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Abstract
Nanotechnology sculptures the current scenario of science and technology. The word nano 
refers ‘small’ which ranges from 10 to 100 nm in size. Silver and gold nanoparticles can 
be synthesized at nanoscale and have unique biological properties like antibacterial, anti-
fungal, antiviral, antiparasitic, antiplatelet, anti-inflammatory, and anti-tumor activity. In 
this mini review, we shall discuss the various applications of silver and gold nanoparticles 
(AuNPs) in the field of therapy, imaging, biomedical devices and in cancer diagnosis. The 
usage of silver nanoparticles(AgNPs) in dentistry and dental implants, therapeutic abilities 
like wound dressings, silver impregnated catheters, ventricular drainage catheters, combat-
ing orthopedic infections, and osteointegration will be elaborated. Gold nanoparticles in 
recent years have garnered large importance in bio medical applications. They are being 
used in diagnosis and have recently seen a surge in therapeutics. In this mini review, we 
shall see about the various applications of AuNP and AgNP, and highlight their evolution 
in theranostics.

Keywords Silver nanoparticle · Gold nanoparticle · Nanotechology · Biomedical 
application · Evolution in theranostics

Introduction

Nanotechnology is known as multifaceted field of science which deals with the particles 
at nanosized ranges from 10 to 100 nm. There are various types of nanomaterials used in 
fields of science and technology such as medicine, construction, agriculture, energy pro-
duction, and food industry [1–5]. The characterizations of nanoparticles (NPs) are based 
on their shape (rod, triangular, polyhedral, octagonal, round) and among the various NPs, 
metal NPs has gained more attention in recent years due to their distinctive property. Their 
use is more primitive in comparison to other nanostructures and gold particles were used 
as medicine in India and China for ayurvedhic medicine preparation [6, 7]. Among metal 
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NPs, gold and silver nanoparticles (AgNPs) have various potential application and uses 
due to their application in allied disciplines and biomedical properties. AgNP is used in 
cleansing up the environmental pollution, medical imaging techniques and also exhibit 
more in the biomedical field because of large surface area to volume ratio [8–10]. AgNP is 
a powerful disinfectant and antibacterial agent and is used as a topical silver sulfadiazine 
cream as an antibiotic for treating burn wounds. It also shows antibacterial activity with 
garlic, cinnamon extract and is reported to have anticancer, anti-inflamatory activity etc., as 
shown in Fig. 1 [11–15]. The recent advancements and developments of gold nanoparticle 
(AuNP) in medicine and in theranostics have also gained attention. They are being used 
in diagnosis and have recently seen a surge in therapeutics. AuNP has a deep connection 
with chemistry, and in the Roman era(735BC) they were used in art decorations [16]. It 
has been identified that gold nanoparticles are used in various field of sciences such as 
diagnosis, cancer treatment, antibacterial and anti viral agent [17]. Noble metal are those 
which are defiance to oxidation at higher temperatures and corrosion. Some of the metals 
used are palladium, osmium, ruthenium, rhodium, iridium, platinum, copper, silver, gold, 
etc. These metal nanoparticles play a prominent role in the development of nanobiosensors 
in point of care testing, gene deivery, gene detection, intracellular trafficking targeting, can-
cer treatment, preventing tuberculosis, HIV, keratitis, imaging and therapeutics [18]. Metal 
nanoparticles can produce excessive reactive oxygen species, protein damage, inflamma-
tion which leads to toxicity, and it can also produce hyperthermia locally. The fundamendal 
principle is that it exhibits photocatalytic and photothermal effects by which under the light 
the metal nanoparticles gets excited at different wavelength [19]. In this review, we will 
discuss about the various applications of AgNP and AuNP in the field of theranostics and 
biomedical science.

Fig. 1  Applications of silver nanoparticles
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Biological Properties of Silver Nanoparticle

Antibacterial Agent

Multi-drug–resistant bacteria have become very prominent these days which has limited 
the resources for controlling infections using conventional therapies, such as, antibiotics, 
radiation etc. AgNPs is used as a superior antibacterial agent and has been found to be 
effective against a broad spectrum of vancomycin resistant strains in Gram-positive and 
Gram-negative bacteria [20–24]. Silver ions released by the AgNPs attaches to the thiol 
(SH) group of the sulfur and hydrogen present in the bacterial proteins and inhibits the bac-
terial growth [25–27]. AgNPs are potent against both anaerobic and aerobic bacteria and it 
functions by obstructing the bacterial electron transport chain system and precipitating the 
bacterial cellular proteins [28–30]. As AgNPs have larger surface area to volume ratio, it 
shows better efficiency [22, 31] and the mechanism of action are as follows,

1. The silver ions in AgNPs inhibits the function by reacting with phosphorous present in 
the DNA and sulfur containing proteins present in the bacterial membranes [32].

