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Transition metal-mediated templating and self-assembly have shown great potential to
construct mechanically interlocked molecules. Herein, we describe the formation of the
bimetallic [3]catenane and [4]catenane based on neutral organometallic scaffolds via the
orthogonality of platinum-to-oxygen coordination-driven self-assembly and copper(I)
template–directed strategy of a [2]pseudorotaxane. The structures of these bimetallic
[3]catenane and [4]catenane were characterized by multinuclear NMR {1H and 31P}
spectroscopy, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS),
and PM6 semiempirical molecular orbital theoretical calculations. In addition, single-crystal
X-ray analyses of the [3]catenane revealed two asymmetric [2]pseudorotaxane units inside
the metallacycle. It was discovered that tubular structures were formed through the
stacking of individual [3]catenane molecules driven by the strong π–π interactions.

Keywords: mechanically interlocked molecules, catenane, coordination-driven self-assembly, platinum–oxygen
bond, metallacycle

INTRODUCTION

[n]Catenanes are a class of mechanically interlocked molecules (MIMs) consisting of two or more
macrocycles that are not covalently linked to each other (Nepogodiev et al., 1998; Evans et al., 2014)
These fascinating molecules have attracted increasing attention not only because of their intriguing
structures and topological importance but also as a result of their potential applications in molecular
machines, biomaterials, and smart materials (Niu et al., 2009; Durola et al., 2014; Bruns et al., 2014;
Fernando et al., 2016; Sawada, et al., 2016; Wu et al., 2017; Li et al., 2020; Gao et al., 2021; Lu et al.,
2021). The interactions of molecular components which assist the formation of these interlocked
molecules are advantageous to improve synthetic efficiency, thereby the synthesis of catenanes
oftentimes utilizes the template-directed strategy which functions through molecular recognition
and/or host–guest chemistry based on non-covalent interactions (Dietrich-Buchecker et al., 2003;
Hao et al., 2020). These template-directed methods, including metal/organic ligand coordination,
hydrophilic/hydrophobic interactions, anion templation, donor/acceptor interaction, and
radical–radical interaction templating strategies, have been developed for the preparation of
various topologically intriguing [n]catenanes (Kim, 2002; Sambrook et al., 2004; Shen et al., 2021).

Over the past 3 decades, coordination-driven self-assembly has become a well-established
methodology for constructing a variety of supramolecular coordination complexes (SCCs) with
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well-defined shapes and sizes such as one-dimensional (1D)
helices, two-dimensional (2D) polygons, and three-
dimensional (3D) polyhedrons (Bhat et al., 2015; Wang et al.,
2015; Chen et al., 2015; Chen and Yang 2018; Wu et al., 2018;
Xiao et al., 2020; Wang et al., 2021; Wang et al., 2021). The
strategy pattern is usually implemented via the combinatorial
coordination between acceptor fragments with transition-metal
and donor precursors with nitrogen/carboxylate. MIMs
constructed by orthogonal or hierarchical self-assembly based
on coordination-driven self-assembly and other binding motifs
have attracted the increasing attention recently because of their
high efficiency and strong pre-organization (Li et al., 2014; Lu
et al., 2018). In 2020, we reported that the construction of the [3]
catenane and molecular necklace based on the charged
organometallic scaffold, by employing hierarchical self-assembly
involving nitrogen–platinum coordination-driven self-assembly
and Cu(I) template–directed strategy (Wu et al., 2020). It
should be noted that there is another established way to
construct metallacycles based on oxygen-to-platinum
coordination-driven self-assembly that resulted in the formation
of neutral supramolecular assemblies (Xu et al., 2016). However,
the construction of novel catenanes with neutral metallacycles as
main scaffolds through coordination-driven self-assembly have not
been reported yet. Hence, the Cu(I)-bis(phenanthroline)s-based
[2]pseudorotaxane donor fragments with dicarboxylate were a
kind of excellent candidates for the oxygen-to-platinum
coordination-driven self-assembly of [n]catenanes. Herein, we
designed and synthesized a new 60o [2]pseudorotaxane donor
ligand from the dicarboxylate linear molecular axis and a 30-
membered ring with the phenanthroline unit through the Cu(I)
template–directed strategy. Subsequently, the [3]catenane with the
neutral rhomboid scaffold and [4]catenane with the neutral
triangular scaffold were successfully obtained via the formation
of oxygen-to-platinum coordination bonds from the [2]
pseudorotaxane donor ligand and the corresponding di-Pt(II)
acceptors, respectively.

