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Abstract

The reproductive number is an important metric that has been widely used to quantify the

infectiousness of communicable diseases. The time-varying instantaneous reproductive

number is useful for monitoring the real-time dynamics of a disease to inform policy making

for disease control. Local estimation of this metric, for instance at a county or city level, allows

for more targeted interventions to curb transmission. However, simultaneous estimation of

local reproductive numbers must account for potential sources of heterogeneity in these

time-varying quantities—a key element of which is human mobility. We develop a statistical

method that incorporates human mobility between multiple regions for estimating region-spe-

cific instantaneous reproductive numbers. The model also can account for exogenous cases

imported from outside of the regions of interest. We propose two approaches to estimate the

reproductive numbers, with mobility data used to adjust incidence in the first approach and to

inform a formal priori distribution in the second (Bayesian) approach. Through a simulation

study, we show that region-specific reproductive numbers can be well estimated if human

mobility is reasonably well approximated by available data. We use this approach to estimate

the instantaneous reproductive numbers of COVID-19 for 14 counties in Massachusetts

using CDC case report data and the human mobility data collected by SafeGraph. We found

that, accounting for mobility, our method produces estimates of reproductive numbers that

are distinct across counties. In contrast, independent estimation of county-level reproductive

numbers tends to produce similar values, as trends in county case-counts for the state are

fairly concordant. These approaches can also be used to estimate any heterogeneity in trans-

mission, for instance, age-dependent instantaneous reproductive number estimates. As peo-

ple are more mobile and interact frequently in ways that permit transmission, it is important to

account for this in the estimation of the reproductive number.
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Author Summary

To control the spreading of an infectious disease, it is very important to understand the

real-time infectiousness of the pathogen that causes the disease. An existing metric called

instantaneous reproductive number is often used to quantify the average number of sec-

ondary cases generated by individuals who are infectious at a certain time point, assuming

no changes to current conditions. In practice, we might be interested in using the metric

to describe the infectiousness in multiple regions. However, this is challenging when there

are visitors traveling between these regions, since this could lead to a misclassification of

where an individual is actually infected and create biased estimates for the instantaneous

reproductive numbers. We developed a method that takes account of human mobility to

estimate the instantaneous reproductive numbers for multiple regions simultaneously,

which could reveal the heterogeneity of the metric. This method aims to provide helpful

information on region-specific infectiousness for disease control measures that focus on

the region with higher pathogen infectiousness. This approach is also applicable for esti-

mating the reproductive number in the presence of other sources of heterogeneity, includ-

ing by age.

This is a PLOS Computational Biology Methods paper.

Introduction

In the aftermath of the pandemic caused by the SARS-CoV-1 virus, the idea of using surveil-

lance data to estimate reproductive numbers was introduced and popularized by the seminal

paper by Wallinga and Teunis [1]. Subsequent methods have been developed that are better

suited to real-time estimation, particularly the approach to estimate the instantaneous repro-

ductive number introduced by Fraser [2] and implemented in the popular EpiEstim R pack-

age [3, 4]. These methods have promised to be useful in surveillance and monitoring an

epidemic, but as the pandemic caused by SARS-CoV-2 has demonstrated, there are still needed

improvements to these approaches. Principal issues include accounting for reporting delays in

the data, underreporting of cases, and heterogeneity in transmission by geography and by

demographic factors, such as age. For these methods to be truly useful in the ongoing COVID-

19 pandemic and for future events, these issues must be addressed. Work is being done on the

first two issues. For instance, Li et al. [6], Gunther et al. [7] and Martinez et al. [8] propose

solutions to the timeliness problem. Pitzer et al. [9] demonstrate the impact of reporting issues

and White et al. [10] have shown how estimates of R(t) can be corrected with information on

the reporting fraction of diseases. In this paper, we propose a framework for addressing het-

erogeneity in transmission, specifically due to human mobility, though our methods can be

more generally applied.

Studies have shown that there is transmission heterogeneity in COVID-19, as well as other

infectious diseases, which lead to a disproportional impact of the disease on some groups. Mul-

tiple studies have found strong evidence of strong heterogeneity wherein a small number of

individuals are responsible for the vast majority of cases [11–13]. Additionally, in this COVID-

19 pandemic, Sy et al. [14] have shown how mobility, such as subway usage, in NYC leads to

disproportionate case burden among those who are not maintaining a physical distance. This

implies it would be more efficient if we could account for the heterogeneity and focus control

efforts on the populations with the highest transmission probabilities [15].
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Many factors could contribute to the heterogeneity of virus transmission, including impor-

tant systematic factors such as lower socioeconomic status (SES) that disadvantage certain

groups and could lead to a higher probability of disease transmission. These factors often clus-

ter geographically. The impact of these factors on virus transmission could be reflected in the

reproductive numbers. Ideally, we will be able to discover the heterogeneity by examining the

differences in the reproductive numbers between different regions. However, due to human

mobility, the heterogeneity of the reproductive numbers among different regions could be

masked. This is because human mobility could distribute the infectees by certain infectors to

different regions, leading to misclassification of the incidence of one region to another.

We propose a framework for accounting for heterogeneity in disease transmission when

estimating the time-varying instantaneous reproductive number for each region. This could

help monitor changes in transmission to guide public health measures, for example, imple-

menting more stringent disease control measures for the region with higher virus transmis-

sion. Our framework requires data to inform the source or patterns of heterogeneity. We focus

on human mobility data to estimate the reproductive number for multiple regions or popula-

tion groups. However, we note that the framework is suitable for understanding the effects of

other important factors on the heterogeneity of the reproductive number, such as age.