2. A nanometer scale silver provides firm attachment to the cell membrane and penetrates 
the bacterial cell wall [33, 34].

3. Ag+ ions in AgNPs causes cell death by bombarding the electron transport chain in 
bacterial mitochondria [35].

4. Continuous detachment of silver ions in the bacterial cell from AgNPs with an environ-
ment of lower pH produces free radicals, induces oxidative stress, and enhances the 
antibacterial activity [27, 36].

5. AgNPs attaches to the bacteria and it penetrates inside the cell wall, further leading to 
death [31].

The shape, size, and concentration of the AgNPs determines the antibacterial efficacy. Stud-
ies state that enlarging the surface area of AgNPs can enhance the antibacterial activity [37]. 
Researchers have demonstrated that AgNPs possessed 50% inhibition activity against multidrug 
resistant bacteria (MDR)- Staphylococcus aureus and E. coli at a very low concentration of 
20 μg/ml. At a further high concentration of about 40 μg /mL, it exhibited an efficient inhibi-
tion of both microorganisms. In another study, biosynthesized AgNP using marine macroal-
gae Padina species observed a good bacteriostatic activity against pathogenic Gram-positive 
organism like Bacillus subtilis, Staphylococcus aureus and Gram-negative bacteria like Pseu-
domonas aeruginosa, E.  coli, Salmonella typhi. AgNPs with the concentration of 1mg/ml 
exhibited a higher sensitivity against Pseudomonas aeruginosa with diameter of zone of inhi-
bition of 13.33±0.76 mm and Staphylococcus aureus of 15.17±0.58 mm respectively, where 
as the negative control possesed 0.00 mm. [38]. In another study, a comparative analysis was 
done with small AgNPs and PEGylated AgNPs of different molecular weight against a prime 
pathogen Staphylococcus aureus. In this study, 12 different sizes of AgNPs have been synthe-
sized with a size range of 29.7 nm ± 0.02 to 35.5 ± 0.02 nm in three different pH of 10,11 and 
12. Excellent bactericidal activity was brought in by the PEGylated AgNPs with the zone of 
inhibition of about 29 mm at a pH 10. This was because PEG possessed a high hydrophilic 
property that eliminated more water and terminated the microbes [39]. Veerasamy et al have 
observed antimicrobial activity in the Green synthesized AgNP using Malia Azedarach at the 
concentrations of 25, 50, 75, 100 μg/ml in which highest zone of inhibition was observed at  
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100 μg/ml as 21 mm and 12 mm for Pseudomonas aeruginosa and Bacillus subtilis respec-
tively [40].

Antifungal Agent

Prolonged use of antifungal drugs leads to multidrug resistance especially for Candida 
species [41]. AgNPs coated reverse osmosis membrane exerted better antifungal activity 
against Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis [24]. 
AgNP exerts antifungal property by interrupting the cell membrane and inhibits the normal 
asexual reproduction process by destroying the membrane integrity [42]. Mallmann et al., 
reported that AgNPs prepared by bio synthesis using SDS as stabilizer and reducing agent 
as ribose exhibited increased antifungal activity against C. albicans and C. tropicalis [43]. 
Additionally, AgNPs suppresses the growth of Aspergillus niger by 70% and Cladosporium 
cladosporoides by 90 %. Increasing the concentration of nanosilver minimizes the fungal 
growth in a dose dependent manner. AgNPs coated in cotton has shown antifungal activ-
ity against Aspergillus sp and the zone of inhibition was observed at 14.33±3.51 mm [44]. 
A study was done with biosynthesized AgNPs using Malva parviflora and leaf extract of 
Malva parviflora (LEMP) to monitor the antifungal activity against Alternaria alternata, 
Fusarium oxysporum Fusarium solani and Helminthosporium rostratum. With an average 
diameter of 50.6 nm, the AgNP mitigate the mycelia growth of H. rostratum at 88.6%, 
A.alternata at 83.0%, F.solani at 81.1% and F.oxyspoum at 80.7% where as the LEMP 
showed growth inhibition at 65.3% for F.solani, 54.7% F.oxyspoum, 53.6% H.rostratum and 
45.6% for A.alternata [45]. Another study discussed about the pathogenic fungus which 
affects the quality of crops. To overcome this, mycosynthesized AgNPs using A. niger 
fungal isolate to invade against plant pathogenic fungi was utilized. At a concentration of 
about 10 μg/ml, AgNPs showed inhibition of 91.0% for Fusarium oxysporum, 97.3% for 
Aspergillus flavvus, and 93.75% for Penicillin digitatum. This is because on treatment with 
 Ag+, the DNA ruins its ability to replicate, thereby resulting in dormant expression of ribo-
somal subunit proteins and the enzymes needed for ATP production. [46]. A synergistic 
antifungal activity of Epoxiconazole and Lingustrum-lucidum leaf extract against Seto-
sphaeria turcica showed the inhibitory percentage of 50 % against the organism at 170.20 
μg/ml concentration. At a ratio of 8:2 and 9:1 synergistic antifungal activity was seen in 
combination with epoxiconazole. This method gave a new perspective for the integrative 
control of plant pathogen [47].

