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Stress, genomic adaptation, and the evolutionary trade-off
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Cells are constantly exposed to various internal and external stresses. The importance of
cellular stress and its implication to disease conditions have become popular research
topics. Many ongoing investigations focus on the sources of stress, their specific
molecular mechanisms and interactions, especially regarding their contributions to many
common and complex diseases through defined molecular pathways. Numerous molecular
mechanisms have been linked to endoplasmic reticulum stress along with many unex-
pected findings, drastically increasing the complexity of our molecular understanding and
challenging how to apply individual mechanism-based knowledge in the clinic. A newly
emergent genome theory searches for the synthesis of a general evolutionary mechanism
that unifies different types of stress and functional relationships from a genome-defined
system point of view. Herein, we discuss the evolutionary relationship between stress
and somatic cell adaptation under physiological, pathological, and somatic cell survival
conditions, the multiple meanings to achieve adaptation and its potential trade-off. In
particular, we purposely defocus from specific stresses and mechanisms by redirecting
attention toward studying underlying general mechanisms.
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UNIFYING THE WIDE VARIETY OF CELLULAR STRESSES
Under either normal physiological or pathological conditions, cells
are subject to a wide variety of internal and external stresses, which
have been associated with a variety of biological responses. For
example, responses to endoplasmic reticulum (ER) stress include
cell death, inflammatory signaling, insulin resistance, and lipo-
genesis (Kaufman, 1999; Schroder, 2008; Zhang and Kaufman,
2008; Lee et al., 2012). Exposure to ROS stress can result in
transient growth arrest, increase in cellular proliferation, per-
manent growth arrest or senescence, and cell death (Pelicano
et al., 2004). While ongoing efforts are being placed on identify-
ing stress-associated molecular mechanisms and their interactions
(Rutkowski and Hegde, 2010; Walter and Ron, 2011; Hetz, 2012)
and linking their contributions to system homeostasis and many
common diseases, the complexity, heterogeneity, and combina-
tions of these stresses and cellular responses can challenge the
characterization of a specific gene’s or pathway’s role in disease
onset and progression.

Despite gaining deeper understanding regarding each specific
stress response pathway, the introduction of various large-scale
omics technologies has provided conflicting information in under-
standing functions of individual pathways in the entire system
context (Heng et al., 2009, 2011a; Abu-Asab et al., 2011). The cel-
lular stress response is a reaction to any form of macromolecular
damage that exceeds a set threshold, independent of the under-
lying cause, and the fragmented knowledge of the stress response

Abbreviations: CCAs, clonal chromosome aberrations; CIN, chromosomal insta-
bility; NCCAs, non-clonal chromosome aberrations; UPR, unfolded protein
response.

needs to be unified at the conceptual level to explain its universality
for many different species and types of stress (Kultz, 2003). In
fact, many aspects of the cellular stress response are not stressor-
specific, because cells monitor stress based on macromolecular
damage without regard to the type of stress that causes such dam-
age (Kultz, 2005). There is also limited pathway specificity for
stress response during somatic cell evolution, especially under
pathological conditions where stochastic genetic alteration plays
an important role.

To establish a common mechanism of stress response, rather
than continuing to link more genes to different pathways by study-
ing gene regulations and interactions in more linear experimental
models, research efforts need to be focused on the genome dynam-
ics during somatic cell evolution, as the stress response represents
a key component of somatic cell evolution, impacting on many
physiological and disease conditions (Heng et al., 2011b, 2013a).
To achieve this goal, two major changes are needed. First, we need
new strategies to monitor the stress response at the cellular sys-
tem level. Despite source and degree variance, stress clearly results
in system change. Thus, we will generalize stress to encompass
the wide variety of internal and external stressors and path-
ways, as increased system dynamics is the common consequence.
This holistic approach can provide understanding regarding the
impact of stress to the cellular system and its implications to com-
mon disease without attempting to decipher massive amounts of
potentially conflicting molecular data. Second, in contrast to the
misconception that stress is bad and the stress-response mainly is
a means to overcome “negative” influence, the stress response is
essential for biological function. ER stress is required in B cell
lymphopoiesis (Zhang et al., 2005), certain degrees of hypoxic
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stress can increase the homing of tissue-specific stem cells, and
stress-induced genome variations are important for short-term
evolutionary adaptation (Heng et al., 2013b). While the stress
response is essential for life by creating heterogeneity-mediated
robustness, it also generates biological damage for the system,
in particular, when stress is high. These damages represent the
trade-off to adapt under stress.