We present an analytical framework with two approaches to estimate the dynamics of trans-

mission heterogeneity. If we believe that the heterogeneity of the reproductive numbers can be

recovered by accounting for population mixing due to human mobility, and we have confi-

dence that the human mobility data represent the mixing of incidence, we suggest using an

efficient and straightforward approach that adjusts the incidence prior to estimation. If instead

we want to adjust for the importation of cases and more accurately quantify the uncertainty

associated with the use of human mobility data with standard errors, we propose a more flexi-

ble and computationally intensive Bayesian approach that is more appropriate.

Materials and methods

Overview

We propose two approaches to estimate instantaneous reproductive numbers that incorporate

human mobility data to account for heterogeneity. Both approaches are based on the frame-

work of a system of renewal equations that bring human mobility into consideration. The dif-

ference between these two approaches is how the estimation handles potential uncertainty in

the human mobility data. These methods can be applied to other types of heterogeneity, such

as differential age-mixing where one might use the information on contact patterns between

age groups. Our first approach simplifies the problem by assuming that human mobility data

accurately represents the mixing patterns and corresponding incidence misclassification with-

out error. In this setting, we propose an approach that extends the framework developed by

Fraser et al. [2] to estimate the heterogeneous instantaneous reproductive numbers by adjust-

ing the observed incidences for multiple regions using the human mobility data. In reality,

there is likely some randomness in human mobility and we would typically wish to quantify

the uncertainty due to other factors that might drive the heterogeneity of instantaneous repro-

ductive numbers. For this setting, we use a system of renewal equations that incorporates

human mobility data and estimate instantaneous reproductive numbers under a hierarchical

Bayesian framework. Both approaches are evaluated by simulations, and implemented to esti-

mate instantaneous reproductive numbers for all counties in Massachusetts, USA, during the

COVID-19 pandemic together with human mobility data from SafeGraph.
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Data

The COVID-19 incidence data is provided by CDC case report [16] and we use incidence

from July 2020 to March 2021 because testing and case reporting became more frequent and

regular starting in July 2020. We aggregate confirmed cases in Massachusetts by date and

county. Human mobility data is obtained from the multiscale dynamic human mobility flow

dataset constructed and maintained by Kang et al. [17], who computed, aggregated and

inferred the daily and weekly dynamic origin-to-destination (O-D) flow at three geographic

scales (census tract, county and state) analyzing anonymous mobile phone users’ visits to vari-

ous places provided by SafeGraph [18].

Notation

Suppose that we want to estimate an instantaneous reproductive number, denoted as R(t), for

J stratum, where the stratum can be geographical regions, age groups, communities, etc. Let

Nj(t), t = 1, . . ., T be the number of new cases reported at time t for region j, and mj(t) = E
[Nj(t)], where t = 1 is the first observation time and T is the last time with available data. The

distribution of serial intervals is denoted as ω(τ|θ), where τ is the interval between the time of

disease onset in an infector-infectee pair, and θ is the parameters of the distribution. There are

several assumptions for both approaches that we propose:

1. Serial interval and reproductive number are statistically independent;

2. Reproductive number follows a Poisson distribution;

3. All infectors appear before those they infected;

4. Individuals mix homogeneously;

5. Closed population;

6. Complete case reporting;

7. Accurate mobility information;

8. The serial interval is the same as the reporting interval (i.e. the time between case report

dates in an infector-infectee pair).

Instantaneous reproductive number

The instantaneous reproductive number, originally developed by Fraser et al. [2], estimates the

average number of secondary cases generated by individuals who are infectious at time t
assuming no changes to current conditions. When using the instantaneous reproductive num-

ber, the expected incidence at time t, which is denoted as m(t), can be expressed as the follow-

ing renewal equation:

mðtÞ ¼
X

t<t

RðtÞoðtÞmðt � tÞ: ð1Þ

In practice, the estimator for R(t) can be computed with reported incidence N(t) as:

R̂ðtÞ ¼
NðtÞ

P
t<toðtÞNðt � tÞ

: ð2Þ

Cori et al. [3] used a Bayesian approach to estimate the R(t) with credible intervals and pro-

posed smoothing the estimates by using a longer time window, assuming the R(t) stay the
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same within that window. Thompson et al. [4], and then Creswell et al. [5], developed

extended versions of the method to perform estimation in the presence of imported cases.

Based on the renewal Eq 1 as well as the estimation method developed by Cori et al. [3] and

Thompson et al. [4], we can formulate the process into a system of renewal equations that

incorporates the human mobility data, assuming that the mobility data accurately describe the

how the infected individuals are travelling between regions.

Denote P as the J-by-J human mobility matrix that reclassifies incidences to the presumed

location of the transmission event. Let pj0 j be the entry of P matrix in the j0th row and jth col-

umn, and represents the proportion of population in region j0 that travels to region j. Then to

describe incidences in multiple regions, we can extend the Eq (1) to a system of equations:

mjðtÞ ¼
XJ

j0¼1

pj0 jðtÞ
X

t<t

Rj0 ðtÞmj0 ðt � tÞoðtÞ

" #

; j 2 f1; 2; . . . ; Jg; ð3Þ

where
Pj

j¼1
pj0 jðtÞ ¼ 1.

Eq (3) describes the relationship between infectious individuals in region j0 at time t − τ and

cases they infect who are reported in region j τ time points later. Two processes are at play,

first the serial interval, ω(τ), as is commonly used in the EpiEstim estimator, which describes

the probability of a secondary case taking τ time points to show up. Second, and unique to our

formulation, is the pj0 j(t), which describes the probability of an individual infected at region j0

that travel to and be reported as a case in region j at time t. This formulation assumes that indi-

viduals have consistent mixing patterns between regions, e.g., regular commuting patterns, or

that there is so-called slow-mixing, meaning that the individuals are traveling out of region j0 τ
time points after they are infected.