Antiviral Agent

Metal NPs like gold or silver exhibit antiviral activity against broad spectrum of virus by 
direct interaction with nanomaterial and viral surface proteins and reduce the infectivity 
of the viral cultured cells. Recent studies have shown that metal NPs are effective antiviral 
agents against HIV 1, Respiratory syncytial virus, HSV type1, monkey pox virus, Tacaribe 
virus and influenza virus [48–52]. AgNP coated with poly (N-vinyl-2-pyrrolidone) showed 
antiviral property against HIV1 by interacting with gp 120 [53]. AgNPs and polysaccha-
ride coated AgNPs ranging from10-80 nm size was potent against monkey pox virus of 
Poxviridae family by blocking the virus – host cell binding and penetration [52]. AgNP 
at non-toxic concentration are used effectively to inhibit tacaribe virus (TCRV) of Are-
naviridae family by inactivating the viral particles at their initial entry [54]. Saadh et al., 
observed that AgNP integrated with epigallocatechingallate (EGCG) and doped with zinc 
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sulphate showed a potent antiviral activity against Avian influenza A virus H9N2. At a 
concentration of 50 μM EGCG, it reduced the titre of AI H9N2  (logEID50/ml was 4.2). 
By increasing the concentration of EGCG >50 μM, it did not show any enhanced antivi-
ral effect. Effective result was obtained by combining EGCG with zinc sulphate showing 
 logEID50/ml (1.5±0.6) [55]. Another study was on synthesizing AgNPs using Lampra-
thus coccineus and Malephora lutea. This study possessed that the hexane nanoextract of 
L.coccineus showed 50% inhibition against HAV-10 virus, HSV-1virus and CoxB4 virus 
with concentration 11.71 ng/ml, 36.36 μg/ml and 12.74 μg/ml respectively [56].

Antiparasitic Agent

Saad and colleagues synthesized silver and copper NPs and studied the antiparasitic activ-
ity which showed remarkable decrease in the oocyte availability in Cryptosporidium par-
vum. They have also studied that AgNPs are effective against parasitic infection of Enta-
moeba histolytica and Cryptosporidium parvum. AgNPs expresses larvicidal activities 
against Aedes aegypti and Culex quinquefasciatus [57]. Allahverdiyev et al. demonstrated a 
study to assess the effects of AgNPs over the biological parameters of Leishmania tropica. 
AgNPs attack the parasites by impairing the lipophosphoglycan and glycoprotein 63 pre-
sent in the surface of the parasite which is responsible for the infection. The study revealed 
that AgNPs have the potential to inhibit the promastigote’s proliferation activity. And fur-
ther, the AgNPs in the presence of increased UV light hinders the endurance of amastig-
otes in host cell [58]. A study on biosynthesis of AgNPs using Corn cob nanoxylan as a 
reducing and stabilizing agent observed a minimum inhibitory concentration  (IC50) of 25 
μg/mL against Leishmania amazonensis promastigotes [59]. In an in vitro study of AgNPs 
against Entamoeba histolytica trophozoite, the result showed a mortality percentage of 
46.2 %, 42.4 % for 75 μg/ml and 46.2 %, 46.7 % for 100 μg/ml of concentration after 24 h 
and 48 h incubation respectively [60].

