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Abstract

In this study we merged methods from machine learning and human neuroimaging to test

the role of self-induced affect processing states in biasing the affect processing of subse-

quent image stimuli. To test this relationship we developed a novel paradigm in which (n =

40) healthy adult participants observed affective neural decodings of their real-time func-

tional magnetic resonance image (rtfMRI) responses as feedback to guide explicit regulation

of their brain (and corollary affect processing) state towards a positive valence goal state.

By this method individual differences in affect regulation ability were controlled. Attaining

this brain-affect goal state triggered the presentation of pseudo-randomly selected affec-

tively congruent (positive valence) or incongruent (negative valence) image stimuli drawn

from the International Affective Picture Set. Separately, subjects passively viewed randomly

triggered positively and negatively valent image stimuli during fMRI acquisition. Multivariate

neural decodings of the affect processing induced by these stimuli were modeled using the

task trial type (state- versus randomly-triggered) as the fixed-effect of a general linear

mixed-effects model. Random effects were modeled subject-wise. We found that self-induc-

tion of a positive valence brain state significantly positively biased valence processing of

subsequent stimuli. As a manipulation check, we validated affect processing state induction

achieved by the image stimuli using independent psychophysiological response measures

of hedonic valence and autonomic arousal. We also validated the predictive fidelity of the

trained neural decoding models using brain states induced by an out-of-sample set of image

stimuli. Beyond its contribution to our understanding of the neural mechanisms that bias

affect processing, this work demonstrated the viability of novel experimental paradigms trig-

gered by pre-defined cognitive states. This line of individual differences research potentially

provides neuroimaging scientists with a valuable tool for exploring the roles and identities of

intrinsic cognitive processing mechanisms that shape our perceptual processing of sensory

stimuli.

Introduction

Our capacity to process and regulate emotions is central to our ability to optimize psychosocial

functioning and quality of life [1]. As a corollary, disruptions in emotion processing and
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regulation are broadly ascribed to psychiatric illnesses including borderline personality disor-

der, depression, anxiety disorders, PTSD, and substance-use disorders [2] which negatively

impact quality of life and functioning [3, 4]. In light of this, scientists and clinicians seek to

both develop and understand mental strategies that volitionally reduce negatively biased emo-

tional states. Neuroimaging, in particular, has provided critical insight into the functional neu-

rocircuits involved in efficacious emotion regulation strategies [5, 6]. However, the basic

neurobiological mechanisms by which mental strategies induce adaptive emotion processing

over time remain elusive.

Research into the effects of temporal context on affect and emotion processing may have

implications for increasing our understanding of the neural bases of emotion regulation. Prior

work has demonstrated that changing affective context prior to an emotional target shapes the

processing of that target. Such priming effects both accelerate and weaken the emotional

response to affectively congruent target stimuli [7]. Manipulations of affect processing state

impact the temporal structure of the neural responses to subsequent affective image stimuli [8]

as well as the corollary psychophysiological responses to those stimuli [9, 10]. Further, stimu-

lus-cued emotion processing states bias the self-reported perception of successive emotional

stimuli [11].

These findings are consistent with effects that would be predicted by the deployment of sit-

uational and attentional modification strategies according to the process model of emotion

regulation [12] and point to potential mechanisms underlying emotion regulation-related

changes to emotion processing. However, the neural representation of the observed ability of

affective cognitions related to these strategies to bias subsequent emotional responses has not

yet been tested. Thus, the primary aim of this work was to contribute to our knowledge of the

mechanisms underlying emotion regulation (operationalized as affect regulation) by experi-

mentally demonstrating that self-induced and verified affect processing states bias the affect

processing of subsequent image stimuli.

Real-time functional magnetic resonance imaging (rtfMRI), when used to generate brain

activation feedback [13] (i.e., rtfMRI-guided neuromodulation or neurofeedback), reflects a

promising methodology that has not to our knowledge been applied for mechanistic testing of

how the neural correlates of such feedback-induced affect processing states bias subsequent

affect processing. Here, the applied advantage of rtfMRI is that self-induced neurocognitive

states (achieved via rtfMRI guidance) can be verified and used as independent experimental

variables to trigger subsequent affective stimulus-response characterizations. Yet, a challenge

to rtfMRI-guided neuromodulation studies, and brain computer interface (BCI) research in

general, is the large individual variation observed in subjects’ ability to volitionally modulate

their cognitive states–the well-known “BCI-illiteracy phenomenon” [14].

Within BCI studies, neurophysiological and psychological variables (e.g., self-confidence

and concentration) have been shown to significantly predict performance variation [15–17].

However, very little is known about the source of individual differences in the ability to voli-

tionally regulate affective states. Therefore, the secondary aim of this project was to character-

ize individual variation in the ability to self-induce affective states using neurofeedback

according to the subjects’ unguided self-induction ability. This research has direct clinical rele-

vance to informing our understanding of the neuroregulation capabilities of psychiatric

patients to identify those most or least capable of guided affect regulation.

To explore our aims, we developed a novel task in which healthy adult participants utilized

rtfMRI feedback to explicitly regulate their brain response and corollary affect processing

states toward a goal of extreme pleasantness (i.e., positive valence). Attaining this brain-affect

state triggered the presentation of an affectively congruent (positive valence) or incongruent

(negative valence) image stimulus drawn from the International Affective Picture Set [18]
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(IAPS). Between regulation trials participants passively viewed (without regulation) IAPS sti-

muli associated with either positive or negative valence. We then compared image stimulus-

cued brain and affective responses arising from explicitly self-induced feedback-facilitated pos-

itive valence states versus random affective states (passive viewing) and tested the ability of

self-induced positive valence states to bias the affect processing of subsequent image stimuli.