We can rewrite Eq (3) in a matrix form, we have:

mðtÞ ¼ P>ðtÞRðtÞIJðmðt � 1Þ; . . . ;mð1ÞÞðoð1Þ; . . . ;oðt � 1ÞÞ
>
; ð4Þ

where m(t) = (m1(t), m2(t), . . ., mJ(t))> is a vector of incidences for the J regions at time t,
Therefore, (m(t − 1), . . ., m(1)) is a J-by-(t − 1) matrix for the incidences of J regions from

time t − 1 to 1. R(t) = (R1(t), R2(t), . . ., RJ(t))> is a vector of instantaneous reproductive num-

bers for the J regions at time t. IJ is a J-by-J identity matrix.

Based on the above system of renewal equations, we propose two approaches for the estima-

tion of heterogeneous R(t) incorporating mobility data as follows.

Approach I—Incidence adjustment approach

In this approach, we use the matrix P from the human mobility data deterministically. Accord-

ing to Eq (4), assume that P is invertible, we have

P� >ðtÞmðtÞ ¼ RðtÞIJðmðt � 1Þ; . . . ;mð1ÞÞðoð1Þ; . . . ;oðt � 1ÞÞ
>
; ð5Þ

Note that m(t) = (m1(t), m2(t), . . ., mJ(t))> = (E[N1(t)], E[N2(t)], . . ., E[NJ(t)])> = E[N(t)].
To estimate R(t) with the reported incidence N(t), let Nlocal(t) = P−>(t)N(t), and assume

Njlocal
ðtÞ follows a Poisson distribution:

PðNjlocal
ðtÞjNjðt � 1Þ; . . . ;Njð1Þ;oðt � 1Þ; . . . ;oð1Þ;RjðtÞÞ

¼
ðRjLjðtÞÞ

Njlocal
ðtÞexpð� RjðtÞLjðtÞÞ

Njlocal
ðtÞ!

ð6Þ
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where Λj(t) = ∑τ < t Nj(t − τ)ω(τ). Njlocal
ðtÞ is a random variable for the incidence that actually

should be attribute to region j, and the distribution of Njlocal
ðtÞ is conditional on the previous

reported cases in region j, the distribution of reporting interval ω(�) as well as the instanta-

neous reproductive number Rj(t) in region j at time t. Λj(t) is the cumulative reported cases in

region j that contribute to the new reported cases at time t, Therefore, Rj Λj(t) is the expecta-

tion of the random variable Njlocal
ðtÞ that is assumed to follow a Poisson distribution.

Assume that Rj(t) follows a gamma prior distribution Gamma(a, b), and within a k-days

window (from day t − k + 1 to t), the incidences all depend on the same Rj(t). we can write the

posterior joint distribution of Rj(t) as:

PðRjðtÞ;Njlocal
ðtÞ; . . . ;Njlocal

ðt � kþ 1ÞjNjð1Þ; . . . ;Njðt � kÞÞ ð7aÞ

/ PðNjlocal
ðtÞ . . . ;Njlocal

ðt � kþ 1ÞjRjðtÞ;Njð1Þ; . . . ;Njðt � kÞÞPðRjðtÞÞ ð7bÞ

¼
Yt

i¼t� kþ1

ðRjðtÞLjðiÞÞ
Njlocal

ðiÞ

Njlocal
ðiÞ!

expðRjðtÞLjðiÞÞ

 !
RjðtÞ

a� 1

GðaÞba
exp �

RjðtÞ
b

� �

ð7cÞ

/ RjðtÞ
aþ
P

i
Njlocal

ðiÞ� 1exp � RjðtÞ
X

i

LjðiÞ þ
1

b

 ! !
Yt

i¼t� kþ1

LjðiÞ
Njlocal

ðiÞ

Njlocal
ðiÞ!

ð7dÞ

Therefore, the posterior of Rj(t) also follows a gamma distribution

Gamma aþ
P

iNjlocal
ðiÞ � 1;

P
iLjðiÞ þ 1

b

� �� �� 1

. The estimation can be performed by imple-

menting the existing EpiEstim R package with the incidence adjustment data.

Approach II—Bayesian approach

Based on the renewal equation with instantaneous reproductive number by previous studies

[2, 19], we formulate the renewal equations for J regions as:

mjðtÞ ¼ mjðtÞ þ
X

t<t

XJ

j0¼1

Rj0jðtÞmj0 ðt � tÞoðtÞ; j 2 f1; 2; . . . ; Jg; ð8Þ

where μj(t) is the rate of exogenous infections (infections out of any of the regions j 2 {1, . . .,

J}) occurs in region j, and ω(τ) is the probability distribution of serial interval. We model Rj0

j(t) = Rj0(t)pj0 j(t), where Rj0(t) is the region specific reproductive number for region j0 at time t,
and pj0 j(t) represents the probability of an individual infected at region j0 that travel to and be

reported as a case in region j at time t, assuming that {pj0 j(t):j0, j 2 1, 2, . . ., J} are known. Then

we have:

mjðtÞ ¼ mjðtÞ þ
XJ

j0¼1

pj0 jðtÞ
X

t<t

Rj0 ðtÞmj0 ðt � tÞoðtÞ

" #

;where
Xj

j¼1

pj0jðtÞ ¼ 1: ð9Þ

pj0 j(t) here attempts to capture the mobility information of infected cases between the

regions at time t, and we denote a matrix P(t) with entries pj0 j(t) as a transition matrix that

models the infected subjects flowing across the regions. For example, while estimating R(t) for

multiple regions, we can inform the P(t) matrix with mobility data between the regions and/or

geographical distance between the regions. Within a Bayesian hierarchical modeling frame-

work, Dirichlet priors for P(t) can incorporate prior knowledge for the estimation of R(t).
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We model Rj0(t) in (9) as:

logðRj0 ðtÞÞ ¼ bj0 ðtÞ þ �j0 ; �j0 � Nð0; sj0 Þ; ð10Þ

assuming �j0 has constant variance over time.