Anti‑inflammatory Agent

Silver-based NPs is powerful in preventing the bacterial infections and inflammation [61]. 
Intra-peritoneal injections of AgNPs in animal models showed decrease in the degree of 
post operative fibrous adhesions. Hebeish et al., have done the in vivo efficacy of albino 
rats’ and grouped the 24 albino rats into 4 groups. Group 1 was the negative control and 
given 1 ml of saline. Group 2 & 3 rats were administered with two different AgNPs con-
centration of 250 ppm and 124 ppm respectively. Group 4 was the reference drug admin-
istered with indomethacin at concentration of 20 mg/kg rat. After one hour, all animals 
were given a sub planter injection of 1% carrageenan solution in 0.1ml of saline over the 
right hind paw and 0.1 ml saline in left hind paw. After four hours of administration, rat’s 
both the paws were excised and weighed separately. The oedema percentage showed that 
the synthesized AgNP could significantly decrease in degree of rat oedema. The oedema 
percent of 250 ppm concentration of AgNPs gave the same effect as the standard drug 
indomethacin. Thus, it was indicated that AgNPs could reduce inflammation significantly 
[62]. Shensha et al., made a study on Nigella sativa oil mediated AgNPs to assess the anti-
inflammatory activity in male Wister rats which showed inhibitory concentration at 54.40% 
(1 h) and 60.30% (5 h) with the dose of 0.3 mg/kg bodyweight [63]. Researchers have bio-
synthesized AgNPs using Selaginella myosurus aqueous extract which showed significant 
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inhibition of paw edema of Wistar rats of 44.30% (1h), 57.60% (5 h) and 60.50% (5 h) for 
the concentration 0.1, 0.2 and 0.4 mg/Kg (body weight) respectively [64].

Antiplatelet Agent

Thrombotic disorders have become the remarkable problem in the medical field. Anti-
coagulant and thrombolytic therapy can lead to many bleeding complications. Recently 
Dakshayan et al. demonstrated the role of Selaginella bryopetris (Sanjeevini) plant extract 
supported AgNPs (SPE @AgNP) in platelets. Platelet aggregation assay was performed in 
platelet rich plasma with ADP and Epinephrin as agonists. SPE @AgNP inhibited ADP 
only and not the Epinephrin. Platelet exhibits its major role in arresting the bleeding in 
addition to the coagulation factors and they tend to aggregate at the injury site forming a 
platelet plug and it is vulnerable to the collagen present in endothelium [65]. Thrombin, 
ADP, epinephrine, thromboxane, thrombin, platelet activating factors etc. are the agonist 
that activates the platelets [66]. Formation of thrombus in arteries and vein occurs when 
platelets get hyperactivated. Thus, SPE @AgNP was used in the treatment of thrombotic 
disorders as a superior antiplatelet agent along with its anticoagulant activity [67]. Addi-
tionally, Shrivastava et al., demonstrated that AgNPs inhibited the integrin mediated plate-
let functional responses like aggregation, adhesion, secretion to immobilized fibrinogen or 
collagen [26].

Therapeutic Application of Silver Nanoparticle

Wound Dressing

AgNPs are used in wound dressing, in case of toxic epidermal and necrolysis, severe 
burns etc. AgNPs takes about 3.35 days on an average to heal the wound and the bacte-
rial load decreases in wound area with no further effects [68]. AgNPs works more effec-
tively when compared with 1 % silver sulfadiazine for superficial burns. In case of deep 
burns, AgNPs and 1 % silver sulfadiazine does the same work and AgNPs promotes the 
restoration of intact epidermal barrier but do not form any new tissue [69]. The applica-
tion of biopolymer based biomaterial increases because of biocompatibility, biodegra-
dability, non-immunogenicity and nontoxicity. The biopolymers used are gelatine, col-
lagen, keratin, natural rubber proteins, polysaccharide. Collagen is a natural biopolymer 
and the usage of biopolymers in wound healing showed a better positive output in the 
clinical trials. Collagen sponges and glycosaminoglycans act as a double layered artifi-
cial skin and heals the wound. These act as a good carrier for AgNP to release the drug 
in a sustained manner [70]. Hasari et al., reported that silk based novel bilayer wound 
dressing material with gelatine is less toxic to skin cell than other wound dressing avail-
able and it also promotes the wound healing by increasing the collagen production [71]. 
Studies have shown that chitosan and keratin have wound healing effects and antimicro-
bial activity. Chitosan is effective for the treatment of chronic periodontitis [72]. Scien-
tists have emerged with worlds first AgNP based commercially available wound dress-
ing material (ACTICOAT: Smith and Nephew, UK) that covers the huge area of burns 
and increases the wound healing activity [73]. A study was done with konjac glucomann 
silver nanoparticle (KGM/AgNP) a composite sponge which possessed a better wound 
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healing capacity and also exhibited good cytocompatibility. By animal experiments they 
have confirmed the activity  of wound healing,  and on the day 14, KGM/Ag3 wound 
healing capacity was increased to 99 % [74].

