of Cohort II-PD 

PD CT PD CT Pre-UDCA Post-UDCA 

Subject Number 8 8 11 11 3 3 

Gender 4M/4F 4M/4F 5M/6F 5M/6F 2M/1F 2M/1F 

Age (years) 62 ± 7 60 ± 8 64 ± 8 61 ± 8 67 ± 11 

UDPRS Score 24 ± 15 - 36 ± 11 - 40 ± 10 37 ± 12 

MoCA Score 27 ± 3 29 ± 2 28 ± 2 29 ± 1 27 ± 2 28 ± 2 

PD: Parkinson’s disease patient; CT: healthy control; M: male; F: females; UDPRS: Unified Parkin-

son Disease Rating Scale; and MoCA: Montreal Cognitive Assessment. All data are presented as 

Mean ± SD. 

2.2. Cerebral Phosphorous Metabolite Profiles of PD Patients and Controls 

To accurately determine the contents of phosphorous metabolites and other key 

physiological parameters in healthy and diseased brains, we acquired high quality 31P 

spectra from each participant at UHF of 7T. Figure 1A indicates the position of the 31P coil 

relative to human brain in a 1H MRI; and Figure 1B shows a typical 31P MR spectrum 

obtained from the occipital lobe of a representative patient. Excellent sensitivity, spectral 

resolution and fitting quality are evident from Figure 1C, which displays original and 

spectral fitting of the α-ATP, oxidized (NAD+) and reduced (NADH) NAD resonance sig-

nals with a very small residual. The superb quality of the 31P spectral data is also con-

firmed by the high SNR and narrow linewidth (LW) of the PCr resonance peak and their 

consistency as determined in Cohort I PD (SNRPCr = 268 ± 44 and LWPCr = 20 ± 1 Hz, n = 8) 

and CT (SNRPCr = 273 ± 25 and LWPCr = 21 ± 5 Hz, n = 8) brains with p-values of 0.79 for 

SNRPCr and 0.38 for LWPCr, respectively. 

 

Figure 1. (A) 1H MR image (sagittal orientation) of a subject brain showing the size and location of the 31P surface coil 

used in the study; (B) a representative 31P MR spectrum obtained from a PD patient; and (C) expanded original and 

Figure 1. (A) 1H MR image (sagittal orientation) of a subject brain showing the size and location of the 31P surface coil
used in the study; (B) a representative 31P MR spectrum obtained from a PD patient; and (C) expanded original and fitted
spectra covering the chemical shift range of a-ATP, NAD+ and NADH (gray trace: original data, red trace: spectral fitting,
blue/black/green traces: decomposed a-ATP, NAD+ and NADH signals).
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Figure 2. Occipital phosphorous metabolites profile in Parkinson’s patients (PD, n = 8) and age/gender-matched healthy
controls (CT, n = 8) of Cohort I. (A) Metabolite concentrations of ATP, Pi, PCr, PE, GPC and (B) their ratios; (C) intracellular
NAD+, NADH and total NAD contents, (D) NAD+/NADH redox ratio; and (E) intracellular pH are presented. * p < 0.01
and ** p < 0.001 indicate that statistic significant differences were detected with 2-tailed student t-test; and all data are
presented as Mean ± SD.
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The concentrations of ATP, PCr, Pi, PE and GPC were also determined in PD and
CT of Cohort II using the 31P MRS-MT data acquired without the γ-ATP resonance sat-
uration, but similar SNR and spectral quality as Cohort I. As shown in Figure 3A,B,
statistically significant decreases in the ATP, Pi and PE levels were detected again in the
PD brains; and the pH values were also lower in PD (pHPD = 7.031 ± 0.008, n = 11) than
CT (pHCT = 7.037 ± 0.008, n = 11) with p = 0.11. The individual values of ATP, Pi and PCr
concentrations, intracellular pH, free [Mg2+] and PE/GPC ratios obtained from all partici-
pants in both cohorts are summarized in Figure 4. Statistically significant differences were
detected in concentrations of ATP ([ATP]PD = 2.62 ± 0.17 mM, [ATP]CT = 2.82 ± 0.14 mM,
n = 19, p = 0.0004), Pi ([Pi]PD = 0.90 ± 0.12 mM, [Pi]CT = 1.01 ± 0.11 mM, n = 19, p = 0.007),
PE ([PE]PD = 2.94 ± 0.49 mM, [PE]CT = 3.32 ± 0.39 mM, n = 19, p = 0.012), and [PE]/[GPC]
ratio ([PE/GPC]PD = 1.29 ± 0.14, [PE/GPC]CT = 1.45 ± 0.16, n = 19, p = 0.002), as well
as in intracellular pH (pHPD = 7.031 ± 0.006 mM, pHCT = 7.036 ± 0.007 mM, n = 19,
p = 0.021) between the PD and CT brains after combining the data from Cohorts I and
II. Lower PCr levels were also observed in the PD brains ([PCr]PD = 4.50 ± 0.53 mM,
[PCr]CT = 4.79 ± 0.34 mM, n = 19, p = 0.054), but due to large individual variations, the
difference was slightly lower than the level of statistical significance.