Assume that the distribution of serial interval ω(τ) and pj0 j is known; Nj(t)�Poisson(mj(t))
and {Nj(t)} are independent conditional on mj(t), so we have the factorization:

PðfNjðtÞgjfmjðtÞgÞ ¼
QJ

j¼1
PðNjðtÞjmjðtÞÞ. Then we can sample the posterior distribution of

parameters with Bayesian hierarchical modeling:

logðRjðtÞÞ � NðbjðtÞ; sjÞ; ð11aÞ

mjðtÞ ¼ mjðtÞ þ
XJ

j0¼1

Rj0 ðtÞpj0 jðtÞ
X

t<t

mj0 ðt � tÞoðtÞ

" #

; ð11bÞ

NjðtÞ � Poisson ðmjðtÞÞ; j ¼ 1; . . . ; J; ð11cÞ

with certain prior specifications for {μj(t)}, {βj(t)}, {σj}.

We also allow a smoothing window for the estimation of Rj(t). If the length of the smooth-

ing window is k, then we modify Eq (11c) to be:

Njðt0Þ � PoissonðmjðtÞÞ; j ¼ 1; . . . ; J; t0 ¼ t; t þ 1; . . . ; t þ k � 1: ð12Þ

For Eq (12), we assume that the expected incidence at k consecutive time points are the

same. Specifically, we assume that the incidence from time t to t + k − 1 follow the same Pois-

son distribution with mean mj(t).

Assumption violation for mobility information

In practice, mobility information being used might not be accurate. In those scenarios, assum-

ing that we have complete case reporting, we could have negative values in the local incidence

according to the formula Nlocal = P−>(t)N(t). Since negative values would not make sense for

the incidence as count data, it indicates that the mobility information that we are using is not

accurate assuming case counts are accurate, which is an assumption violation for our method.

This is a violation of the assumption of accurate mobility information, indicating that it

would be better to use higher quality mobility data that better describes how the infected indi-

viduals are traveling between regions. If we are not able to identify better mobility data, we

propose an approach to adjust the P matrix that yields non-negative values for Nlocal.

To adjust the P matrix, we use a shrinkage factor sj(t) For time t and region j. sj(t)2[0, 1]

describes the extent of shrinkage for the percentage of population flowing in or out of region j
at time t. Denote the P matrix adjusted as Padj(t). To adjust P matrix so that the Njlocal

is non-

negative, denote regions other than region j as {j0}, for the column of P matrix that correspond

to region j, we let Padj(t)(j0, j) = sj(t)P(t)(j0, j) and Padj(t)(j, j) = P(t)(j, j) + (1 − sj(t))∑j0 2 {1, . . ., J}/j

P(t)(j0, j), for the row of P matrix that correspond to region j, we let Padj(t)(j, j0) = sj(t)P(t)(j, j0) and

Padj(t)(j0, j0) = P(t)(j0, j0) + (1 − sj(t))∑j0 2 {1, . . ., J}/j P(t)(j, j0). For each time point t and each region j,
we search sj(t) from 1 to 0 with and interval of 0.01 until Njlocal

is non-negative. Since the

regions with lower incidence are more readily impacted by the inaccurate mobility informa-

tion, the adjustments are made such that a region with lower incidence will be adjusted first.

We further demonstrate how the proposed method to adjust P matrix could help in simula-

tion scenario 4 where there is an inaccurate P matrix. We also emphasize that this hinges on
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the assumption that incidence data is accurate and that the approach we describe will not

detect inaccuracies in the case where case counts are very large. This is important future work.

Simulation

Simulation settings. Scenario 1: We consider three regions (j 2 {a, b, c}), where there

are no exogenous infections (except for the initial cases on day 0), so that μj(t) = 0. Assuming

pj0 j(t) and ω(τ) are known, we specify the 3-by-3 matrix P(t) = P with entries pj0 j(t) to be the

same across time points, where j0 is row index and j is column index, and P is specified as the

following:

P ¼

0:8 0:15 0:05

0:2 0:6 0:2

0:1 0:3 0:6

0

B
@

1

C
A;

and we generate discrete distribution ω(τ) for τ from the CDF of f(τ) = Gamma(2, 0.5):

oðtÞ ¼
FðtÞ � Fðt � 1Þ; 0 < t � 14

0; t > 14

(

For {Rj(t)}, we specify nonlinear functions for each region (also shown in Fig 1):

RaðtÞ ¼ ð20cosðt=500Þ þ ðð0:8t � 50ÞÞ
2
� ð0:115tÞ3Þ=1000þ 0:8

RbðtÞ ¼ ð30sinðt=150Þ þ cosðt=20Þ � ðt=50Þ
2
Þ=8 � 0:006t

RcðtÞ ¼ ð30cosðt=150Þ þ 2sinðt=20Þ þ 2ðt=50Þ
2
Þ=20 � 0:005t

To generate incidence data, we let the initializing cases to 10 in each region and let the max-

imum time of observation to be T = 214. According to Eq (9), with {Rj(t)}, {ω(τ)} and matrix

P(t), we can compute mj(t) and sample the incidences for t = 1, 2, . . ., T recursively. Note that

we specified the same P for P(t) at all time points. Based on the incidences at previous time

points t0 < t, and Rj(t) at current time point t, we can compute mj(t) for the current time point

t. Then the incidences for the current time point t are sampled from Poisson distribution with

mean mj(t). The same steps are used to sample the incidence at the next time point t + 1, until

we generated the incidences for T time points for each region. 100 Monte Carlo replicates are

generated for the simulation study. Fig 1 shows the 100 replicates of simulated data.

We performed the incidence adjustment approach (Approach I) to estimate the instanta-

neous reproductive numbers on the simulated data described above. For the Bayesian

approach (Approach II), we evaluated the performance of the model using different distribu-

tion assumption for the incidence Nj(t), and also using different lengths of smoothing window.