Silver Impregnated Catheters

The prevalence of central venous catheter (CVC)–related bloodstream infections were 
about 80,000 cases annually. However, the use of CVC in hospitals of the USA was 
around 5 million for 1 year [75]. Patients with tumour, intracerebral haemorrhage, suba-
rachnoid haemorrhage were implanted with external ventricular drain (EVD) catheters 
usually for the therapy of acute hydrocephalus. The EVP catheters were significantly 
used for monitoring the draining CSF and intracranial pressure. Previously catheters 
were impregnated with antibiotics that decreased the colonization rates [76], which led 
to bacterial resistance. Therefore, a new trend of silver coated catheters was used in clin-
ical field, in which the silver ions bind with an inert ceramic zeolite by the help of inor-
ganic silver powder. Recent studies described that, there was a remarkable reduction in 
the colonization rate in silver impregnated CVC [77]. In a previous study, A.baumanni 
was made to form a biofilm to mimic the in vivo infection conditions and the CVC was 
coated with polydopamine and tested for the bactericidal activity. By surface charac-
terization with field emission scanning electron microscopy, water contact angle (CA), 
Raman spectroscopy the results showed that dopamine coated AgNPs had a CA value of 
49.1 ± 0.3 [78]. Fichtner et al. conducted retrospective clinical analysis to see the con-
trasting efficacy between silver coated EVD catheters and standard non coated catheters. 
There was a significant reduction in the positive culture of CRI. Bacterial colonization 
was likely to be 4 times in EVD catheters in comparison to the standard non coated 
catheters. Another study showed that the growth of Staphylococcus aureus reduced in 
the silver coated EVD catheters [79].

Silver in Orthopaedics

Benchmark treatment for the arthritic disease is the artificial joint replacement. The use 
of bone cements like poly methyl methacrylate (PMMA) resulted in high rate of infection 
when integrated in the bones. Nanotechnology has evolved in the field of orthopaedics and 
trauma. Hence, nano silver coated bone cement resulted in outrageous antibacterial activ-
ity against broad range of bacteria including methicillin resistant Staphylococcus aureus 
(MRSA). Taken further, the nanoparticle did not show any cytotoxicity. Ultra high molecu-
lar weight polyethylene (UHMWPE) was used for the artificial joint replacement but the 
only disadvantage was with the wear and tear and associated debris generation, which led 
to inflammation and failure of joints in the body. This major problem was overcome by 
integration of AgNPs with bone cement. This protocol consequently reduced the polymer 
debris formation [20, 80]. The rate of infection was reduced by adding the AgNPs to the 
outer layer of the implants. A group of scientist demonstrated that there was an effective 
resistance to Escherichia coli by exposing it to modified titanium film. It also had a role 
in reducing the pin tract associated infections [69, 81]. Orthopaedic infections resulted in 
high morbidity when osteoblast like cells, and bone marrow mesenchymal stem cells were 
exposed to AgNPs and showed maximum inhibitory concentration of 25 μg/ml [82].
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Silver Surgical Meshes

Prosthetic mesh is not commonly used implanted devices for pelvic reconstructive sur-
gery and hernia repair. The incidence of mesh associated infections ranges between 0.6% 
and 8.0% [83, 84]. In accordance to the one million herniorrhaphies there were around 
30,000–50,000 prosthetic mesh infection in the USA [85]. Multiple antibacterial coatings 
were used on the medical devices such as urinary catheters, central venous catheters and 
surgical meshes to reduce the infection rate [86]. To reduce the occurrence of prosthetic 
mesh infections in the post pelvic and hernia surgery, nanocrystalline silver particles with 
polypropylene was used [87]. The antimicrobial activity of silver nanoparticle relies in the 
electrical state of the ions. Silver is biologically active in its soluble form as  Ag+. Com-
monly used topicals like silver sulfadiazine, silver nitrate, has silver in the form of Ag +. 
Topical silver formulations were used two to twelve times a day in burn areas because of 
the rapid inactivation of silver ions with chloride or organic ions present in the wounds. In 
comparison to  Ag+,  Ag0 does not form complex resulting in halt in rapid inactivation of 
microbes [88]. Nanocrystalline silver has decreased one million nosocomial infections in 
a year with the patients implanted with prosthetic material [89]. Cohen et al., reported that 
polypropylene integrated with nanocrystalline silver particle (NCSP) showed that silver 
particles circulated inside the mesh and produced a zone of inhibition and higher inhibition 
efficacy against Staphylococcus aureus. The zone of inhibition increased in a dose depend-
ent manner with increase in the concentration of silver [90]. NCSP also holds the property 
of anti-inflammatory agent. Secondary mechanism of NCSP is to repress tumour necrosis 
factor α and interleukin (IL)-12 and initiate inflammatory cell apoptosis [91].