Clearly, to study the general stress response mechanism,
the appropriate evolutionary framework is needed. Since many
reviews have discussed gene- and pathway-specific mechanisms,
we will focus on the genome perspective.

STRESS INDUCES SYSTEM DYNAMICS AT MULTIPLE LEVELS
Currently, most molecular characterization of stress focuses on the
gene and pathway levels. Great progress in the field has achieved
the understanding of the regulatory mechanisms and signaling
crosstalk of the three branches of the unfolded protein response
(UPR; Hetz, 2012). It is known that ER stress is buffered by the
activation of UPR, and failure to adapt to ER stress leads to apopto-
sis. Increased studies revealed many layers of interaction/crosstalk
and molecular heterogeneity. Many novel physiological out-
comes of the UPR that are not directly related to protein-folding
stress have been discovered, including metabolism, innate immu-
nity, cell differentiation, functional composition, and somatic
cell evolution. Many diseases with different molecular mech-
anisms are also linked to ER stress, further complicating this
issue.

Since genetic organization can be divided into gene and genome
levels, and genome-level alteration plays a key role in cancer evolu-
tion (Heng, 2009; Heng et al., 2011a,b), it is necessary to investigate
the often-ignored linkage between ER stress and genome aberra-
tions. One interesting window is to study cell death-mediated
karyotype changes. Many current researchers analyze how ER
stress results in cell death, as if when apoptosis occurs, the story
ends. When the results of cell death are under investigation, how-
ever, a new picture emerges: not all cells under ER stress-mediated
cell death will die, some of them do survive, but display altered
genomes (Stevens et al., 2007, 2010, 2011, 2013, 2014; Stevens and
Heng, 2013; Liu et al., 2014). Furthermore, stress in general, even
before reaching the point of cell death, results in many infrequent
genome alterations (Heng et al., 2006).

These seemingly random non-clonal chromosome aberrations
(NCCAs), encompassing all random structural and numerical
aberrations, have been ignored as insignificant genetic noise. How-
ever, elevated NCCA frequency represents increased genome-level
system dynamics and can be linked to virus infection, drug treat-
ment, many types of environmental stress, and tumorigenicity (Ye
et al., 2009; Heng et al., 2013a).

Thus, the general mechanism of stress is to trigger alteration
of system dynamics at multiple levels. In addition to the fact
that whether or not a specific change is good or bad is context-
dependent, the trade-off can be reflected at multiple levels in
addition to cell death. Stress-response can be classified into three
types. The first type is caused by a low-level of stress, resulting
in increased non-genetic dynamics that only require an energy
cost for recovery. The second type is caused by an intermedi-
ate level of stress, resulting in gene and/or epigenetic alteration.

The third type is caused by the highest level of stress that can
result in genome-level reorganization. In addition to the level of
stress, the duration of the stressful condition also contributes
to how multiple genetic and non-genetic factors respond. For
example, long-term low-level stress could also trigger genome-
level alterations. In general, under lower-levels of stress, system
recovery can be achieved even though epigenetic and gene muta-
tions may be involved. In contrast, high-levels of stress can lead
to genome alteration, the point of no return for the individ-
ual cell. Lower-levels of stress often create stepwise evolutionary
adaptation whereas high-level stress can lead to massive death
or occasionally successful punctuated macroevolution. Finally,
when the cell population is dominated by altered genomes, the
disease will become obvious. Previous studies have supported
that high-levels of stress can induce genome chaos, character-
ized by rapid, stochastic genome shattering and reorganization
(Heng, 2007b, 2014; Liu et al., 2014). This results in network
restructuring and rewiring, as evidenced by observed transcrip-
tome elevation associated with karyotypic alteration (Stevens
et al., 2014). Therefore, cells that survive this process display
altered karyotypes and systems (Figure 1). Linking these dif-
ferent degrees of stress in this scheme would suggest that for a
system to sense a particular stress, specificity might be less impor-
tant than its degree or intensity. In addition, due to stochasticity,
there may not be a specific response or end product to a par-
ticular stress or degree. This is especially important for disease
research that focuses of the long-term consequences of stress, as
stochastic genome variation has been associated with common
disease.