Our results reveal that self-induction of a positive affective state biases subsequent affect

processing responses to image stimuli, suggesting a potential mechanism by which situational

and attentional modification strategies work to reduce negatively biased affect processing

states. We also found that individual differences in the intrinsic ability to self-induce affective

arousal without guidance informed the attainment of self-induced positive valence in the pres-

ence of rtfMRI guidance, further supporting the established role of attentional deployment in

explaining BCI performance.

Methods

Ethics statement

All participants provided written informed consent after receiving written and verbal descrip-

tions of the study procedures, risks, and benefits. We performed all study procedures and anal-

ysis with approval and oversight of the Institutional Review Board at the University of

Arkansas for Medical Sciences (UAMS) in accordance with the Declaration of Helsinki and

relevant institutional guidelines and policies.

Participants

We enrolled healthy adult participants (n = 40) having the following demographic characteris-

tics: age [mean(s.d.)]: 38.8(13.3), range 20–65; sex: 22 (55%) female; race/ethnicity: 28 (70.%)

self-reporting as White or Caucasian, 9 (22.5%) as Black or African-American, 1 (2.5%) as

Asian, and 2 (5%) self-reporting as other; education [mean(s.d.)]: 16.8(2.2) years, range 12–23;

WAIS-IV IQ [mean(s.d.)]: 102.5(15.3), range 73–129. All of the study’s participants were

right-handed (assessed via Edinburgh Handedness Inventory [19]) native-born United States

citizens who were medically healthy and exhibited no current Axis I psychopathology, includ-

ing mood disorders, as assessed by the SCID-IV clinical interview [4]. All participants reported

no current use of psychotropic medications and produced a negative urine screen for drugs of

abuse (cocaine, amphetamines, methamphetamines, marijuana, opiates, and benzodiazepines)

immediately prior to both the clinical interview and MRI scan. When indicated, we corrected

participants’ vision to 20/20 using an MRI compatible lens system (MediGoggles™, Oxforshire,

United Kingdom), and we excluded all participants endorsing color blindness.

Experiment design

Following the provision of informed consent, subjects visited the Brain Imaging Research Cen-

ter (BIRC) of the University of Arkansas for Medical Sciences on two separate days. On Study

Day 1 a trained research assistant assessed all subjects for major medical and psychiatric disor-

ders as well as administered instruments to collect data to be used as either secondary variables

hypothesized to explain individual variance in affect regulation-related neural activity, covari-

ates of no interest, or to assess inclusion/exclusion criteria. The participant returned to the

BIRC for Study Day 2 within 30 days after Study Day 1 to complete the MRI acquisition. Dur-

ing this day, the participant received task training and completed the full MRI acquisition pro-

tocol, depicted in Fig 1.
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Training. Each participant received a video-based overview of the experiment to be per-

formed on that day as well as training on the study’s task variations and trial types. The partici-

pant was offered the opportunity to use the restroom and then was moved to the MRI scanner

room and fully outfitted with psychophysiological recording equipment.

Neuroimaging. For each subject we captured a registration scan and detailed T1-weighted

structural image. We then acquired functional MRI data for three task variations: identifica-

tion, resting state, and modulation. Identification (Id) task acquisition consisted of 2 x 9.4 min

fMRI scans during which the participant was presented with 120 images drawn from the Inter-

national Affective Picture System [18] (IAPS) to support one of two trial types (see Fig 2): 90

passive stimulus (PS) trials and 30 cued-recall (CR) trials. Identification task PS trials (abbrevi-

ated Id-PS) presented an image for 2 s (cue) succeeded by a fixation cross for a random inter-

trial interval (ITI) sampled uniformly from the range 2–6 s. Identification task cued-recall (Id-

CR) trials were multi-part: a cue image was presented for 2 s followed by an active cue response

step for 2 s (the word “FEEL” overlaying the image) followed by the word FEEL alone for 8 s,

which signaled the participant to actively recall and re-experience the affective content of the

cue image, followed by a 2–6 s ITI. During pre-scan training on the Id-CR task’s recall condi-

tion, subjects were instructed to “Imagine the last picture you saw as best you can. Try to make

yourself feel exactly how you felt when you saw this picture the first time. Hold that feeling the

whole time you see the word FEEL.” Within each scan, Id-PS and Id-CR trials were pseudo-

randomly sequentially ordered to minimize correlations between the hemodynamic response

function (HRF)-derived regressors of the tasks. This order was fixed for all subjects.

During resting state acquisition, we acquired 7.5 min of fMRI data in which the subject per-

formed mind-wandering with eyes open while observing a fixation cross. During training, sub-

jects were instructed to “Keep your eyes open, look at the cross in front of you, and let your

brain think whatever it wants to.” Concurrently with the resting state task, the real-time vari-

ant of the multivoxel pattern analysis (MVPA) prediction model (see below) was fit using data

drawn from the Identification task fMRI data to define individual brain state representations

of the affect processing goal.

Modulation (Mod) task acquisition consisted of 2 x 10.5 min fMRI scans during which the

participant was presented with 60 IAPS images according to two trial types (see Fig 2): 40 pas-

sive stimulus (Mod-PS) trials, which were identically formatted to the Id-PS trials, and 20 feed-

back-triggered stimulus (Mod-FS) trials. Mod-FS trials used real-time fMRI feedback of the

subject’s decoded affective state to guide them in self-inducing affective brain states associated

with their individualized representation of extreme positive valence. The computer system

monitored the subject’s decoded valence processing level at each acquisition volume of fMRI

data and if that decoding met pre-defined criteria (i.e., the goal state, which we defined as

hyperplane distance� 0.8 for 4 consecutive EPI volumes) then a positively (congruent) or

Fig 1. Study Day 2 experimental tasks: Order, number of repetitions, duration, and stimuli. Tasks are colored by role. Gray depicts task training and

application of psychophysiology recording apparatus. Blue depicts structural image acquisition. Orange depicts functional image acquisition.