Dentistry

AgNPs pops up as a promising agent used in dentistry. This property is because of their 
integration of antimicrobial property in dental biomaterials [92]. The major mechanism 
is by liberating cationic silver and its oxidative potential [93]. Using AgNPs in dentistry, 
is effective against multidrug resistant bacteria and for its prophylactic action. AgNPs are 
used in different streams like preventive dentistry, orthodontics, endodontics, periodontics 
and in oral dentistry. AgNPs inhibit the growth of Staphylococcus aureus, Streptococ-
cus mitis, Streptococcus gordoinii biofilms. Additionally recent study states that AgNPs 
exert its antibacterial activity against Streptococcus sobrinus, Lactobacillus acidophi-
lus, Lactobacillus casei, Streptococcus sanguinis, Enterococcus faecalis and Actinomy-
ces actinomycetemcomitans [94]. Incorporation of AgNPs into polymers used as denture 
base and tissue conditioners in stomatitis have showed superior antimicrobial activity 
and capacity to fight against oral infections. Another study stated that modified dena-
ture base acrylic combined with AgNPs at 20.0 wt.% showed antifungal property [95]. 
AgNPs with smaller diameter size exerts good biofilm inhibition when compared with 
larger particles. Biological synthesis of AgNPs using neem, onion, and tomato with size 
measuring 26.2 to 33.3 nm showed antimicrobial activity against Staphylococcus aureus 
because of the high concentration of flavonoids and terpenoids in it [96]. Pérez-Díaz et 
al., reported that AgNPs inhibited the growth of planktonic Streptococcus mutans and 
killed the Streptococcus mutans biofilms. Thus, AgNPs play a significant role in dentistry 
and prevents dental caries [97]. Decrease in adhesion of biofilm and production of lactate 
by microorganism is seen in AgNPs treated with titanium disc -based composites [98]. A  
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nano bacteriostatic agent silver Nano fluoride had inhibited the growth of Streptococcus 
mutans and it could be used once a year, easy to use, and had a better cost benefit ratio. 
This was a superior replacement for sodium fluorine [99]. Titanium micro implants with 
biopolymer coated AgNPs (Ti-BP-AgNp) showed largest zone of inhibition of 50.58 ± 
4.88  mm2 for Streptococcus mutans. The zone of inhibition for S. sanguinis was 27 ± 3.01 
 mm2 and for A. actinomycetemcometans showed a smaller zone of inhibition of about 25 
± 3.06  mm2 with the control showing no zone of inhibition [100].

Cancer Theranostics

Cancer is a global menace and is caused by environmental effects and mutations in genes 
which activates the sequence of events in molecular level and leads to tumour formation. 
[101]. There are two major causes for cancer, they are external and internal factors. The 
external factors include radiation, viruses, chemical exposures, environmental conditions 
etc. [102]. Internal factors comprise the mutations, hormones and immune conditions 
which trigger the process of carcinogenesis [103]. Chronic low dose exposure to oxida-
tive stress is also known to be a contributor for cancer onset by circumventing apotosis 
[104]. Many studies showed that AgNPs get localized inside perinuclear space of cyto-
plasm and endo lysosomal compartment cells by entering cells through endocytosis [105, 
106]. AgNPs affect the respiration of cells and produce reactive oxygen species (ROS). 
As AgNPs are harmful to cells and proceeds to oxidative stress, damage of DNA, trigger 
the apoptosis and damage of mitochondria to cancer cells [107–112]. Studies showed that 
AgNPs can affect the activity of vascular endothelial growth factor which are involved in 
angiogenesis [113]. Theranostics is the mixture of diagnostics and therapy. Biosynthesized 
AgNP possess theranostic applications as it holds the anti-cancer property and used in tar-
geted drug delivery and bioimaging vehicle [114]. It is a cost effective, safe, simple and 
eco-friendly approach [115]; the different applications of AgNPs in anti-cancer therspy is 
summarised in Table 1.

Silver Nanoparticle in Imaging

Silver Nanoparticle as Photoacoustic Imaging

In the field of biomedical applications, research has increased in the area of designing and 
delivery of NPs to the specific organ. To know whether the nanoparticle has delivered to 
the diseased tissue and to also know about the intended function of NPs, a new combination 
of photoacoustic imaging modality and custom designed nano system has emerged [157, 
158]. The main principle behind this is, first, the object will absorb light, then absorbed light 
energy will develop as heat and finally because of thermoelastic expansion, acoustic waves 
will be release out [159]. Photoacoustic imaging was first proposrd by Oraevsky, for the 
use of biomedical applications [160]. AgNPs possess strong optical absorbance and scat-
tering properties and are used as contrast agents for imaging therapies. With the light of 
wavelength 800 nm and radiation, the NP’s injected 1cm deep in ex vivo pancreatic tissue 
could be detected using ultrasound imaging and photoacoustics. First mode is, AgNPs are 
engineered to target the tumour site specifically to the leaky blood vessels of the tumor and 
the reduced the rate of clearance due to lack of functional lymphatic vessels, and will retain 
the AgNPs [161]. The second one is, at the site of tumour, the AgNPs gets conjugated with 
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1 3

antibodies and bind to the antigens present. By localizing the AgNPs at the tumour site, it 
provides photoacoustic contrast with normal tissues thereby useful in in vivo examination 
of tumour [16].