1 
 

 
Figure 3. Summary of phosphorous metabolites concentration (A), intracellular pH (B), forward rate constant (C) and
cerebral metabolic rate of ATPase (D) and CK (E) reactions measured in the occipital lobe of PD patients (PD, n = 11)
and age-/gender-matched control subjects (CT, n = 11) of Cohort II. All data are presented as Mean ± SD. * p < 0.05 and
** p < 0.005 indicate that significant differences were detected with 2-tailed Student t-test.
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2.3. Abnormal Bioenergetics in the Brain of PD Patients

To further evaluate the impaired energy metabolism in the occipital lobe of PD patients,
we directly measured the forward reaction rate constant (kf,ATPase and kf,CK) and cerebral
ATP production rate (CMRATP and CMRCK) via the ATPase and CK reactions, respectively,
using in vivo 31P MRS in combination with magnetization transfer (MT) technique (31P
MRS-MT) [44] in Cohort II. As summarized in Figure 3C–E, we found that the forward rate
constants of ATPase reaction were higher in PD patients (kf,ATPase

PD = 0.16 ± 0.03 s−1, n = 11)
than that in age-sex matched controls (kf,ATPase

CT = 0.13 ± 0.02 s−1, n = 11) with a statistically
significant p value of 0.013 (Figure 3C); and the mean metabolic rate of ATP production via
the ATPase reaction was slightly higher in PD than CT although it did not reach a statistical
significance (CMRATP

PD = 7.50 ± 1.61 µmol/g/min, CMRATP
CT = 6.65 ± 1.23 µmol/g/min,

n = 11, and p = 0.18, Figure 3D). In contrast, the forward rate constant and ATP production
rate via the CK reaction showed no difference between the two groups (kf,CK

PD = 0.35
± 0.03 s−1, CMRCK

PD = 93.1 ± 7.0 µmol/g/min, n = 11; and kf,CK
CT = 0.35 ± 0.02 s−1,

CMRCK
CT = 94.3 ± 6.4 µmol/g/min, n = 11; with p values of 1.0 and 0.43, respectively,

calculated from Mann-Whitney U test, Figure 3C,E). The distributions of the kf,ATPase, kf,CK,
CMRATP and CMRCK values of the individual PD and CT in Cohort II are reported in
Figure S2.

2.4. Pilot Test in Assessing Bioenergetic Effects of UDCA Treatment in PD Brains

To test the feasibility of monitoring treatment-induced bioenergetic changes, a subset
of Cohort II-PD patients received a daily dose of oral UDCA for 6 weeks; and the same 31P
MRS-MT measurements were performed before and after treatment. Three participants
completed the pre- and post-UDCA scans with averaged blood concentrations of endoge-
nous UDCA below 200 ng/mL prior to treatment and about 1600 ng/mL at end of the
treatment. Their phosphorous metabolites concentration, intracellular pH, forward rate
constant and cerebral metabolic rate of ATPase and CK reactions were determined before
and after the 6-week UDCA treatment regimen as summarized in Figure S3.
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In order to better understand the bioenergetic effects of the UDCA in the PD brain,
we presented the measured parameters as the ratio of pre- and post-UDCA, and then
compared them in parallel with the ratio of the PD and CT groups in Cohort II (see Figure
S4 for details), assuming that the pre-UDCA condition and the PD group shared the same
bioenergetic status. We found that the ATP, Pi and PCr concentrations, kf,ATPase, and
CMRATP values in patient’s brain after the 6-week UDCA regimen were all shifted toward
the levels of the CT brains. However, these changes were small relative to the PD vs. CT
differences and did not reach statistical significance due to the limited number of subjects
in this pilot clinical trial. In addition, small increases in the post-UDCA kf,CK and CMRCK
values were also observed.