MATERIALS AND METHODS

All solvents were dried according to standard procedures, and all
of them were degassed under N2 for 30 min before use. All air-
sensitive reactions were carried out under an inert N2

atmosphere. The 1H and 31P NMR spectra were recorded on a
Bruker 500 MHz spectrometer (1H: 500 MHz; 31P: 202 MHz) at
298 K. The 1H and 31P NMR chemical shifts were reported
relative to the residual solvent signals. Coupling constants (J)
were denoted in Hz and chemical shifts (δ) in ppm. Multiplicities
were denoted as follows: s � singlet, d � doublet, m � multiplet,
and br � broad. The CSI-TOF-MS spectra were acquired by using
an AccuTOF CS mass spectrometer (JMS-T100CS, JEOL, Tokyo,
Japan). Single crystal X-ray diffraction data were collected at
room temperature on XtaLAB Synergy (Dualflex, HyPix). The
X-ray single-crystal diffractometer was used to study Cu Kα (λ �
1.54184 Å) micro-focus X-ray sources (PhotonJet (Cu) X-ray
Source). The raw data were collected and processed by
CrysAlisPro software. The structures were solved by SHELXT

with intrinsic phasing and refined on F2 by full-matrix least-
squares methods with SHELXL and OLEX2 used as GUI.

RESULTS AND DISCUSSION

Synthesis and Characterization
The hierarchical formation of the [3]catenane and [4]catenane
was achieved via successive utilization of Cu(I) template–directed
strategy and oxygen-to-platinum coordination-driven self-
assembly (Scheme 1A). The 60° linear molecular axis L1,
contained 1,10-phenanthroline (phen) and two carboxylate
binding sites, can be easily synthesized according to the
previous reports (Coskun et al., 2012). The [2]pseudorotaxane
dicarboxylate donor L was quantitatively afforded between L1
and macrocycle L2 via the Cu(I) template–directed strategy. In a
Schlenk flask, 1.0 equiv macrocycle L2 (29.47 mg, 0.052 mmol)
was dissolved under nitrogen in a 20-ml (V:V � 1:1) mixture of
dichloromethane and acetonitrile. After addition of 1.0 equiv
Cu(MeCN)4PF6 (19.38 mg, 0.052 mmol), the reaction was
stirred at room temperature under nitrogen for 30 min. In a
second Schlenk flask, 1.0 equiv L1 (26.65 mg, 0.052 mmol) was
dissolved in dichloromethane (20 ml) and cannula-filtered into
the first solution. The solution was stirred under nitrogen at room
temperature for an additional 24 h, followed by the removal of the
solvent in vacuo to dryness to afford quantitatively L as a brown-
red solid (yield � 66.29 mg, 99%). L did not obtain 1H NMR
because its solubility is very poor in organic solvents.

According to the coordination-driven self-assembly strategy,
the [3]catenane 1 based on the rhomboidal scaffold was obtained
by stirring donor L with an equimolar amount of a 120° di-Pt(II)
acceptor A1 in a 1:7.5 ratio in H2O/acetone at 50°C for 24 h
(Figure 1) (Li et al., 2014; Wu et al., 2018; Hu et al.,. 2020).
Similarly, the [4]catenane 2with the triangular scaffold was formed
with three [2]pseudorotaxanes L and three 180° di-Pt-(II) acceptors
A2 (Scheme 1B). The donor ligand L (8.85 mg, 6.87 μmol) and
120o organoplatinum acceptor A1 (8.02 mg, 6.87 μmol) were
weighed accurately into a glass vial. A total amount of 3.75ml
acetone and 0.5 ml H2O were added into the vial, and the reaction
solution was stirred at 50°C for 24 h. The PF6