STOCHASTIC GENOME VARIATION IS ASSOCIATED WITH
COMMON DISEASE AND WITHIN NORMAL TISSUE
The search for molecular causative mechanisms of common dis-
eases has resulted in the identification of high-level genome
alterations. Autism and Alzheimer’s disease are associated with
altered karyotypes (Ye et al., 2007; Iourov et al., 2008). CGH
analysis revealed that 80% of children with intellectual dis-
ability, epilepsy, autism, and congenital anomalies exhibited
CNVs, chromosomal imbalances, or meiotic genome instability
(Iourov et al., 2012a). Aneuploidy has been detected in several
brain diseases (Iourov et al., 2012b). Stochastic genome alter-
ations have been observed in Gulf War Illness and chronic
fatigue syndrome patients (Heng et al., 2013b), and these dis-
eases have been linked to elevated genome instability (Heng et al.,
unpublished data). Celiac and Crohn’s disease patients display
significantly increased numbers of chromosomal aberrations in
peripheral blood lymphocytes (Hojsak et al., 2013). Increased
polyploidy was observed in cardiomyocytes associated with
hypertension, cardiac overloading, and congenital heart disease
(Davoli and de Lange, 2011).

This association suggests similarities to cancer (McClellan and
King, 2010), where most cancer arises from stochastic genome
alterations rather than common gene mutations (Heng et al., 2006;
Heng, 2007c, 2010). Unlike single gene-driven disease, in which
highly penetrant genetic defects are detectable within a patient
population, the molecular evolution of most cancers can only
be explained by the evolutionary mechanism that is equal to all
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FIGURE 1 | Diagram illustrating the relationship between stress, genome

topology alteration, resulting genetic network reorganization, and

successful evolutionary selection. Different chromosomes are designated
by color (red, yellow, blue) and drawn within the nucleus, representing the
genome, and genes are designated A, B, C, D, E, F within the chromosomes.
Corresponding protein networks are illustrated by the relationships between
proteins A, B, C, D, E, F. A cell is exposed to a moderate level of stress (A),
resulting in genetic and/or epigenetic alteration as indicated by asterisks (*)
next to impacted proteins. The cell survives the stress event without
genome-level alteration. When a cell is exposed to a high-level of stress (B),

this results in genome topology alteration represented by numerical
aberrations (e.g., aneuploidy) and/or structural aberrations (e.g.,
translocations). This directly affects the physical three-dimensional
relationship between genes and changes the overall genetic network
structure, resulting in drastic systemic changes beyond the influence of
genetic and/or epigenetic alterations that may concurrently occur. As a
consequence, the corresponding protein network changes are shown by
altered relationships between proteins. These new genomic systems then
undergo evolutionary selection, and those that are stochastically selected
upon may clonally expand and dominate the cell population.

molecular mechanisms in the entire patient population (Ye et al.,
2009; Heng et al., 2010). It is also known that the de novo locus-
specific rate of genomic rearrangement is at least 100- to 10,000-
fold greater than the rate of point mutations (Lupski et al., 2010).

Surprisingly, genome alterations have been reported in nor-
mal, healthy tissues, including the polyploidization of liver cells,
skeletal muscle, and Purkinje neurons, as well as blastocyst
mosaicism and trisomy 21 mosaicism in the general population
(Celton-Morizur and Desdouets, 2010; Davoli and de Lange, 2011;
Fragouli and Wells, 2011; Hulten et al., 2013). An increase of
genome-level alterations in healthy individuals has been revealed
by whole-genome sequencing application (Abecasis et al., 2012).
Chromosomal aneuploidy, chromosome non-disjunction, and
micronuclei formation in peripheral lymphocytes are associated
with age (Ohshima and Seyama, 2010). Polyploidy increases with
age in hepatocytes (Gentric et al., 2012). Somatic mosaicism as a
result of chromosome instability and aneuploidy has been pro-
posed to play a role in brain aging (Faggioli et al., 2011; Iourov
et al., 2012b).