3. Discussion

Although it has long been suspected that mitochondrial dysfunction and energy
failure causes neuronal death in a range of neurodegenerative diseases [4–6,45], it has
been difficult to obtain direct and quantitative evidence that energy failure does occur
in the brains of human patients. Previous in vivo 31P MRS studies of diseased brains
have attempted to provide such proof by measuring steady-state levels of high-energy
phosphates (i.e., ATP and PCr) and Pi, or their 31P signal (or concentration) ratios in
different brain regions, but the results were inconsistent and elusive [18,21,23,25–31].

In this study, we utilized a 7T UHF human MRI scanner to quantitatively assess the
bioenergetic status of visual cortex region in mild to moderate PD patients without demen-
tia. Although the main pathology and clinical manifestations of PD are primarily associated
with the substantia nigra (SN), PD is a systemic brain disorder and extra nigral areas of
the brain, e.g., the cerebral cortex, could also develop signs of neurodegeneration owing to
propagation of the disease [46], although the effects are usually less pronounced compared
to the sub-cortical nuclei such as SN. It has been reported that PD patients with demen-
tia developed abnormal metabolism in occipital lobe prior to onset of the dementia [47].
This supports the notion that abnormal metabolism and energetics due to mitochondrial
dysfunction likely precede symptoms seen in patients with neurodegenerative diseases,
particularly in brain region(s) without significant neuronal death [7]. If we could detect and
quantify such subtle changes in the early stages of the disease using an advanced metabolic
imaging technique, then it would become a powerful tool for accurately identifying disease
onset, and monitoring its progression, or the efficacy of disease-modifying therapies.

With established MR imaging technology and the hardware currently available at 7T,
we obtained 31P MRS data with excellent sensitivity and spectral quality (see Figure 1B
for an example) from the human visual cortex, which ensured the reliability and accuracy
of the measurements. In this study, the 31P MRS and 31P MRS-MT methods were used
to independently evaluate two cohorts of PD and CT, and the trends of ATP, PCr, Pi, PE
and pH changes were consistent in both cohorts. Overall, the decrease in intracellular
ATP and Pi in the occipital lobe of PD patients was statistically significant (approximately
7% and 11%, respectively). However, there was no difference in the metabolite ratios of
Pi/ATP, PCr/ATP and Pi/PCr between patients and controls, in part, because impaired
metabolism in the patient brains resulted in parallel reductions of these phosphate metabo-
lites (Figures 2A and 3A). These findings highlighted the importance of absolute quantifi-
cation of individual metabolites, which is more meaningful and sensitive to the assessment
of brain phosphate contents and their changes than the ratio of different metabolites. The
content of ATP and other phosphate compounds, and those of multiple metabolites may
change under pathological conditions. Thus, the metabolite ratios only represent the rela-
tive levels of the two compounds. A difference in ratios cannot reveal the actual change
in each metabolite; and the same ratio does not mean the content of each metabolite is
constant.

In addition to quantifying the phosphate compounds involved in ATP metabolism,
we also applied an in vivo NAD assay developed in our lab [37–39] to determine the
oxidized and reduced NAD levels and NAD redox state in PD brains for the first time.
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We found that the intracellular NAD+ and total NAD contents in occipital lobes of the PD
patients were significantly decreased, and their NAD+/NADH redox ratio was slightly
lower compared to the control group. The validity of the in vivo NAD assay method has
been evaluated and confirmed in both animal and human brains and at different magnetic
fields [37–39,48]. Although NAD+ and NADH exist in different cellular compartment, all
sub-cellular compartments contribute their signals detected by the MR-based NAD assay,
with the majority signals from mitochondria and cytosol of the brain cells. Therefore, the
NAD+/NADH values represent the intracellular NAD redox state of targeted brain tissues.
Using the same method, it has been shown that cerebral NAD contents and redox ratios
decline during normal aging [39,48]. Even so, NAD+ levels in the brains of PD patients
were further reduced compared to age-matched controls. This observation is consistent
with the pivotal role of NAD+ in cellular bioenergetics, genomic stability, mitochondrial
homeostasis, adaptive stress responses, and cell survival (see the review article [49] and
references cited therein). It has been widely accepted that NAD+ not only regulates the ATP
energy metabolism through the NAD+/NADH redox reactions, but also serves as a sole
substrate for different NAD+-dependent enzymes involved in various cellular signaling
processes. The activity of these enzymes is sensitive to or regulated by cellular NAD+