Then we explored whether using a prior for the transition P matrix to allow for more flexibility

could yield proper estimates for Rj(t). The performance of the proposed model is compared

with the model without considering the heterogeneous of Rj(t), that is using an identity P
matrix.

For all models, we use N(0, 0.5) as the prior distribution for βj(t), and N(0, 1) for σj, where

βj(t) and σj are the hyperparameters for Rj(t) in Eq (11a). Other model parameter settings are

described below:

Model 1: constant P matrix, smoothing window is 1, assume Poisson distribution for Nj(t);

Model 2: constant P matrix, smoothing window is 9, assume Poisson distribution for Nj(t);
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Model 3: constant P matrix, smoothing window is 9, assume Negative Binomial distribution

with ϕ� N(0, 5) for Nj(t);

Model 4: random P matrix that each column follows a Dirichlet distribution centering at the

true P matrix with large concentration parameter, smoothing window is 9, assume Poisson

distribution for Nj(t);

Model 5: constant identity P matrix, smoothing window is 9, assume Poisson distribution for

Nj(t) (this model is equivalent to Fraser’s method, which do not consider human mobility);

The estimates from Approach I (with and without mobility information) and model 4 and

5 of Approach II are shown in the main result section. Note that model 4 of Approach II is

with mobility information, and model 5 of Approach II is without mobility information. Simu-

lation results from Model 1, 2, 3 of Approach II are shown in S1 Appendix and S1 Fig.

Scenario 2: In practice, we might have a low count of cases for some of the regions, so we

also evaluated the proposed approaches under the scenario where we have a lower count dur-

ing a certain period of time. In the low count scenario, we specify the R(t) for the three regions

to be three piece-wise functions, and it is shown in Fig 1.

RaðtÞ ¼ 1:2Iðt � 80Þ þ 0:5Ið80 < t � 120Þ þ 1:6Iðt > 120Þ

RbðtÞ ¼ 1:4Iðt � 80Þ þ 0:3Ið80 < t � 120Þ þ 1:4Iðt > 120Þ

RcðtÞ ¼ Iðt � 80Þ þ 0:2Ið80 < t � 120Þ þ 1:5Iðt > 120Þ

We initiate with 50 incidences for the three regions, and simulated incidence from 100 rep-

licates are shown in Fig 1. When performing estimation, we focus on the range from day 90 to

day 130, because this range covers the period where the incidence decreases to zero or low

Fig 1. Specified R(t) functions and incidence for three regions from 100 replicates for simulation. The top panel shows the simulated incidence of

100 replicates. The shaded areas are the 95% quantile bands of the simulated incidences, the solid lines in the shaded area are the mean of the simulated

incidences. The bottom panel shows the specified R(t) functions, which are plotted as solid lines.

https://doi.org/10.1371/journal.pcbi.1010434.g001
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counts that are close to zero. The result for estimated R(t)’s is shown in S1 Appendix and S2

Fig.

Scenario 3: We also evaluate the performance of the proposed approaches in a scenario

where the population are traveling out of two of the regions with higher R(t) to the third region

with lower R(t). We expect this scenario will show that if we do not consider the human mobil-

ity, we will overestimate the R(t) for the region where accepting population travel from other

regions with higher R(t). In this scenario, we specify the P matrix to be:

P ¼

0:9 0 0

0 0:9 0

0:1 0:1 1

0

B
@

1

C
A:

The P matrix specified intends to create a scenario in which the population in region a and

region b travel to region c, while the population in region c stay in place.

We specify the R(t) for the three regions to be (shown in Fig 1):

RaðtÞ ¼ 1:3þ 0:1sinðt=20Þ

RbðtÞ ¼ 0:5þ 0:1sinðt=20Þ

RcðtÞ ¼ 0:2þ 0:1sinðt=20Þ

In this scenario, we initiate the 100 incidences for each of the three regions. We use

Approach I to perform the estimation, since when the incidence counts are high, both

approaches generate a similar result. The result of estimated R(t)’s is shown in S1 Appendix

and S3 Fig. We also used another P matrix with higher population mixing between the regions,

and the result of estimated R(t)’s is shown in S1 Appendix and S4 Fig.

Scenario 4: We show how the inaccurate P matrix might affect the estimates of N(t) and R
(t) and evaluate the performance of the proposed method that adjust P matrix in this scenario.

In this scenario, we specify the P matrix to be:

P ¼

0:995 0:2 0:2

0:0025 0:6 0:2

0:0025 0:2 0:6

0

B
@

1

C
A:

We use the P matrix above to generate data, then we apply approach I to the simulated data

with an inaccurate P matrix with 10 times higher incidence exporting from region a to region

b and c, the inaccurate P matrix is as below:

Pinaccurate ¼

0:95 0:2 0:2

0:025 0:6 0:2

0:025 0:2 0:6

0

B
@

1

C
A:

In this scenario, we initiate the 500 incidences for region a and 0 incidence for region b and

c. With simulated incidences and the inaccurate P matrix, Nlocal ¼ P>inaccurateN yields negative

values. We apply approach I with adjusted P matrix to demonstrate the performance of the

proposed method to adjust the inaccurate P matrix for better estimates of E[N(t)]. We show

the result of estimates for E[N(t)] and R(t) using true P matrix, inaccurate P matrix, adjusted

inaccurate P matrix and identify P matrix (equivalent with not using mobility data) in S1

Appendix and S5 Fig.
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Real data application

We implement the two approaches described above to the COVID-19 incidence data from the

CDC. Since case reporting was more regular starting around July 2020, we focus on the case

report data from July 2020 to March 2021. We aim to estimate the heterogeneous instanta-

neous reproductive numbers for all counties (14 in total) in Massachusetts, USA.

Human mobility patterns across the counties are examined, followed by the estimation of

instantaneous reproductive numbers as well as the expected incidence for each county. While

performing the estimation, we assume the serial interval follows a gamma distribution Gamma

(3.45, 0.66), which corresponds to a mean of 5.2 days and an SD of 2.8 days [20].