Identification and Modulation blocks of the fMRI acquisition summarize the relevant trial types used within that task (see Neuroimaging section for

abbreviations). �Training of real-time multivariate pattern analysis predictive models was performed concurrently with the Resting State task of the fMRI

acquisition.

https://doi.org/10.1371/journal.pone.0264758.g001
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negatively (incongruent) valent image stimulus was triggered as the test stimulus. The brain

state criteria representing the affect processing goal state were determined by the results of an

initial pilot of the experiment to identify acquisition parameters that were challenging but con-

sistently reachable. Within each scan, Mod-PS and Mod-FS trials were pseudo-randomly

sequentially ordered to minimize correlations between the hemodynamic response function

(HRF)-derived regressors of the tasks. This order was fixed for all subjects.

We provided real-time visual feedback during Mod-FS trials by manipulating the level of

transparency of the word FEEL, which was the cue to volitionally regulate affect to an extreme

positive valence. The transparency of the text was scaled to reflect real-time estimates of sub-

ject’s represented valence processing with respect to the desired hyperplane distance threshold.

Fig 2. Summary of experimental task trial designs. (Id-PS): Identification task passive stimulus trials, which were

identical to Modulation task passive stimulus (Mod-PS) trials. (Id-CR): Identification task cued-recall trials. (Mod-FS):

Modulation task feedback-triggered stimulus trials. (Bottom): Depiction of a hypothetical Mod-FS trial for the

experimental design. The dashed line represents the trigger threshold and bounds the hyperplane distance at which the

cue stimulus will be triggered by the real-time valence estimate as a function of time. As depicted, this threshold

decreases linearly to zero commencing at 20 s of feedback. This trial type is of fixed length; therefore, the ITI duration

is a function of the time required to trigger the stimulus via feedback. If the real-time valence estimate does not surpass

the trigger threshold prior to the threshold reaching zero then the stimulus is triggered by default, denoted “Emergency

trigger”, followed by the minimum ITI.

https://doi.org/10.1371/journal.pone.0264758.g002
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This was achieved by mapping MVPA prediction model hyperplane distances (see below) from

their base range [-1.25,1.25] to the range of possible transparencies, α � [0,1]. Fully transparent

text (α = 0) appeared as a black screen and denoted poor affect regulation performance, i.e.,

highly negative valence. Fully opaque text (α = 1) appeared bright yellow and denoted good per-

formance. The transparency of the text was reset every 2 s (reflecting the momentary hyperplane

distance prediction based upon each EPI volume, TR = 2000 ms). The transparency was

adjusted (approximately 20 frames-per-second) to present smooth transitions toward the brain-

affect goal state. The initial hyperplane distance threshold was fixed for 20 seconds. If the subject

had not attained the threshold (i.e. triggered the test stimulus) by this time then the threshold

was linearly and continuously lowered to 0 over the subsequent 18 s at which point the stimulus

was automatically triggered even if the threshold had not been attained (Fig 2).

Stimulus selection. We sampled 180 IAPS images to use as affect processing induction

stimuli. Identification task stimuli were sampled computationally using a previously published

algorithm [20] that selects images such that the subspace of the valence-arousal plane for nor-

mative scores within the IAPS dataset is maximally spanned (see Fig 3). This property guaran-

tees the most diverse range of valence and arousal properties for a fixed-sized stimulus set. We

performed this full-range sampling process first for the 90 images used in Id-PS trials. The

IAPS identifiers of these images were previously reported [21]. We then separately (but simi-

larly) sampled an additional 30 images for use in Id-CR trials. The IAPS identifiers of these

images were also previously reported [22]. Next, we constructed extreme polar subsets of posi-

tively and negatively valenced image stimuli by constructing thresholds of permissible valence

and arousal scores. Valence (v) was constrained such that: v�7 or v�2.6. We then iteratively

constrained the permissible arousal scores until we identified positively and negatively valent

image subsets that did not exhibit a group mean difference in arousal, a, scores (found to be

4.6< a< 6.8) thereby controlling for arousal response as a stimulus subset variable. We then

sampled 30 images each from these subsets and uniformly randomly assigned these images to

Mod-PS trials (n = 40) and Mod-FS trials (n = 20), respectively. The outcomes of these sam-

pling and assignment processes are presented in Fig 3. The specific IAPS identities of these

images are reported in S1 Table.

Data acquisition and processing

MR image acquisition. We acquired all imaging data using a Philips 3T Achieva X-series

MRI scanner (Philips Healthcare, Eindhoven, The Netherlands) with a 32-channel head coil.

We acquired anatomic images using an MPRAGE sequence (matrix = 256 x 256, 220 sagittal

slices, TR/TE/FA = 8.0844/3.7010/8˚, final resolution = 0.94 x 0.94 x 1 mm3). We acquired

functional images using the following EPI sequence parameters: TR/TE/FA = 2000 ms/30 ms/

90˚, FOV = 240 x 240 mm, matrix = 80 x 80, 37 oblique slices, ascending sequential slice acqui-

sition, slice thickness = 2.5 mm with 0.5 mm gap, final resolution 3.0 x 3.0 x 3.0 mm3.

Real-time MRI preprocessing and multivariate pattern classification. We implemented

custom code that acquired each raw fMRI volume as it was written to disk by the MRI’s com-

puter system (post-reconstruction). Each volume underwent a preprocessing sequence using

AFNI [23] in the following order: motion correction using rigid body alignment (corrected to

the first volume of Identification task Run 1), detrending (re-meaned), spatial smoothing

using a 8 mm FWHM Gaussian filter, and segmentation. To construct a multivariate pattern

classifier to apply to the real-time data we partitioned the Id-PS stimuli into groups of positive

and negative valence (according to the middle Likert normative score) and formed time-series

by convolving the hemodynamic response function with the respective stimuli’s onset times

(scaling the HRF amplitude according to the absolute difference between the stimuli’s
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normative scores and the middle Likert score). We then thresholded these time-series to con-

struct class labels {-1,+1} (as well as unlabeled) for each volume of the Identification task scans.