Gold Nanoparticles and Their Applications

Over in the last half century, AuNPs have been developed in many ways. Synthesizing 
AuNPs is now more reliable and are high in yields. These AuNP have distinct traits, namely 
size and shape dependent electrical and optical features, surfaces that can be changed with 
ligands containing functional groups. With the help of these functional groups to hold the 
ligands, and other biomolecules such as antibodies, proteins , etc. the newly formed gold 
nanoconjugates possess a wider range of research in therapeutics [16]. AuNP have pro-
vided useful materials for various biomedical applications, such as material crystalliza-
tions, programmed assembly, conversion of NPs into dimers and trimers and then to DNA 
templates, detection methods and bioelectronics. In diagnosis of a disease, the process of 
binding between the analytes and AuNPs, the physicochemical properties of AuNPs can be 
altered. We shall see about the various applications of AuNP and highlight their evolution 
in theranostics [162] in the sections mentioned below.

Medical Uses of Gold

Gold has been used in medicinal practices for many decades including Chinese and Indian 
medicines. They were mainly used for the treatment of arthritic diseases. But it was later 
found that nephrotoxicity was caused by gold due to the prolonged exposure. Hence, they 
were not used in medical practices until researchers developed a new compound called 
auranofins and aurothioglucose [163]. Yao et al, made a comparitive study of Gold clusters 
using Bovine serum albumin as template, Gold clusters using glutathione and Au nano-
particles with large particle diameter in both in vitro and in vivo. Gold nanoparticles acts 
by suppressing the proinflammatory mediators which is produced by lipopolyschharide. In 
comparing the above three, Au clusters with glutathione as template produced a better anti-
inflammatory effects thus it is one of potent nanodrug for treating Rheumatoid arthritis 
[164]. Osteoarthritis is kind of the arthritis which is attributed by swelling, stiffness and 
joint pain. Researchers studied the use of AuNPs for improvising the delivery of chondroi-
tin sulfate. Chrondroitin sulfate is one of the drug for treating osteoarthritis. The combina-
tion of Chondroitin sulfate and AuNP augment the production of extracellular matrix and 
proliferation of chrondrocytes [165]. Since they are non-toxic, they are vividly used in bio-
medical applications as well as in gene and drug delivery. The optical intensity of AuNP 
has been subjugated for polynucleotide detections. Gold consists of a dielectric core and 
can be used suitably to make nanoshells, which are very useful in Surface enhanced Raman 
spectroscopy (SERS). AuNP has the ability to aggregate upon themselves when they inter-
act with proteins. One of the basis for the quantitative method of colorimetric determi-
nation of proteins were the sudden colour change in the solution. This process helped in 
a better accurate result for many analytical methods including ELISA. AuNP is used in 
photothermal therapy. This is used in tumor therapy and infectious diseases. AuNP tend to 
become hot when they reach their maximum absorption in visible or near infrared region 
at the corresponding light wavelength. This kills the cells that are located around or inside 
the target cells. Today controlled and direct damaging of the tumor tissues is possible in 
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cancer thermotherapy using laser radiation. But there are a lot of questions regarding its 
biodistribution, blood stream circulation, pharmacokinetics and toxicity. There are numer-
ous research groups which use AuNP in their projects. There is a vast difference in the 
experiments, functionalizing methods, and dosages. Due to this, there has been major 
inconsistency with the data and the kinetics of biodistribution for toxicity estimation. Due 
to the development of efficient medical tools, AuNP has provided technologies for the 
functionalization of molecules providing stabilization in vivo. AuNP is now widely being 
used as problem solvers in bioimaging. [166]. AuNP have a great future in the medicine 
field, but one important concern is their safety level towards humans and environment. The 
AuNP toxicity depends on their physical dimensions and surface chemistry. Studies based 
on cytotoxicity of AuNP in human cells was done and the research showed that AuNP are 
nontoxic upto 250 mM, while ionic gold showed cytotoxicity at 25 mM. Lot of similar 
results were produced using AuNP in therapies [167].