Results

Our approaches are based on the renewal equation framework proposed by Fraser et al. [2] for

estimating the instantaneous reproductive number. We extend the framework to incorporate

human mobility data in a system of renewal equations to estimate the instantaneous reproduc-

tive numbers for multiple regions. We propose two approaches to carry out the estimation.

For Approach I, we adjust the incidence in multiple regions according to the human mobility

data and then estimate the instantaneous reproductive number separately in each region using

the EpiEstim method. We call this the incidence adjustment approach. For Approach II, we

perform estimation using a system of renewal equations in a hierarchical Bayesian framework.

We call this the Bayesian approach.

In this section, we show results for both the simple incidence adjustment approach and the

more complex system of renewal equations using simulation and data from Massachusetts

during the COVID-19 pandemic.

Simulation results

Our simulation study considers three regions with substantially different transmission profiles

over time, but reasonably similar patterns in incidence. The incidence data are simulated with

pre-specified reproductive numbers over time as well as a transition matrix, which can be

informed by mobility data in practice, that describes how the population in each region dis-

tribute to other regions. The details of the simulations are described in the Simulation Settings

Section. Approach I is straightforward as we use the human mobility data deterministically to

adjust the incidence. For Approach II, we evaluated the model using different assumptions on

the distribution of incidence and randomness for the mobility data. In this section, we show

the results from the two proposed approaches along with the naive approach that does not use

mobility data in Fig 2. The naive approach estimates the reproductive numbers separately for

each region, which is equivalent to Approach I and Approach II without using the mobility

data. Other simulation results are in S1 Appendix.

Fig 2 shows the main result of the simulation. Table 1 summarizes the mean squared error

(MSE), sensitivity and specificity for the estimates from Approach I and II with or without

using mobility information. For Approach I, the incidence adjustment approach, a fixed tran-

sition matrix P (for mobility between regions) is used for the estimation. For Approach II, the

Bayesian approach, Dirichlet priors with concentration parameter 104 are placed on the row

vectors in the transition matrix P. From Fig 2, we observe that both of Approach I and

approach II provide estimated incidence for the 3 regions that are close to the incidence mean

for 100 Monte Carlo replicates. The estimated reproductive numbers are also close to the true

reproductive numbers. The credible bands of the estimated reproductive numbers are quite

narrow for the incidence adjustment approach, while it is wider in the Bayesian approach.
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From Table 1, we see that the estimate of expectation of incidence and R(t) from Approach II

is more accurate that Approach I in terms of MSE.

When we do not use mobility data (i.e. P is an identity matrix), the incidence estimates

obtained by Approach I deviate from the true incidence mean, especially earlier in the out-

break, compared to that obtained by Approach II. Although the estimated incidences obtained

by Approach II are close to the mean of simulated data, the R(t) estimates obtained by both

approaches when not accounting for mobility, are very similar for each of the three regions

and quite different from the true R(t) curves. The results show that the estimates for R(t) are

close to the true R(t) if we use the mobility information in the model. But if we just stratify the

data by region and estimate R(t) ignoring mobility patterns between regions, we are not able to

capture the transmission differences. From Table 1, for estimated expectation of incidence

Fig 2. Estimated E[N(t)] and R(t) by region for Scenario 1. Solid lines are posterior means, along with the 95% credible bands (shaded). As noted at

the sidebars on the left, the figures in the upper panel are the estimated Incidence and R(t) by region while using mobility data, and the lower panel

shows the results from models without using mobility data. Both the results from Approach I and Approach II are provided.

https://doi.org/10.1371/journal.pcbi.1010434.g002

Table 1. Comparison of the Estimates of Expected Incidence and R(t) between Different Approaches under Scenario 1. Mean squared error (MSE) is computed as the

squared error that averaged across days. Sensitivity and specificity are computed for the event R(t)>1. Note that Approach I without using mobility data is equivalent to

the original Fraser’s method implemented in EpiEstim.

Approach Estimate Mobility MSE Sensitivity Specificity

I Incidence With mobility 27.129 — —

Without mobility 137.490 — —

R(t) With mobility 0.011 0.992 0.869

Without mobility 0.146 0.543 0.723

II Incidence With mobility 3.091 — —

Without mobility 13.880 — —

R(t) With mobility 0.005 0.960 0.912

Without mobility 0.154 0.554 0.712

https://doi.org/10.1371/journal.pcbi.1010434.t001
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from Approach I, the MSE is 27.129 when using mobility information and it is 137.49 when

not using mobility information. For estimated R(t) from Approach I, the MSE is 0.011 when

using mobility information, and it is 0.146 when not using mobility information. Both sensitiv-

ity and specificity that test for the event R(t)>1 are higher when using mobility information

compare to not using mobility information. The pattern for the results from Approach II is

similar to that from Approach I.

COVID-19 results

Overview of incidence in Massachusetts. Fig 3 is an overview of the incidence of

COVID-19 from July 1st, 2020 to February 28th, 2021 for the 14 counties in the State of Massa-

chusetts, USA. Essex, Middlesex and Suffolk county, the most populous counties, have rela-

tively high incidence. The overall pattern of incidence across counties is similar, exhibiting an

obvious increase after November 2020 during the second wave.

Population flow across counties in Massachusetts based on human mobility data.