We then trained a linear support vector machine [24] (SVM) to classify the valence property of

each fMRI volume. Note, during the Modulation task the classification hyperplane output of

the SVM was linearly detrended in real-time as follows. A hyperplane distance, h, was com-

puted for each volume, i. For hi, i� 40, the sequence of hyperplane distances h1,. . .,hi-1 was

used to compute a linear trend (via the Matlab detrend function) which was subtracted from

the hyperplane distance, hi. In summary, the described system achieved real-time preprocess-

ing and generated affect state predictions for each EPI volume acquired in the Modulation task

of the experiment. Total processing time of each volume was less than the TR = 2 s parameter

of the EPI sequence, allowing the real-time processing to maintain a consistent (reconstruction

speed determined) latency throughout real-time acquisition.

Fig 3. Normative valence and arousal scores for stimuli selected for each of the four experimental trial types.

Summary statistics for Identification task stimuli are as follows: Id-PS valence [mean (std. dev)] 5.04 (1.95); Id-PS

arousal [mean (std. dev)] 4.95 (1.40); Id-CR valence [mean (std. dev)] 5.30 (1.95); Id-CR arousal [mean (std. dev)] 4.99

(1.51). There were no significant differences in affect properties between the Id-PS and Id-CR cue stimuli for either

valence (p = .49; signed rank; α = .05; h0: μ1 = μ2) or arousal (p = .86; rank-sum; α = .05; h0: μ1 = μ2). Summary

statistics for the Modulation task stimuli are as follows. Mod-PS (pos. valence cluster) valence [mean (std. dev)] 7.41

(.30); Mod-PS (neg. valence cluster) valence [mean (std. dev)] 2.08 (.36); Mod-FS (pos. valence cluster) valence [mean

(std. dev)] 7.35 (0.32); Mod-FS (neg. valence cluster) valence [mean (std. dev)] 2.03 (0.41). Between the Mod-PS and

Mod-FS stimuli in the positive valence cluster, there were no significant differences in valence (p = .60; rank-sum; α =

.05; h0: μ1 = μ2) nor arousal (p = .25; rank-sum; α = .05; h0: μ1 = μ2). There were also no significant group differences in

affect properties between the Mod-PS and Mod-FS stimuli in the negative valence cluster, either for valence (p = .74;

rank-sum; α = .05; h0: μ1 = μ2) or arousal (p = .54; rank-sum; α = .05; h0: μ1 = μ2).

https://doi.org/10.1371/journal.pone.0264758.g003
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Post-hoc MRI preprocessing, multivariate pattern classification, and Platt-scaling. We

used fmriprep [25] (version 20.0.0) software to conduct anatomical and functional image pre-

processing and spatial normalization to the MNI152 atlas (see S1 Methods for detailed docu-

mentation of this standardized image preprocessing pipeline). We then used fmriprep’s

motion parameter outputs to complete the preprocessing using AFNI, including regression of

the mean time courses and temporal derivatives of the white matter (WM) and cerebrospinal

fluid (CSF) masks as well as a 24-parameter motion model [26, 27], spatial smoothing (8 mm

FWHM), detrending, temporal filtering (.0078 Hz high-pass), and scaling to percent signal

change. For resting state functional images we took the additional step of global mean signal

subtraction prior to smoothing.

We then conducted high-accuracy post-hoc multivoxel pattern analysis (MVPA), i.e., neu-

ral decoding, of affect processing. We first extracted beta-series [28] neural activation maps

associated with Id-PS trials from fully preprocessed fMRI data recorded during Identification

task runs 1 and 2 according to well-documented methods [20]. We indexed these maps

according to their corresponding stimulus, x. Therefore, the maps, β(x), were paired with their

respective normative scores {β(x), v(x), a(x)} to form training data for multivoxel pattern clas-

sification implemented via linear SVM. For classification training, valence and arousal scores

were each converted into positive (+1) or negative (-1) class labels according to their relation

to the middle Likert score. Classification hyperplane distances were then converted to proba-

bilities (i.e., the probability of the positive class label) via Platt-scaling [29]. These probabilities

served as the affective decodings of the subjects’ brain states for further analysis.

Affect processing state encodings. In order to visualize affect processing brain states in

neuroanatomical space, we performed a previously reported encoding transformation of our

decoding models [21]. In short, we applied the Haufe-transform [30] to each subject’s classifi-

cation hyperplane and formed a map of group-level mean encoding values for each gray matter

voxel. Separately, we generated 1,000 mean encoding permutations by applying the Haufe-

transform to the classification hyperplanes fit to each subject’s true beta-series and randomly

permuted sets of the true affective labels. Those voxels exhibiting extreme group-level mean

encoding values in comparison to the observed group-level mean permutation encoding val-

ues (2-sided test, p<0.05) were kept for visualization of the brain state. We performed this

encoding process separately for each dimension of affect processing (valence and arousal).

Cued-recall, passive stimulus, and feedback-triggered stimulus modeling. We also

extracted beta-series for the cue and recall steps of the Id-CR trials, the cue step of the Mod-PS

trials, and the cue step of the Mod-FS trials. We then used our fit SVM models to decode the

valence and arousal properties of the subjects’ brain states at these experiment steps. For the

Mod-PS trials, we also constructed beta-series for the moment of trial onset as well as 2 s prior

to the cue step of the Mod-FS trials–these allowed us to validate the triggers for affective stimu-

lus test presentations as well as to measure (post-hoc) the relative change of affect processing

achieved by feedback-facilitated self-induction of positive valence processing.

Surrogate cued-recall task modeling. Using previously reported methodology [31], we

decoded the valence and arousal properties of each volume of Resting State fMRI data. We

then uniformly randomly sampled 30 onset times for surrogate Id-CR trials and extracted the

affect properties of the respective cue and recall steps of these surrogate trials to be used as

within-subject controls during analysis of the actual Id-CR trials.