levels, and NAD+ depletion has been reported in different neurological disorders [50–54].
For example, it has been shown that DNA damage activates the enzyme poly (ADP-
ribose) polymerase 1 (PARP1); and higher PARP1 activity and lower NAD+ level are
associated with ischemia, neuroinflammation, and neurodegenerative diseases. Moreover,
intracellular NAD+ remains a crucial aspect in the pathogenesis/pathophysiology and
treatment of Parkinson’s disease. In fact, a study of NAD+ and treatment in cellular
models of the disease, e.g., patient-derived induced pluripotent stem cells, established that
modulation of NAD metabolism might prove useful in the treatment of PD [55]. Therefore,
the level of intracellular NAD may reflect brain tissue health. The non-invasively measured
[NAD+], [NADH], [NADtotal] and RX values provide valuable and sensitive biomarkers
for assessing the pathophysiological condition of the human brain and potentially for
monitoring therapeutic efficacy. This study demonstrates the first application of an in vivo
NAD assay for investigating neurodegenerative diseases in human patients.

When profiling the cerebral phosphorous metabolites, we were able to determine
the molar concentrations of PE and GPC, which represent the levels of precursors and
intermediates of the phospholipid metabolism, respectively [56,57]. We found a statistically
significant reduction in PE concentration and PE/GPC ratio but unchanged GPC levels in
diseased brain, suggesting impaired membrane phospholipid anabolism and/or relatively
increased membrane catabolism in the occipital lobe of PD patients. Meanwhile, in both
Cohorts I & II, we observed lower intracellular pH in the PD brains as compared to age-
matched controls, and this difference reached statistical significance when combining the
data from the two cohorts. There has been age-related reductions in intracellular pH and
membrane synthesis reported in healthy human brains [58]. Further reductions of pH and
PE levels in age-matched diseased brains as shown herein suggest that the occipital lobe of
the PD patients may have undergone more advanced aging processes than their healthy
counterparts, even though this brain region has subtle or only late pathological changes in
PD per the Braak Hypothesis [59].

Cortical thinning and subcortical atrophy that may occur at different stages in the
pathogenesis of PD are well documented in the literature (e.g., [60,61]). The overall findings
indicate that there is no significant volume change or atrophy in the occipital cortex of
mild to moderate PD patients without cognitive impairment or dementia. Because the
PD cohorts in our study showed similar cognitive functions as their healthy counterparts
(see Table 1), it is unlikely that the reductions in the occipital ATP and other phosphorous
metabolite levels as observed in this study could be explained by morphological change
such as atrophy. It is noteworthy that our results were not corrected for the partial volume
contribution of cerebrospinal fluid (CSF), which estimated to be ~10% or less [62,63].
However, even considering the partial volume of CSF, the amount of correction will be
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relatively small. It would, in fact, increase the concentrations of all metabolites in the PD
and CT groups in parallel without changing the relationship between the two groups or
the conclusions of this study.

To better understand the abnormal bioenergetics in the PD brains, we directly mea-
sured the forward rate constants and cerebral ATP production rates via ATPase and CK
reactions using the in vivo 31P MRS-MT approach in Cohort II participants since both
reactions contribute to changes in brain ATP levels. To our surprise, we found that the
ATPase enzyme activity represented by the forward rate constant kf,ATPase was higher in
PD brains, while there was no significant difference in CMRATP values between the PD
patients and healthy controls (see Figure 3 and Figure S2). On the other hand, the CK
enzyme activity, expressed by the forward rate constant kf,CK, and CMRCK values were
the same in the two groups. These results suggested that there might be a cellular energy
compensatory mechanism in this region of the PD brain, whereby brain cells attempt to
maintain ATP homeostasis by increasing ATPase activity and ATP production. It has been
shown in resting rat brains that ATP homeostasis was tightly regulated across a wide range
of brain states, from light anesthesia to iso-electric state, by varying ATPase activity and
CMRATP. In contrast, CK activity and CMRCK were relatively less sensitive to the changing
brain states [64].