− salt of 1 was
synthesized by dissolving the NO3

− salts of 1 in acetone/H2O and
adding a saturated aqueous solution of KPF6 to precipitate the
product, which was collected by vacuum filtration (yield �
15.54 mg, 99%). 1H NMR (500MHz, acetone-d6): δ 8.81 (H2, d,
J � 8.2 Hz, 2H), 8.72 (H2ʹ, d, J � 8.2 Hz, 2H), 8.43 (H3, s, 2H), 8.22
(H1, d, J � 8.2 Hz, 2H), 8.18 (H3ʹ, s, 2H), 7.98 (H1ʹ, d, J � 8.2 Hz,
2H), 7.66 (H4, dd, J � 18.5, 7.9 Hz, 7H), 7.57 (H5, d, J � 8.4 Hz, 4H),
7.43 (Ho, d, J � 7.9 Hz, 4H), 6.43 (Hm, d, J � 8.0 Hz, 4H), 6.06 (Hmʹ,
d, J � 8.5 Hz, 4H), 3.87 (Hε, s, 4H), 3.78–3.72 (Hδ, m, 4H),
3.64–3.57 (Hγ, m, 4H), 3.48 (Hαβ, dd, J � 22.4, 4.8 Hz, 8H),
1.66 (PCH2-, dd, J � 7.3, 3.6 Hz, 24H), 1.23 (-CH3, dt, J � 15.7,
7.7 Hz, 37H). 31P NMR (acetone-d6, 202 MHz): δ 16.51 ppm.

Following the preparation of 1 (Scheme 1), the self-assembly
of the donor ligand L (9.86 mg, 7.66 μmol) with the 180o

organoplatinum acceptor A2 (8.14 mg, 7.66 μmol) led to the
formation of the pure [4]catenane 2 (16.53mg, 99%). 1H NMR
(500MHz, acetone-d6): δ 8.80 (H2, d, J � 8.2 Hz, 2H), 8.54 (H2ʹ, d,
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J � 8.2 Hz, 2H), 8.42 (H3, s, 2H), 8.16 (H1, d, J � 8.2 Hz, 2H),
8.02–7.90 (H1ʹ, H3ʹ, m, 4H), 7.56 (Ho, Hoʹ, t, J� 8.5 Hz, 6H), 7.04 (H6,
s, 4H), 6.42 (Hm, d, J� 7.8Hz, 4H), 6.07 (Hmʹ, d, J� 8.3 Hz, 4H), 3.86
(Hε, s, 4H), 3.79–3.69 (Hδ, m, 4H), 3.65–3.57 (Hγ, m, 4H), 3.48 (Hαβ,
dd, J � 22.1, 4.7 Hz, 8H), 1.70 (PCH2-, dd, J � 22.7, 19.1 Hz, 24H),
1.24 (-CH3, ddd, J � 30.2, 15.2, 7.2 Hz, 36H). 31P NMR (acetone-d6,
202MHz): δ 16.62 ppm. ESI-MS: m/z: 2036.40 [M-3PF6]

3+.
Multinuclear NMR (1H and 31P) analysis of the [3]catenane and

[4]catenane revealed the formation of single, discrete assemblies.
The most prominent features in 1HNMR spectra of the [3]catenane
1 and [4]catenane 2 were the obvious upfield shifts of the protons
(1-Ho: 8.55–7.56 ppm; 1-Hm: 7.22–6.43 ppm; 1-Hoʹ: 7.59–7.43 ppm;
1-Hmʹ: 7.3–6.06 ppm; 2-Ho: 8.55–7.55 ppm; 2-Hm: 7.22–6.42 ppm;
2-Hoʹ: 7.59–7.55 ppm; 2-Hmʹ: 7.3–6.06 ppm) assigned to the phen
moieties, which can be explained by the two orthogonally oriented
phens around the Cu(I) ion being magnetically shielded by each
other (Figure 1). The 31P NMR spectra of [3]catenane 1 and [4]
catenane 2 displayed a sharp singlet (for 1, Δδ1-A1 � −2.7 ppm; for 2,
Δδ2-A2 � −2.9 ppm) that shifted upfield from the signal of the
starting platinum acceptorA1 andA2 (Figure 2) due to the electron
back-donation from the platinum atoms. In addition, the structures
of the [4]catenane 2were further confirmed by ESI-TOF-MS, which

allowed the assembly to remain intact to the maximum extent
during the ionization process, while obtaining the high resolution
required for isotopic distribution. For instance, the ESI-TOF-MS
spectrum of 2 revealed signals that corresponded to charge states
resulting from the loss of PF6

− counterions, [2-3PF6]
3+, in which 2

represents the intact assembly (Supplementary Figure S2).