Psychophysiology data acquisition and preprocessing. All MRI acquisitions included

concurrent psychophysiological recordings conducted using the BIOPAC MP150 Data Acqui-

sition System and AcqKnowledge software combined with the EDA100C-MRI module (skin

conductance), TSD200-MRI pulse plethysmogram (heart rate), TSD221-MRI belt (respira-

tion), and EMG100C-MRI module (facial electromyography). In line with prior work [32, 33],
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we measured arousal independently based on skin conductance response (SCR) and valence

based on facial electromyography (fEMG) response, specifically activity in the corrugator

supercilli muscle (cEMG), which was shown in prior work to capture the full affective valence

range of our affect processing induction design [22]. This work did not model the heart and

respiratory rate data. We have extensively reported on our SCR electrode placement and pre-

processing methods [21], and we recently reported our cEMG placement and preprocessing

methods [22].

Results

Psychophysiological response validation of affect processing induction via

image stimuli

We first verified the ability of the Identification task passive stimulus (Id-PS) trials to induce

corollary psychophysiological responses [34] associated with affect processing in order to vali-

date the inputs used to train our neural decoding models. We modeled the normative scores of

the cue stimuli of Id-PS trials using psychophysiological response measures within a General

Linear Mixed-Effects Model (GLMM) framework, respectively, for valence and arousal prop-

erties. Normative hedonic valence scores of the stimuli were modeled according to facial

electromyographic responses in the corrugator supercilli as the fixed effects. Normative auto-

nomic arousal scores to the cue stimuli were modeled according to skin conductance

responses as the fixed effects. In both models, we controlled for age and sex effects. Slope and

intercept random-effects were modeled subject-wise. Both validation models detected signifi-

cant stimulus-related induction of the anticipated physiological responses. Moreover, our

cEMG-derived model of hedonic valence (β = .11; p = .001; t-test; α = .05; h0: β = 0) was selec-

tive for the valence property of affect–a cEMG-derived model of autonomic arousal was not

significant (p = .75; t-test; α = .05; h0: β = 0). Similarly, our SCR-derived model was selective

for the autonomic arousal property of affect (β = .07; p = .004; t-test; α = .05; h0: β = 0)–applied

to hedonic valence the SCR associations were not significant (β = .02; p = .61; t-test; α = .05;

h0: β = 0). These results are consistent with the prior association of cEMG and SCR with the

processing of the specific affect properties of valence and arousal, respectively, and support the

induction of affect processing during the Id-PS trials.

Affect processing measurement

We next demonstrated that our prediction models accurately decoded affect processing within

neural activation patterns associated with Id-PS trials, reproducing the results of earlier work

using similar modeling methodology [20]. Our tabulated prediction accuracy (averaged over

39 subjects completing the experiment) over the full stimulus set (see Table 1) was highly sig-

nificant for both valence (p< .001; signed rank; α = .05; h0: μ = .5) and arousal (p< .001;

signed rank; α = .05; h0: μ = .5). We also observed prediction performance comparable to the

best known demonstrations of neural decoding of affect processing across the valence and

arousal dimensions [20, 35] when our measurements were restricted to those image stimuli

Table 1. Multivariate neural decoding performance.

Valence Arousal

Grp. Avg. Acc. (95% CI) Grp. Avg. Acc. (95% CI)

Full Stimulus Set .55 (.53,.57) .61 (.59,.63)

Reliable Stimulus Set .79 (.76,.82) .75 (.72,.79)

https://doi.org/10.1371/journal.pone.0264758.t001
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exhibiting reliable brain state activations, i.e., the reliable stimulus set (see Table 1), which

were determined according to previously published methods [20] that detect the degree to

which brain states induced by these stimuli cluster between subjects (see S1 Methods). Indeed,

using the reliable stimulus set to measure performance, we found that 34 of 39 subjects

(87.2%) exhibited significant within-subject classification of affective valence and arousal sti-

muli, respectively (α = .05; binomial distribution, h0: p[+] = .5). These results support the

validity of our neural decoding models as brain representations of affective valence and

arousal.

Validation of affect decoding using novel stimuli

Prior to applying our decoding models to novel task domains, we first tested whether these

models (originally fit to Id-PS features and labels) generalized to novel image stimuli. To per-

form this independent test we modeled, via GLMM, the normative affect scores of cue stimuli

in Id-CR and Mod-PS trials. However, each test was unique.

First, we modeled Id-CR task cue stimuli’s normative scores as a function of decoded affect

(separately for valence and arousal) controlling for the age and sex of the subjects and model-

ing random effects of affect decoding subject-wise. In Id-CR trials we found that neurally

decoded valence was significantly positively associated with the valence normative score (β =

.30; p< .001; t-test; α = .05; h0: β = 0). Similarly, we found for Id-CR trials that neurally

decoded arousal was significantly associated with the arousal normative score (β = .17; p =

.001; t-test; α = .05; h0: β = 0). Age and sex effects in both cases were not significant and ran-

dom effects did not significantly improve the model’s explained variance, which was very

small for both valence (R2
adj = .02) and arousal (R2

adj = .01), respectively.

Next, we modeled the Mod-PS task stimuli’s normative scores as a function of decoded

affect (separately for valence and arousal normative scores). However, in this case we con-

trolled for age and sex effects as well as the decoding of the complementary affective property

in order to control for the bias of the sampling of the stimuli in this task (see Fig 3). In Mod-PS

trials we found that decoded valence was significantly positively associated with the stimuli’s

normative valence scores (β = .62; p< .001; t-test; α = .05; h0: β = 0). However, decoded

arousal was significantly negatively associated with normative valence scores (β = -.22; p =

.016; t-test; α = .05; h0: β = 0). Age and sex effects were not significant but random effects did

significantly improve the model’s explained variance (R2
adj = .045). In contrast, we found no

significant associations between decoded arousal and the stimuli’s normative arousal scores,

which confirmed that the restriction of our sampling of the Mod-PS and Mod-FS stimuli to a

narrow range of normative arousal (see Fig 3) was essential as a control for this confounding

variable.