What is the difference between normal and disease tissue in
terms of genome alterations? Overall, in pathological conditions,
the frequencies of stochastic genome change are elevated and cou-
pled with the presence of specific clonal chromosome aberrations

(CCAs). In addition, the degree of genome alteration is much
higher for each cell.

GENOME THEORY OFFERS EXPLANATIONS
To explain the widely detected stochastic genome alterations in
normal and disease conditions, a new framework is needed, as
current gene theory fails to achieve satisfactory explanations. Gene
theory states that DNA sequence serves as the genetic blueprint,
where information transfers from DNA to RNA to proteins.
Accordingly, defective genes are the main cause of disease and
should be readily identifiable. However, defective genes are rarely
the common drivers of disease when considering the large num-
ber of essential genes, and only under very specific circumstances
does this concept hold true, as in the cases of sickle cell anemia
and chronic phase chronic myeloid leukemia (Horne et al., 2013b).
Furthermore, personal whole-genome sequencing revealed high
numbers of gene mutations for healthy individuals, illustrating
disconnect between gene mutation and most common diseases
(Abecasis et al., 2012).

In contrast, the recently introduced genome theory calls for a
shift from the gene to the genome, as genes and genomes repre-
sent different levels of genetic organization with distinct coding
systems (Heng, 2009; Heng et al., 2009, 2011a). The information
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regarding assembly of parts is most likely not stored within the
individual gene or genetic locus. DNA only encodes for the
parts and some tools of the system (RNAs, proteins, regulatory
elements). The complete interactive genetic network is coded
by genome topology-mediated self-organization (Ye et al., 2007;
Heng, 2009, 2010; Heng et al., 2010, 2011a). The genome is not
merely the entire DNA sequence or the vehicle of all genes. Rather,
the genome context or landscape (genomic topologic relation-
ship among genes and other sequences within three-dimensional
nuclei) defines the genetic system and ensures system inheritance
(Heng, 2009). Since the interaction of genes with the environ-
ment comprise the genetic system, and that most genes are neither
independent information units nor common factors in disease,
it is now easier to understand the importance of the stochas-
tic genome alteration detected within various diseases. Stochastic
genome alterations can no longer be considered insignificant noise
as altered genomes yield altered networks (Heng, 2009; Heng et al.,
2011a).

A key to appreciating the genome theory accepting the mul-
tiple level adaptive landscape model (Heng et al., 2011a,b, 2013a;
Huang, 2013). In this model, pathway switching within a given
cell represents microevolution, or small adaptation through
local landscape change. In contrast, genome switching among
cells often represents macroevolution or huge adaptation across
the global landscape. Each genome-mediated global landscape
can be achieved by large numbers of pathway-mediated local
landscapes. Most of the current research on transcriptional re-
programming in ER stress is likely focused on the local landscape
level.

STRESS-INDUCED GENOME DYNAMICS RESULT IN
ADAPTATION AND DISEASE
Genome-level alterations are more effective at drastically chang-
ing the genetic system than gene mutation or epigenetic change,
as supported by a recent study where karyotypic alterations were
shown to influence gene expression profiles (Stevens et al., 2014).
In addition, evidence in yeast studies strongly supports that
aneuploidy directly affects gene expression, resulting in pheno-
typic variation (Pavelka et al., 2010). Genome-level alterations
at the somatic cell level generate new systems by creating new
frameworks, rather than new features defined by gene muta-
tion/epigenetic regulation. Thus, genome alteration results in new
genetic networks, suggesting that somatic cell genome evolution-
ary dynamics provide adaptive advantages for cells against stress.
Further, genome diversity within normal, healthy tissues allows for
complex organ function while providing the genome heterogene-
ity necessary to account for organ function-associated stress, such
as liver-mediated blood detoxification. This realization is of high
importance as genomic alterations were previously only viewed in
a negative light.

Stochastic somatic genome dynamics can also result in disease
onset and promotion. Higher NCCA frequencies have been linked
with genome instability, disease conditions, and drug resistance
(Heng et al., 2006, 2011a,b; Heng, 2007c, 2010; Ye et al., 2009). This
realization provides explanation for the many common diseases
that have not yet been linked with common biomarkers within the
majority of cases. Focusing on genome alterations can unify the

diverse factors that have been linked to individual genes by current
molecular studies.