In a recently published functional 31P MRS-MT study, we further demonstrated dis-
tinctive and complementary roles of ATPase and CK reactions in supporting evoked
neuronal activity and maintaining ATP homeostasis in healthy human brains. Our results
showed that during physiological stimulation, the ATPase reaction dominated ATP energy
production and supply, while the CK reaction played a complementary role in energy
transportation and maintaining stable ATP levels [40]. Herein, we hypothesized that in
the brains of PD patients, presumably DNA damage or other cellular defects modulate
NAD+-dependent enzyme activities and reduce the intracellular NAD+ content, result-
ing in a decrease of steady-state ATP content in the brain. Therefore, upregulation of
mitochondrial ATP synthase would likely occur to enhance ATP production and meet
the energy requirements of the brain cells. However, we posit that as the disease pro-
gresses, the mismatch between the energy demand and ATP production will increase,
eventually leading to energy failure and cell death [7]. Nevertheless, the pathogenesis and
progression of neurodegenerative diseases vary across different brain regions at different
disease stages [46,59]. For instance, similar changes may occur in the frontal or parietal
lobe at much earlier time points in disease evolution, though this prediction requires a
separate study to confirm. Further, different types of brain cells have different bioenergetic
capacities and/or needs, so their ability to cope with activity-dependent fluctuations in
bioenergetic demand could vary. Recent experimental evidences have provided clues as
to why dopamine neurons in SN are particularly susceptible to the cellular dysfunctions
commonly found in PD [65]. The data supports the idea that the heightened vulnerability
of the nigral dopamine neurons can be directly attributed to their specific bioenergetic and
morphological characteristics, i.e., these neurons have more complex axons and higher ax-
onal mitochondria density. Consequently, they have a higher basal energy requirement and
smaller energy reserve capacity, and therefore are increasingly vulnerable to the cellular
stresses that impair mitochondrial energy production.

The 31P MRS-based metabolic imaging tools employed in this study and the results
presented herein demonstrated the ability to non-invasively investigate the abnormal
energy metabolism at different stages of human brain neurodegeneration. This advanced
metabolic imaging technology, combined with a sophisticated quantification protocol that
calibrates ATP concentration in each individual brain, can be applied to the same subject
in different scan sessions. It can longitudinally assess disease progression and/or treat-
ment response, especially to determine the degree of energy deficiency or the effectiveness
of restoring brain energy metabolism. As a demonstration, we obtained pilot data in
a small group of PD patients to examine the bioenergetic efficacy of UDCA treatment.
UDCA is a naturally occurring hydrophilic bile acid and a FDA-approved drug for treating
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primary biliary cholangitis. Its anti-apoptotic and mitochondria-protective effects have
been reported in various studies using PD or AD cell lines and preclinical animal mod-
els [41–43,66,67]. Particularly, UDCA displayed remarkable rescue effect for improving
mitochondrial function [68–71] and increasing the cellular ATP level in a large-scale drug
screen study [69]. The safety and tolerability of high doses of UDCA (up to 50 mg/kg/day)
in patients with amyotrophic lateral sclerosis (ALS) have been demonstrated; and it has
also been confirmed that UDCA can cross the blood brain barrier with measurable levels
in the CSF that correlated with those from serum [72]. The pharmacokinetics, safety and
tolerability of orally administered UDCA were evaluated in five PD patients, who are the
subset of Cohort II in this study, and the results have recently been published [73].