Validating the rigor and reproducibility of affective brain states

In a final validation step, we sought to provide additional qualitative and quantitative evidence

for the rigor and reproducibility of the affective brain states that we experimentally manipu-

lated in this study. We computed the group-level encodings of both the arousal and valence

brain states that survive permutation testing, which we present in Fig 4. Encodings of affect

processing largely overlap with earlier multivariate [21] and univariate meta-analyses [36, 37]

of the neural encoding of core affect processing. We took the additional step of directly com-

paring these encodings to affect processing encodings that were computed for past studies that

incorporated similar affect induction stimuli and used similar fMRI analysis pipelines but that

were derived from separate sets of research subjects (see S1 Methods). Notably, these past stud-

ies found that affect processing predictions using the machine learning models underlying

PLOS ONE A test of affect processing bias

PLOS ONE | https://doi.org/10.1371/journal.pone.0264758 March 3, 2022 10 / 20

https://doi.org/10.1371/journal.pone.0264758


these encodings were significantly more correlated to the normative scores of the induction

stimuli than predictive measures derived from psychophysiological responses across the inde-

pendent dimensions of affective valence (measured via heart-rate deceleration [38]) and

arousal (measured via skin conductance response [21]). Indeed, we found that the neural

encodings computed for this study shared 36.5% of the variance across prior whole-brain

gray-matter voxel-wise encodings of valence as well as 31.1% of the variance across prior

whole-brain voxel-wise encodings of arousal (see S1 Fig). Of note, the variance shared between

these encodings rose to 87.0% and 85.6%, respectively for valence and arousal, when we

restricted the comparison to only those voxels that survived global permutation testing (i.e.,

the voxels presented in Fig 4).

Real-time stimulus triggering

We next validated that our real-time feedback and brain-affect state triggering process func-

tioned as designed. To test this we extracted the feedback signal calculated at the moment of

stimulus trigger (including emergency triggering). The median feedback at the moment of

trigger was μ = .93 (p< .001; signed rank; α = .05; h0: μ = 0). Nearly three-quarters (see Fig 5)

of all trials triggered at or above the design threshold.

Real-time fMRI-guided self-induction of positive valence states

We next demonstrated that our primary experimental manipulation, volitionally-induced pos-

itive valence, was truly achieved at the moment of stimulus triggering. As a reminder, the

Mod-FS trials were triggered using lower quality real-time affect decoding models. Here we

applied post-hoc high-accuracy models to decode affect processing within the fMRI volume

immediately prior to the stimulus trigger as a best possible measure of the experimental condi-

tion. However, a confounding factor of this measure is within-subject valence decoding accu-

racy, which we found to significantly positively associate with the magnitude of decoded

valence at the moment of real-time stimulus triggering (see S2 Fig) and, therefore, could

potentially act as a confound of the experimental manipulation Therefore, to test this measure

we bootstrapped random variants of the trigger predictions (randomly sampling within each

Fig 4. Group-level encodings of affective state processing. Color gradations indicate the group-level t-scores of the

encoding parameters (red indicating positive valence or high arousal, blue indicating negative valence or low arousal).

T-scores are presented only for those voxels in which encoding parameters survived global permutation testing (p<

.05). Image slices are presented in MNI coordinate space and neurological convention. Maximum voxel intensity is |t|

= 6.0, i.e., color saturates for t-scores with absolute values falling above this value.

https://doi.org/10.1371/journal.pone.0264758.g004
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subject before pooling predictions to incorporate random effects) for only those subjects

exhibiting within-subject significant decodings of valence processing. From these neural

decodings, we found that the mean predicted valence was significantly elevated (μ = .522; p<

.02; 1-sided bootstrap [n = 10000]; h0: μ< .5) at the time of triggering of the test stimuli.

Independently, we confirmed that volitionally-induced positive valence states corresponded

with significant changes to independent psychophysiological response measures across all sub-

jects, including those that did not exhibit within-subject significant decodings of valence pro-

cessing. In concordance with our observations of psychophysiological responses induced by

extrinsic image stimuli, self-induction of positive valence induced a weak but significant posi-

tive cEMG response (β = .003; p< .01; t-test; α = .05; h0: β = 0) as well as a significant reduc-

tion in SCR (β = -.018; p< .001; t-test; α = .05; h0: β = 0).

Effect of positive valence self-induction on affect processing of subsequent

stimuli

We next tested the study’s primary hypothesis–that self-induced states of positive valence bias

the affect processing of subsequent image stimuli. Using a GLMM, we tested decoded valence

processing of these stimuli as a function of trial type, Mod-FS (i.e., self-induced) or Mod-PS

(passive), while controlling for the image stimuli’s associated normative valence and decoded

arousal properties, the subject’s age and sex, as well as within-subject valence decoding accu-

racy. To control for potential confounding effects of the slow temporal evolution of the HRF,

we also included the decoded valence of the volume immediately preceding the image stimulus

Fig 5. Distribution of average feedback scores at the moment of FT-PO trial stimulus trigger.

https://doi.org/10.1371/journal.pone.0264758.g005
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(i.e., the trigger fMRI volume in Mod-FS trials or the previous fMRI volume in Mod-PS trials)

as a fixed effect. Finally, we included two-way interactions between the trial type and both the

normative valence score of the image stimulus and the decoded valence of the preceding fMRI

volume. We modeled random intercept effects subject-wise.