Human mobility data is obtained from the multiscale dynamic human mobility flow dataset

constructed and maintained by Kang et al. [17]. They computed, aggregated and inferred the

daily and weekly dynamic origin-to-destination (O-D) flow at three geographic scales (census

tract, county and state) analyzing anonymous mobile phone users’ visits to various places pro-

vided by SafeGraph [18]. We use county-level data in Massachusetts for the modeling in this

real data analysis. The human mobility data consists of the estimated number of visitors travel-

ing from one county to another each day. For each county, we use the directional mobility

data to compute the proportions of the population that travel to other counties as well as the

proportion of the population that stays in the county. Therefore, we obtain the mobility matri-

ces P(t) for each day. There are two assumptions we made in the analysis. First, we assume that

the population is mixing slowly, or the population has a regular travel pattern, as described in

Methods and Materials Section. Second, we assume that the mobility of the whole population

is representative of the mobility of infected individuals. Both assumptions are important for

the model as well as the analysis. If there is a large change in the travel pattern in the popula-

tion, the first assumption will be violated, and the model will suffer due to the difficulty of trac-

ing the location of the infected individuals over time. The second assumption makes it

reasonable to infer the mobility of the infected individuals from the mobility of the population.

The infected individuals, especially in the early stage of infection, could be more mobile than

Fig 3. Reported Incidence for all MA counties. Incidence of COVID-19 from July 1st, 2020 to February 28th, 2021 for the 14 counties in the State of

Massachusetts, USA.

https://doi.org/10.1371/journal.pcbi.1010434.g003
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the general population, thus we consider our assumption to be conservative for the mobility of

the infected individuals.

Before we analyze the real data with the proposed model, we first visualize the mobility data

to examine the overall travel pattern of the population across counties in Massachusetts. We

use Lij(t) to denote the number of visitors from county j to county i in day t. To visualize how

the counties are clustered according to visitors traveling between them, we compute the aver-

age daily population flow 1

T

PT
t¼1

LijðtÞ for each (i, j) pair from July 1st, 2020 to February 28th,

and stratify the flow by weekdays and weekends, assuming there will be different patterns for

working days and non-working days.

There are notable differences between weekday and weekend patterns of mobility that can

be seen in the heatmaps and dendrograms (Fig 4) generated with complete-linkage hierarchi-

cal clustering. During weekdays, most travel is between regions that are geographically proxi-

mate, for example, Barnstable, Bristol and Plymouth. On weekends, counties further apart are

in the same cluster on the heat map, for example, Norfolk is in the cluster with Barnstable,

Bristol and Plymouth. We also show the population flow on the geographical map in Fig 5.

The clustering is more clear for regions that are geographically proximate for the daily average

that is not stratified by weekdays and weekends. From the figure showing the difference

between the weekdays’ daily average and weekends’ daily average, we observe that there is

more of the population traveling between Essex, Worcester, Norfolk, Suffolk and Middlesex

on weekdays compared to weekends, and less of the population traveling between Middlesex,

Barnstable and Plymouth as well as between Norfolk, Barnstable and Plymouth. These patterns

support the clustering in the heat maps.

Besides quantifying and visualizing the population flow between counties, quantifying the

daily change of population for a county will help us understand the potential output of cases

from that county and the infection pressure from other counties. We first compute population

Fig 4. Heat maps for average population flow (log scaled) across regions during weekdays and weekends. Darker colors indicate regions with more

flow between them.

https://doi.org/10.1371/journal.pcbi.1010434.g004
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flow out and flow in before we compute population change. Assume that there are J counties

considered, and the set J ¼ ð1; 2; . . . ; JÞ contains the indices for the J counties. For county

j 2 J , to compute the population flow out in day t, we can aggregate the number of visitors

from county j that travel to other counties to be the size of population flow out for county j in

day t, and denote it as LðjÞoutðtÞ ¼
P

i2J =jLijðtÞ. Also, we can aggregate the number of visitors

from other counties that travel to county j to be the size of population flow in county j in day t,
and denote this as LðjÞin ðtÞ ¼

P
k2J =jLjkðtÞ. And we use L(t)(j) to denote the population size of

county j on day t. Note that the data is for human mobility in that day, instead of a permanent

move.

Population change, which is denoted as LðjÞchangeðtÞ, can inform how the population in

region j is mixing with other regions in day t. Population change refers to the change in

population size in day t compared to the population size in day t − 1 as a ratio, that is

LðjÞchangeðtÞ ¼
LðjÞin ðtÞ� LðjÞoutðtÞ

LðjÞðt� 1Þ
, where LðjÞin ðtÞ denotes the size of population flow in and LðjÞoutðtÞ the size of

population flow out in day t for county j. We examine the percentage of population change for

all counties shown as the top panel in Fig 6. The population change plot shows that there is a

relatively high percentage of population change for Barnstable, Dukes and Nantucket before

October, 2020, due to the population inflow.

Estimated expected incidence and heterogeneous instantaneous reproductive num-

bers. We applied both Approach I and II to the COVID-19 incidence data of 14 counties in

the State of Massachusetts, USA, while taken the mobility data into account. The middle and

bottom panel in Fig 6 shows the estimated expected incidence and R(t) for all counties with

both of our proposed methods. Results from Approach I, the incidence adjustment approach,

are shown in red and those from Approach II, the Bayesian approach, are shown in green, and

the results from original Fraser’s approach (obtained by Approach II without incorporating

mobility data) are shown in blue.

When using mobility information, the estimated R(t)’s are relatively lower for Barnstable

and Norfolk compare to that when not using mobility information. Barnstable has a high per-

centage of population flow in from July to October, and during that time period, R(t) estimates

are clearly lower to that when not using mobility information. For Norfolk, the inflow of popu-

lation happens after August, and we observed lower estimates of R(t) when using mobility

information compare to that when not using mobility information. From the result, it is possi-

ble that the increase of incidence in these counties is due to inflow of incidences from other

Fig 5. Human mobility network among counties of Massachusetts. The figure on the left shows the average daily population flow, and the figure on

the right shows the difference of average population flow between weekdays and weekends, a positive value means the population flow is larger for

weekdays than weekends, and a negative value means the population flow is smaller for weekdays than weekends. The maps are created in R and with

urbnmapr and ggplot2 packages using data from the US Census Bureau, available at https://github.com/UrbanInstitute/urbnmapr.

https://doi.org/10.1371/journal.pcbi.1010434.g005
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counties with higher R(t). From the simulation with scenario 3, we demonstrated that if there

is a region with lower R(t) and accepting incidences from other regions with higher R(t), we

will overestimate the R(t) if we do not consider the mobility data.