The prior findings support the notion that UDCA has the potential to exert a central
biological effect that improves brain mitochondrial function and cellular ATP availability
in PD and may have beneficial disease modifying effects. Herein, we conducted the first
in vivo measurement to assess the actual neuroenergetic response of human patients to
UDCA treatment. The baseline and endpoint (i.e., 6-week) plasma UDCA concentrations
data confirmed that UDCA is absorbed following oral administration and drug concentra-
tions accumulated with the dosing regimen used in PD patients. The pilot 31P MRS-MT
data suggested that orally administered UDCA may improve the intracellular ATP avail-
ability and normalize the ATPase activity and CMRATP, and an enhanced role of creatine
kinase reaction may partially contribute to the improved ATP availability after the UDCA
treatment. Nevertheless, no conclusion can be draw from the limited pilot data; larger
scale clinical studies are needed to confirm these observations and to further explore the
potential of UDCA treatment for PD or other neurodegenerative diseases.

In recent decades, the prevalence of neurodegenerative diseases caused by extended
lifespan has brought major challenges to our society. Accumulated evidence suggests
that impaired brain energy metabolism, which subtly declined during aging and tightly
associated with disease progression, may be a significant factor. Accordingly, therapeu-
tic approaches based on brain energy rescue strategies have been explored (see review
article [7] and references cited therein). To determine whether such approaches can truly
improve the brain energetics and disease outcomes, metabolic imaging tools are essential.
This study clearly demonstrated the capability of the proposed technology; however, in
order to extend the current capability in research settings to broader clinical applications,
further technique development is required. For example, although 7T clinical scanner has
received FDA approval for brain applications, hardware and software support related to
X-nuclei (non-proton) based metabolic imaging is still lacking. Also, commercial dual-
frequency radiofrequency (RF) coils with optimal sensitivity and whole brain coverage are
needed to target different brain regions affected by various brain disorders.

4. Materials and Methods
4.1. Participants and Study Design

The University of Minnesota Human Research Protection Program (UMN-HRPP) and
Institutional Review Board (IRB) reviewed and approved the study protocol. Patients
older than 18 years with medically stable, mild to moderate PD (supported by the Unified
Parkinson Disease Rating Scale (UDPRS) and identified as stage I-II on the Hoehn and Yahr
scale), and age- and sex-matched healthy controls (CT) were recruited for the study. Written
informed consent was obtained from all participants prior to enrollment or before the MR
imaging scans. All participants underwent a MR safety screen and the Montreal Cognitive
Assessment (MoCA). Individuals who fail the safety screen, with unstable conditions,
dementia or other neurological disorders, pregnant or lactating women, and those unable
to adhere to study protocol for any other reason were excluded from participating in the
study. All patients were off anti-Parkinson medication (~12 h) when they were scanned
and UDPRS scores were obtained before resuming medication use.

Two cohorts of PD patients and their age-sex matched healthy controls were recruited
in this study. In the first cohort of participants (Cohort I), we measured the profile of cerebral
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phosphorous metabolites using quantitative in vivo 31P MRS at 7T. Steady-state concentra-
tions of energy phosphate compounds (ATP, PCr and Pi), phospholipid metabolites (PE
and GPC), oxidized (NAD+) and reduced (NADH) NAD, thus, the total intracellular NAD
content; as well as the NAD redox ratio (RX), intracellular pH and [Mg2+] were measured
and compared between the PD (n = 8) and CT (n = 8) groups. In the second cohort of
participants (Cohort II), we quantified the forward reaction rate constant (kf) and cerebral
metabolic rate of ATP production via the ATPase and creatine kinase (CK) reactions in
separate groups of PD (n = 11) and CT (n = 11) using in vivo 31P MRS-MT approach [44].
To evaluate ursodeoxycholic acid (UDCA), a naturally-occurring hydrophilic bile acid with
known mitochondrial-protective effects, for its ability to improve brain bioenergetics in
neurodegenerative patients, we recruited and enrolled five PD participants from Cohort II
(Subset of Cohort II-PD) for a prospective 6-week open-label study of oral UDCA. Three
patients (n = 3) were scanned before and after the 6-week UDCA trial using the same 31P
MRS-MT protocol as Cohort II. The other two failed to complete the study due to scanner
hardware problems.