We found that the volitional self-induction of positive valence prior to an affective stimulus

significantly positively biased the induced valence processing of the subsequent image stimulus

(β = .033; p = .017; t-test; α = .05; h0: β = 0) compared with passive viewing. As would also be

expected, normative valence score of the stimulus was significantly positively associated with

valence processing (β = .031; p = .027; t-test; α = .05; h0: β = 0) as was the decoded valence of

the previous volume (β = .803; p < .001; t-test; α = .05; h0: β = 0). For clarity, the magnitude of

the effects are depicted graphically in Fig 6. Both sex (β = -.028; p = .039; t-test; α = .05; h0: β =

0) and age (β = -.043; p = .002; t-test; α = .05; h0: β = 0) were significantly negatively associated

with valence processing of the subsequent image stimulus. Finally, the stimuli’s normative

arousal scores were found not to be a significant predictor of decoded valence processing (β =

-.028; p = .051; t-test; α = .05; h0: β = 0) nor was within-subject valence decoding model

Fig 6. Effects of volitional self-induction of positive valence on affect processing bias of subsequent image stimuli.

The figure graphically depicts the effect sizes estimated for the primary experimental manipulation, i.e. the self-

induction trial type (feedback-triggered stimulus, Mod-FS, versus passive stimulus, Mod-PS), denoted self-induction,

on the decoded valence processing of the subsequent image stimulus while controlling for the effects of the normative

valence score of the stimulus, the decoded valence processing of the previous fMRI volume, normative arousal score of

the image stimulus as well as subjects’ age and sex and the two-way interactions between self-induction trial type and

the normative valence score of the stimulus as well as the decoded valence of the previous fMRI volume. Statistically

significant effects are colored blue (positive effects) or red (negative effects). Non-significant effects are colored gray.
�The effect size of the decoded valence processing (β = .802) of the previous fMRI volume was omitted from the figure

to elevate the contrast between the smaller effect sizes.

https://doi.org/10.1371/journal.pone.0264758.g006
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accuracy (β = .020; p = .15; t-test; α = .05; h0: β = 0). We did observe a significant interaction

between self-induction trials and the decoded valence of the preceding fMRI volume (β = .117;

p< .001; t-test; α = .05; h0: β = 0); however, the interaction between trial type and the norma-

tive valence score of the image stimulus was not significant (β = -.019; p = .197; t-test; α = .05;

h0: β = 0). Overall model performance was R2
adj = .682 and random effects did not significantly

impact the model’s explained variance (p< .05; likelihood ratio test; h0: observed responses

generated by fixed-effects only).

As an independent exploration of our experimental manipulation, we repeated the study’s

primary hypothesis test using psychophysiological response measures of affect processing,

respectively SCR and cEMG, as the measures of interest in GLMM models while controlling

for similar fixed, interaction, and random effects as were used in the neuroimaging analysis.

Using these models, we found that volitionally-induced positive valence did not significantly

bias cEMG responses to image-based affect induction. However, SCR response measures to

subsequent image stimuli were positively associated with both the primary experimental

manipulation (β = .141; p< .001; t-test; α = .05; h0: β = 0) and normative valence score of the

subsequent image stimulus (β = .042; p = .046; t-test; α = .05; h0: β = 0). No other effects were

significant. Overall, the model’s explained variance was R2
adj = .019 and random effects did

not significantly impact the model’s performance.

Measurement of unguided explicit affect regulation

We next sought to confirm affect self-induction via unguided explicit (i.e. effortful) affect regu-

lation within the Id-CR trials. We first decoded the valence and arousal responses from

acquired fMRI data for both the cue and recall steps of the Id-CR trials. We then tested for

group effects of explicit affect regulation toward a known goal by modeling via GLMM, sepa-

rately for valence and arousal, the neurally decoded affect processing of the four recall steps of

the Id-CR trials (4 volumes, 2 seconds each) as a function of the neurally decoded affect pro-

cessing associated with the cue stimuli (i.e. the affect regulation goal) as well as the control

duration and the age and sex of the subject (see Fig 7). We found that the subjects significantly

regulated brain representations of valence processing (β = .33; p< .001; t-test; α = .05; h0: β =

Fig 7. Estimation and validation of explicit intrinsic affect regulation effects within the cued-recall task. The

figure depicts the effect size of cue affect processing in explaining affect processing occurring during recall (controlling

for time lag in the 4 repeated measures of recall per each measure of cue). Here affect processing measurements are

Platt-scaled hyperplane distance predictions, Pr(�), of our fitted support vector machine models. Valence and arousal

dimensions of affect are predicted by separate models. The figure’s scatterplots depict the group-level effects computed

using linear mixed-effects models which model random effects subject-wise. Bold red lines depict group-level fixed-

effects of the cue affect. Bold gray lines depict significant subject-level effects whereas light gray lines depict subject-

level effects that were not significant. The figure’s boxplots depict the group-level difference between each subject’s

affect regulation measured during the cued-recall trials in comparison to surrogate affect regulation constructed from

the resting state task. The bold red line depicts the group median difference in effect size between task and surrogate.

The red box depicts the 25-75th percentiles of effect size difference.

https://doi.org/10.1371/journal.pone.0264758.g007
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0). Random effects significantly improved the model’s effect-size (p< .05; likelihood ratio test;

h0: observed responses generated by fixed-effects only) and cued-recall affect regulation effects

were significantly greater than that of surrogate (control) effects (p = .001; signed rank; α =

.05; h0: βIN-βRST = 0). The fixed-effect of control duration was also significant (β = .01; p<

.001; t-test; α = .05; h0: β = 0) and the overall model prediction performance was good (R2
adj =

.10). Further, we found that subjects significantly regulated the neural correlates of arousal

responses and that random effects significantly improved effect-size (β = .33; p< .05; likeli-

hood ratio test; h0: observed responses generated by fixed-effects only); however, these cued-

recall affect regulation effects were not significantly greater than that of surrogate effects (p =

.10; signed rank; α = .05; h0: βIN- βRST = 0).