Single Crystal X-Ray Diffraction
Characterization and Theoretical
Calculations
Themechanically interlocked structures of the [3]catenane 1were
clearly demonstrated by X-ray crystallographic analysis
(Figure 3). The single crystals of 1 were grown by slow
evaporation of its dichloromethane solution. Mesomeric 1
crystallizes in the P-1 space group with two asymmetric
[Cu(phen)2]

+ units, threading two polyether phenanthroline
macrocycles onto the main Pt(II)-O-coordinated rhombic
metallacycles (Figure 3A). The exterior length of 1 is
approximately 2.5 nm, resulting in the large cavity with a
diameter of approximately 0.8 nm. In addition, the phenyl ring
of adjacent molecules exhibited the strong π–π interactions with a

SCHEME 1 | Graphical representation of the self-assembled donor L (A) and [3]catenane and [4]catenane (B).
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centroid-to-centroid distance of 3.86 Å (Figure 3B), thus leading
to a liner packing of rhombic motifs and generating an
interconnected 1D pore channel (Figures 3C,D). Thus, such
kinds of catenanes based on organometallic skeletons are
expected to be useful in host–guest chemistry.

To better understand the spatial structures of these catenanes,
the PM6 semi-empirical quantum chemistry method (PM6-
DH+) was employed to obtain the optimized geometry of the
[3]catenane 1 and [4]catenane 2 (Stewart, 2007). The molecular
simulation disclosed the cavity diameter of [3]catenane 1 and

FIGURE 1 | 1H NMR spectra (500 MHz, 298 K) of the [3]catenane-A1 (A) and [4]catenane-A2 (B) in acetone-d6.
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[4]catenane 2 to be around 0.8 and 1.0 nm and the exterior
length to be approximately 2.5 and 4.5 nm, respectively
(Figure 4). This finding indicated that the simulation results
of the [3]catenane 1 were consistent with the single crystal data.
In addition, the [4]catenane based on the Pt(II)-O bonds
organometallic scaffold have a relatively larger internal cavity
size and exterior length than [4]catenane based on the Pt(II)-N

bonds organometallic scaffold (for the [4]catenane, cavity
diameter: ca. 0.8 nm; exterior length: ca. 3.7 nm) (Wu et al.,
2020). These observations were attributed to the different
lengths of building blocks because the dicarboxylate donor
L1 was featured with longer length than that of the
dipyridine donor in the [4]catenane based on the Pt(II)-N-
bonded organometallic scaffold.

FIGURE 2 | 31P NMR spectra (500 MHz, 298 K) of the [3]catenane-A1 (A) and [4]catenane-A2 (B) in acetone-d6.
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CONCLUSION

In conclusion, we have shown the highly efficient construction of
the [3]catenane and [4]catenane via hierarchical assembly strategy
wherein oxygen-to-platinum coordination-driven self-assembly
and copper(I) template–directed strategy of a 1,10-
phenanthroline-based [2]pseudorotaxane comprising 30-
membered rings and 60° dicarboxylate donors. Multinuclear
NMR {1H and 31P} spectroscopy, electrospray ionization time-
of-flight mass spectrometry (ESI-TOF-MS), and the PM6
semiempirical molecular orbital calculations unambiguously
supported for molecular compositions. In the case of the [3]
catenane, the structures of the assemblies have been established
by X-ray crystallography. The crystallographic studies revealed two
asymmetric [Cu(phen)2]

+ units inside the [3]catenane and tubular
structures through the stacking of the individual [3]catenane driven
by the strong π–π interactions. Such hierarchical assembly strategy,

which successively used highly efficient oxygen-to-platinum
coordination-driven self-assembly and the template-directed
strategy, may provide insights into the construction of other
topologically complex supermolecules with well-defined structures.
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