4.2. UDCA Therapy and Dosing

UDCA tablets Urso (250 mg) and Urso Forte (500 mg) were purchased from Axcan
Pharmaceuticals, Quebec City, QC, Canada [73]. The total daily dose divided into three
approximately equal portions was given to each participant with increasing dosage at
15 mg/kg/day in week 1, 30 mg/kg/day in week 2 and 50 mg/kg/day in weeks 3–6. Each
participant was instructed to take the study medication according to their individualized
dosing schedule with meals three times per day. A weekly telephone survey was conducted
to assess compliance and document any adverse events. In case of adverse events resulting
from an escalated dose, participants were allowed to continue with the tolerated dose for
the remainder of the study. Upon completion of the 6-week UDCA treatment, participants
returned for the final study visit to receive their final dose of UDCA prior to the post-
UDCA MR scan. Blood samples were collected from these patients prior to the MR scans to
measure baseline or steady-state concentrations of UDCA and its conjugates using liquid
chromatography-mass spectrometry (LC-MS) [74].

4.3. MR Data Acquisition

All 1H MRI and 31P MRS measurements were conducted on a whole-body/90-cm
bore actively shielded 7T human scanner (Siemens MAGNETOM, Erlangen, Germany).
Magnetic field (B0) shimming (up to 3rd order) was performed using Siemens 3D shim-
ming sequence. A home-built RF probe consisting of passively decoupled 1H and 31P
(5 cm diameter) dual surface coils was placed beneath the human occipital lobe for the
acquisition of MR data. A small glass sphere containing a phosphorus reference (1.0 M
solution of methylphosphonic acid) was fixed at the center of the 31P coil for RF power
and pulse flip angle (FA) calibration. T1-weighted 1H anatomic images were acquired with
TR/TE/TI = 3000/3.3/1500 ms (TR: repetition time, TE: echo time, TI: inversion time),
nominal FA = 7◦, and 1 mm isotropic resolution.

For Cohort I, 31P MR pulse-acquired spectra (number of transit (NT) = 320, TR = 3 s and
FA = 84◦) and 3D chemical shift imaging (CSI) data (field of view (FOV) = 12 × 12 × 9 cm3,
phase-encoding matrix = 7 × 7 × 5, TR = 1.2 s, total NT = 896 and nominal FA = 68◦

using a (hard) RF pulse with 300 µs pulse width) were acquired. A 3D 31P-CSI data were
also obtained after each human scan session from a head-sized spherical ATP phantom
(containing 10 mM ATP, 10.3 mM [Mg2+] and ~50 mM [Na+] at pH of 7.0) with the same
sample loading and position as the subject’s head to calibrate and quantify brain metabolite
concentrations [40]. For Cohort II, 31P MRS-MT spectra with and without γ-ATP resonance
saturation, respectively, were acquired by using the following parameters: 300 µs hard
pulse with FA = 84◦ for excitation; RF magnetic field (B1) insensitive selective train to
obliterate signal (BISTRO) [75] pulse (50 ms pulse width) train with 160 Hz saturation
bandwidth and 1.37 s or 2.74 s saturation duration (Tsat); and TR = 3 s and NT = 320. In
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each scan session, 3D 31P-CSI data of the brain and the ATP phantom with the same loading
and position were acquired as described for Cohort I.

4.4. MR Data Analysis and Quantification

All 31P MR spectra were zero-filled; and a 10 Hz Lorentzian line broadening was
applied before fast Fourier transformation to enhance the SNR. The AMARES (Advanced
Method for Accurate, Robust, and Efficient Spectral fitting) time domain spectra fitting
algorithm in the jMRUI software package (version 5.0) was used to analyze the 31P spec-
tra [76,77]; and a custom-made MATLAB program based on the newly developed NAD
assay method was used to analyze the spectra containing α-ATP, NAD+ and NADH
peaks [38,39]. Compared with other quantitative methods, AMARES relies on non-linear
least squares quantitative algorithms, combined with prior knowledge and constraints
provided by users to improve quantitative accuracy [77]. The MR-based in vivo NAD assay
uses a high-field MR scanner (7T in this study) to obtain the endogenous 31P MR signals
of the NAD molecules in intact brains. It resolves the MR signal of NADH from that of
NAD+ by taking advantage of their specific spectroscopic characteristics at a given mag-
netic field strength, thus, enables the quantification of submillimolar NAD+ and NADH
contents in the human brain [38]. The integrals of the individual phosphorous metabolites
from the spectral fitting were used to quantify their molar concentrations after correcting
for saturation effects based on the T1, B1 and FA information. The T1 values of the hu-
man brain phosphorous metabolites at 7T were previously determined and employed in
this study [33,34]. The intracellular pH values were determined from the chemical shift
difference of Pi relative to PCr (δPi−PCr) based on the following equation:

pH = 6.75 + log10 [(δPi-PCr − 3.27)/(5.63 − δPi-PCr)], (1)

and the free [Mg2+] content of the brain tissue was derived from the chemical shift differ-
ences of PCr to β-ATP using the subroutine in jMRUI software [76,78]. The resonance of
PCr was set at −2.5 ppm and used as a chemical shift reference for other phosphorous
compounds.