The results from Approach II are similar to those from Approach I when incidences are

high, while in counties with lower reproductive numbers the estimated R(t)’s from Approach

II are smaller than that from Approach I. The difference of estimates between these two

approaches could be due to the low count of incidence. In simulation scenario 2, we observe

that Approach I tends to overestimate R(t) compared to Approach II in presence of a low inci-

dence count.

Discussion

It is well-established for many infectious diseases that there is substantial heterogeneity in

transmission patterns. One might reasonably expect that some of this variability occurs

Fig 6. Population change, estimated Incidence and R(t) for all MA counties. Solid lines are the posterior means for incidence and R(t), along with the

95% credible band. The bar plots for the observed incidence are also shown. Results from Approach I, the incidence adjustment approach, are in red

and those from Approach II, the Bayesian approach, are in green, and those from the original Fraser’s method (obtained by Approach II without

incorporating mobility data) are in blue.

https://doi.org/10.1371/journal.pcbi.1010434.g006
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geographically due to a potentially complex combination of social factors and some amount of

stochastic effects. Estimating spatially granular reproductive numbers allows for greater target-

ing of interventions and the potential to uncover the factors that drive heightened transmis-

sion. We have described two approaches for estimating R(t) that incorporate mixing patterns

between distinct groups, which in our setting is informed by mobility data between geographic

regions.

We demonstrate how these two approaches perform on simulated data. Simulations shows

that both of the approaches are able to estimate the heterogeneous instantaneous reproductive

numbers for multiple regions well when the mobility data is well-specified. We observed that

the second approach has larger variability. This is expected since in Approach II we incorpo-

rate some of our uncertainty around the accuracy of the mobility data, allowing some flexibil-

ity in the case where the mobility data might not exactly represent how incident cases are

flowing between the regions. This means that the first approach is likely more sensitive to inac-

curacies in the mobility data, while the second approach samples over for the mobility prior

together with the other parameters, allowing for some misspecification. Therefore, if we have

high-quality mobility data that is representative of the population and incidence flow, and are

only interested in obtaining reproductive numbers for multiple regions, we can use the more

efficient Approach I. If we want to incorporate uncertainty in the mobility data and/or investi-

gate factors that are associated with R(t), we can use Approach II.

In our simulation, we show that using mobility information allows us to obtain estimates

for R(t) that are close to the true R(t) and that this is not feasible when mobility data is not

used (see scenario 1). In other words, simply stratifying data by region and estimating R(t)
ignoring mobility patterns between regions does not appropriately capture transmission dif-

ferences. This is especially important when there are regions with a lower R(t) accepting popu-

lation flow from regions with a higher R(t). For example, people might live in counties with

lower R(t), but work in counties with higher R(t). If mobility information is not taken into

account, we could overestimate R(t) for the counties in which these people are living, and

underestimate the R(t) in the counties where they work. This is shown in our simulation

results (see scenario 3).

A potential additional benefit of the more computationally intensive second approach is

that local factors, such as age, socioeconomic status and disease containment policies can be

incorporated into the estimation framework. This can potentially allow one to not only esti-

mate more accurately the differences between regions, but also potentially start to more care-

fully understand some of the underlying factors influencing the transmission differences.

When we consider the dynamics of COVID-19 in Massachusetts, the county-level results

show that the two approaches yield similar estimates, but that these are distinct from the naive

approach that ignores mobility. Generally, the estimated incidence data is similar, but there

are some differences in the estimated R(t)’s with mobility incorporated. R(t) estimates from

Approach I have a larger credible band for the counties with lower incidence, such as Nan-

tucket, Franklin and Dukes. The second approach produces smoother estimated R(t)’s when

incidences are low. From simulation scenario 2, we have shown that Approach I tends to over-

estimate R(t) compared to Approach II when there are low counts for incidence. This could be

the reason for the larger R(t) estimates from Approach I for Nantucket, Franklin and Dukes

during the time with low incidence count. For Barnstable and Norfolk, we observe a positive

population change that correspond to lower estimated R(t) from Approach I and II when com-

pare with not using mobility information, this might due to the incidence input from other

counties with higher R(t).
For both of the methods, an important assumption is that the mobility data describes the

flow of infectious individuals, even though it is not explicitly measuring this. This might not
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hold if individuals dramatically change their behavior when they are infectious. A potential

approach to cope with this problem might be adding parameters informed by behavioral data

among infectious individuals as weights to the mobility data to account for changed mobility

due to the disease.

In a summary, the instantaneous R(t) is an important metric for infectious disease surveil-

lance, since it provides a real-time description of the transmission dynamics among the popu-

lation. While estimating R(t) for multiple regions, we expect to see heterogeneity. However,

estimating the heterogeneity can be challenging when there is extensive population flow

between regions leading to a mixing of the population that can mask or misrepresent the true

transmission dynamics. We have presented two methods that incorporate mobility data for

the estimation of spatially heterogeneous R(t). The ultimate goal of this approach is to identify

the regions with the higher transmission in which to focus interventions as well as study poten-

tial mechanisms of transmission. These methods have broad applicability to estimating R(t) in

the presence of any potential heterogeneities, such as age-mixing which can use mixing behav-

ior described by contact surveys such as those performed by Mossong et al. [21].
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S1 Fig. Estimated E[N(t)] and R(t) by Model 1, 2 and 3. Solid lines are posterior means,

along with the 95% credible bands (shaded). The results are summarized from Approach II

with different parameter settings described in the Simulation Settings Section.

(TIF)
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S5 Fig. Estimated E[N(t)] and R(t) in scenario with inaccurate P matrix. Solid lines are pos-
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