Unguided explicit affect regulation performance as a predictor of rtfMRI-

guided self-induction

Finally, we tested whether unguided explicit affect regulation performance explained the level

of rtfMRI-guided self-induced valence responses (measured immediately prior to presentation

of the Mod-FS cue image). We modeled the neurally decoded valence of the final volume of

the self-induce step of Mod-FS trials (see Fig 2) as a function of the individual subjects’ explicit

affect regulation performance parameters (slope and intercept, respectively, for the valence

and arousal properties of affect processing–see Fig 7) controlling for the subjects’ age, sex and

valence decoding accuracy. We included all 2-way interactions between the slope and intercept

fixed effects in this model to control for potential trade-offs that the subjects may be making

during explicit regulation, e.g., focusing on only one affective property. We also included

2-way interactions of valence slope and intercept with age, sex, and valence decoding accuracy

fixed effects. We found that self-induced arousal slope, i.e., the ability of the subject to accu-

rately match the relative affective arousal of the goal, was significantly associated with rtfMRI-

guided self-induced valence responses (β = .850; p = .004; t-test; α = .05; h0: β = 0). However,

the total explained variance by this model was very low (R2
adj = .002).

Discussion

This work made two novel contributions to our current and future understanding of the

mechanisms of emotion processing and regulation. First, we found significant support for the

utility of self-induced positively valent affect processing as a mechanism for positively biasing

the subsequent valence processing of environmental stimuli. This finding mechanistically sup-

ports the common notion of “positive thinking” and provides insight into how and why atten-

tional re-deployment strategies, e.g. positive distraction, may benefit those suffering from

deficits of emotion regulation and dispositional negatively biased affect. Second, we demon-

strated a novel application of real-time brain state decoding in which we guided subjects’

explicit emotion regulation toward a pre-defined affective goal state (positive valence) and

then triggered experimental stimuli when the subjects’ affective states fell within designed cri-

teria representing that goal state. This new technology, while still in its infancy, may provide

scientists with a much needed tool for exploration of intrinsic emotion processing mechanisms

and their relationships with other cognitive processes and environmental factors.

The validity of our findings, as well as the efficacy of the proposed real-time affect processing

decoding technology, are supported by independently measured psychophysiological responses at

each stage of the experimental manipulation. Significant psychophysiological response correlates

of affect processing (measured as SCR and cEMG) were observed during image-based induction

of affect processing brain states (on which the neural decoding models were trained) as well as

during volitional self-induction of positive valence processing. Moreover, skin conductance
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responses to image-based affect processing induction differed significantly between the conditions

of our primary experimental manipulation: feedback-triggered (Mod-FS) versus passively trig-

gered (Mod-PS) image stimuli. As these effects were computed from independent processes oper-

ating on unique time-scales from those of the HRF, these findings suggest that our analyses are

robust to the time-scales by which canonical response functions evolve and confers support for

the primary neural decoding effects that we report in Fig 6.

A secondary goal of this work was to explain individual differences observed in real-time

fMRI guided explicit emotion regulation toward a defined goal. Explicit affect regulation can

be achieved volitionally, without the use of neurofeedback technology. Therefore, our use of

real-time fMRI-based affective decodings to guide (or focus) this innate process enabled us to

test (using unguided explicit affect regulation ability as a baseline) the association between

innate affect regulation performance and the performance achievable using our real-time

fMRI feedback approach. We observed a small but significant relationship between the ability

to match one’s arousal to a pre-defined target level and the ability to self-induce positive

valence via rtfMRI-guidance. These findings suggest that subjects with greater control over

their state of arousal exhibit improved ability to incorporate real-time feedback. Given the

well-established link between arousal and attention [39, 40], these findings may in turn reflect

improved deployment of attention, either self-directed or with respect to the feedback signal,

in subjects exhibiting superior rtfMRI-guided self-induced valence, which agrees with earlier

work in identifying psychological predictors of BCI performance [16, 41].

Our application of neural decodings (derived from normative affective scores of IAPS

image stimuli) as markers of affect processing has well-known limitations, which we have

noted in earlier reports[20, 21, 38]. Indeed, our validation process detected a significant nega-

tive effect of decoded arousal associated with decoded valence, suggesting that our cohort of

subjects perceived the affective content of Mod-PS image stimuli differently than that which

was captured by the IAPS normative scores. However, the nature of our investigation–real-

time moment-to-moment affect processing, regulation, and stimulus-triggering–did not,

unfortunately, permit the use of subject self-report measures of affect, thereby precluding a full

concordance of our findings across cognitive, physiological, and behavioral domains. We also

acknowledge technical limitations in our real-time fMRI approach. Despite significant find-

ings of an overall effect, we believe that our implementation was suboptimal due both to

response-measurement latency as well as perhaps insufficient optimization of parameters

within our real-time pipeline. A limitation of real-time approaches is that parametric choices

in the processing pipeline (e.g., trigger threshold) interact with experimental outcomes; there-

fore, it is difficult to use batch-wise optimization to inform the design criteria a priori. More-

over, our small study sample did not permit sufficient piloting of parameters prior to selecting

the processing design and testing. Further, our analysis included all rtfMRI-guided self-induc-

tion trials, even those that required emergency triggering due to a failure to meet the design

criteria of the goal state. This was intentional in order to put forth the most conservative, and

therefore reproducible, estimate of the valence self-induction effect sizes possible using this

new technological approach. Therefore, we believe the performance of the system, and its

effect sizes, are understated, which suggests the potential to further refine this technology for

larger-scaled deployment of brain-state driven experiment designs to test interactions between

internal cognitions and external stimuli.

Conclusion

We combined established neural decoding methods with real-time fMRI to construct a

dynamic experimental design in which the brain representation of a subject’s self-induced
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positive affect state triggered the randomized presentation of affectively congruent or incon-

gruent image stimuli. We first validated the experiment’s ability to induce affect processing

with independent measures of psychophysiology as well as the decoding models’ ability to pre-

dict affect processing in novel task domains. We then demonstrated that self-induced positive

affective states positively bias the affect processing of subsequent image stimuli and thereby

furnish a mechanism by which positive thinking influences how we perceive our environment.
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