We have established a robust protocol for absolute quantification of phosphorous
metabolite concentrations in human brains. The molar ATP concentration of each subject
was determined first by comparing the ATP signals in the selected brain region (Ibrain) to
that of ATP phantom (Iphantom) using the 3D-CSI data acquired under fully relaxed condition
in each scan session and following equation:

[ATP]brain = [ATP]phantom × Ibrain ÷ Iphantom, (2)

Then, the [ATP]brain was used as an internal reference for determining the molar con-
centration of other phosphorous metabolites in each brain with the correction of saturation
effect [40]. The reported ATP concentration was calculated from an average of the γ- and
α-ATP resonance signals.

A previously developed superfast magnetization saturation transfer method was
employed to determine the reaction rate constant of the ATPase and CK reactions (kf,ATPase
and kf,CK) according to the equation:

Mc/Ms ≈ 1 + kf × T1
nom, (3)

where Mc and Ms are controls; and γ-ATP saturated magnetizations of the Pi resonance for
the ATPase reaction and the PCr resonance for the CK reaction acquired with a short TR
under steady-state condition. T1

nom is a nominal T1 and its value can be derived via numer-
ical simulation using modified Bloch–McConnell equations with known intrinsic T1 values
of ATP, Pi and PCr and acquisition parameters at a given magnetic field strength [79,80].
The T1

nom values of the Pi and PCr were determined as 2.45 s and 3.14 s when Tsat = 2.74 s,
or as 1.55 s and 1.91 s when Tsat = 1.37s, respectively. Thus, the corresponding cerebral
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metabolic rates of ATP production via ATPase (CMRATP) and CK (CMRCK) reactions can
be quantified as:

CMRATP = kf,ATPase × [Pi], (4)

and
CMRCK = kf,CK × [PCr]. (5)

where [Pi] and [PCr] are the Pi and PCr concentrations (in mM unit) measured in the
absence of γ-ATP saturation. The unit of CMRATP and CMRCK becomes µmol/g/min after
the conversion using the brain tissue density of 1.1 g/mL and s−1 for kf.

All results are presented as mean ± standard deviation (SD). Normality tests were
performed on all reported data. Since most measured parameters have a normal distribu-
tion, parametric analysis (two-tailed Student t-test) was used for statistical comparisons
between groups. For the few parameters that were slightly off the normal distribution,
non-parametric analysis (i.e., two-tailed Mann-Whitney U test) was applied. A p value of
<0.05 was considered statistically significant.

5. Conclusions

By performing metabolic and energetic assessments of PD patients and age-sex
matched healthy controls, we have provided compelling evidences showing abnormal
energy metabolism in cortical brain region of the PD patients. A comprehensive matrix of
bioenergetic and neurophysiological parameters expressed in absolute units or scales was
obtained non-invasively for the first time from human patients and healthy volunteers.
This included the concentrations of major phosphorous metabolites related to ATP energy
metabolism and phospholipid metabolism, oxidized and reduced NAD contents, and
intracellular pH and NAD redox ratio, as well as the ATPase and CK enzyme activities and
the corresponding ATP production rates. Through these truly quantitative measurements,
different brains or brain regions can be directly compared at different times or under
different conditions. These results provided important new knowledge of metabolic and
energetic alterations associated with neurodegeneration and accelerated aging in human
patients. The advanced 31P MRS-based metabolic imaging technology as described herein
bridges the gap between cellular metabolism studies of biological samples and intact hu-
man brains. Therefore, we believe it can be used to better understand neurodegenerative
diseases and other brain disorders, monitor disease progression and possibly evaluate
patients’ responses to investigational treatments.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-198
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