Therefore, adaptation requires “noise” elevation or an increase
in heterogeneity. However, increased system dynamics can also
potentially lead to disease onset. Now the question is, how does
the bio-system solve this paradox of promoting system dynam-
ics for short-term adaptation while avoiding the accumulation of
alterations that could potentially harm the species?

This paradox was addressed by re-evaluation of the main
function of sex. The century-old reasoning states that sexual
reproduction functions to increase genetic variation. Under the
new paradigm, sexual reproduction primarily acts to reduce
genomic alterations despite its secondary function of mix-
ing genes (Heng, 2007a; Wilkins and Holliday, 2009; Gore-
lick and Heng, 2011). Thus, sexual reproduction functions
as a filter that effectively eliminates high-levels of stochas-
tic genome alterations. This relationship between stochastic
somatic genome dynamics and genome purification through sex-
ual reproduction solves the conflict between short-term dynamics
of adaptation (for somatic cell function) and long-term sys-
tem persistence (to preserve the species). Stochastic somatic
genome-level aberrations provide individuals with an evolu-
tionary advantage against stress. However, somatic genomic
aberrations could also lead to the onset and progression of
common disease. In contrast to increasing evolutionary poten-
tial by stochastic somatic genomic aberrations, the constraint of
germ line evolution through sexual reproduction preserves system
integrity. Through this separation of germ line and somatic cell
genomes, somatic genome alteration ensures short-term adapta-
tion, while the filtering process of the germ line genome ensures
long-term genome system identity (Horne et al., 2013a; Heng,
2014).

CONCLUSION AND FUTURE PERSPECTIVE
By reviewing the importance of genome alteration in somatic
evolution and its potential link with stress, we hope readers can
grasp the rationale of studying the genome rather than pathways
and understand the key relationship between stress, adaptation
advantages, and the evolutionary trade-off. Even though refocus-
ing on genome changes seems counterintuitive, as the resolution
is lower at the genome-level than gene and pathway levels, it
is the genome package that serves as the evolutionary selection
unit in somatic cell evolution, especially in pathological con-
ditions. As pointed out by Barbara McClintock, “in the future,
attention undoubtedly will be centered on the genome. . .a highly
sensitive organ of the cell that. . .senses unusual and unexpected
events, and responds to them, often by restructuring the genome”
(McClintock, 1984).

New strategies need to be developed to monitor system behav-
ior under stress. More attention is needed to study the linkage
of chromosomal instability (CIN) with various types of stress, as
CIN serves as a general mechanism for cancer and potentially for
other common diseases (Heng, 2010; Burrell et al., 2013; Heng
et al., 2013a). In addition to our studies that link many stresses to
CIN, ER stress has been directly linked to chromosome mainte-
nance (Henry et al., 2010) and aneuploidy status (Sheltzer et al.,
2012). Significantly, the linkage of stress-induced genome chaos
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(the survival strategy induced under high-levels of stress) and
molecular pathway diversity have illustrated the ultimate impor-
tance of genome re-organization in cancer (Liu et al., 2014; Stevens
et al., 2014).

Fortunately, the level of stochastic genomic change is the best
measuring tool. Applying single cell-based approaches to measure
the population profile is key (Heng et al., 2006; Abdallah et al.,
2013). Although common practice may include disregarding these
“noisy” data, heterogeneity in fact provides the complexity neces-
sary for organismal survival and adaptation after stress, thus these
data are of ultimate importance (Heng, 2014). Further studies
are urgently needed to compare genome-level measurements with
other known methods that focus on gene or pathway levels (Tang
and Amon, 2013). Despite the complexity, measuring higher-level
behaviors could be simpler than measuring lower-level diversity.
For example, the family history of heart disease (higher-level of
phenotype) has much more prediction power than comparing
individual molecular markers (Heng, 2013).

A more systematical view is needed when dealing with stress and
response. We need to monitor how the genome system changes
during evolution, rather than only focus on specific pathways
(using linear models) within limited time scales. By drastically
simplifying the system to eliminate the heterogeneity, we might be
able to identify an artificial linear relationship, but this often does
not reflect clinical reality where multiple levels of heterogeneity
rule. To change this situation, this discussed genome-mediated
evolutionary concept must be incorporated into the field of stress
research.
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