Gold Nanoparticles for Cancer Theranostics

Cancer therapy has grown rapidly in the past few years. But surgery with chemoradiother-
apy still remains the go to procedure for fighting malignant cancer. Nanotechnology has 
recently been in the main topic in medical research, and many NPs have been studied for 
cancer therapy. The color of AuNP changes when there is increase in their size. Because of 
this unique property AuNP can be used in detecting various biomolecule and easily iden-
tify the tumor targets that are accumulated in vitro and in vivo. The most commonly used 
metal in cancer theranostics are gold and iron oxide because of their structure stability, 
variability of the size, controlled release and low toxicity during cancer theranostics [168] . 
Table 2 shows the different anti tumor effect of AuNPs.

AuNPs are used for both cell imaging and CT imaging in vivo. They are used mainly 
because they act as an alternative to X-ray based CT machines. They are used because of 
their better absorbent coefficient, easy attachment to the moieties and better body tolerance. 
AuNP has a great X-ray attenuation because of their high concentration and smaller size. 
Due to this it becomes easier to diagnose cancer with imaging [171]. The tissue absorp-
tion is very weak for light of wavelength >650 and <2,000 nm and that is the reason the 
NIR light is used for deep tumor imaging. AuNPs are the NIR-active probe for imaging the 
cancer cells in our body which is used for whole body scans. AuNPs are conjugated with 
anti-EGFR antibodies and used as a contrast agent in tumor imaging [172, 173].

Gold Nanoparticles for Cancer Therapy

Photothermal Therapy (PTT)

Gold has shown promising results in various cancer treatment such as photodynamic and 
photothermal therapies. This photothermal therapy is done through converting absorbed 
light into heat by nonradiative process. There are two main process:

1. The heat which is absorbed from energy conversion is given to the surrounding environ-
ment through the phonon relaxation within 100 ps.

2. A meticulous process of heating the electron and being cooled by the surrounding 
medium takes place, when the rate of heating is higher than the rate of cooling.
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To use the photothermal therapy, a continuous wave laser is overlapped maximally with 
the AuNP resonance band. To achieve PTT using gold nanospheres the resonance of Con-
tinuous-Wave visible lasers should be in the visible region. This method can be used in 
treatment of shallow tumors. Recently, the development of antibody targeted gold nano-
spheres were done to primarily target EGFR on squalor carcinoma cells [172]. Researchers 
have developed new type of nanomatryoshkas which consists of PEG stabilizing ligands 
and concentric gold silica layers. In comparison to the existing gold-silica nanoshells 
which is approximately 150 nm, these nanomatryoshkas could facilitate higher concentra-
tion in tumors due to their ability to infiltrate the smaller AuNP in to the tissue. The sur-
vival rate of TNBC model was lesser than 1000  mm3 which significantly decreased the size 
of the tumors by gold nanomatryoshkas and this was superior than the conventional silica-
gold nanoshells. The results were taken under irradiation with a CW laser emitting 3W/
cm2 at a wavelength of 808 nm [174].

Photodynamic Therapy (PDT)

Photo synthesizers tend to convert the surrounding oxygen into a toxic reactive oxygen 
species when they are stimulated under a specific wavelength that might destroy the malig-
nant cells in the surrounding proximity, which is now known as cancer PDT [175, 176]. 
To treat deeply buried tumors, AuNP exert PDT over NIR light activation. In addition, the 
incorporation of various photosensitizers with NIR active property into the AuNP can also 
be done with low dosages of organic photosensitizers and lasers with short exposure irra-
diation for PDT. When tested under an 808 nm laser, CS-AuNR-ICG NSs at the same time 
produced reactive oxygen species and hyperthermia, which attained complete inhibition of 
tumor growth in xenografted mice. In comaprison to PTT or PDT the combined therapy 
showed a drastically better therapeutic effectiveness [177]. The principle of photodynamic 
therapy is explained in Figure 2. Nanobiosensors has emerged as great tool in diagnosing 
cancer. Figure 3 describes the principle of nanobiosensor. Functionalized gold nanoparti-
cles are immbolized on a template which can detect the analytes (proteins, toxins, antibod-
ies, disease amrkers, cells etc.) with high specificity and sensitivity. The combination of 
analyte and recognition element which is attached to the gold nanoparticles gives a signal 
(heat, light, fluorescence, electrochemical change-current, potential and conduction, sound) 
which is converetd into measurable elctrical or optical signal. The amplifiers then amplify 
those signals to make them measurable using electronics [178].

Use of Gold Nanoparticles in SARS‑cov‑2 Virus

COVID Test

AuNP can be used as a test kit to find out whether a person is infected by the virus or not. 
As we know the existing test kits require atleast 12 h to find whether the person is infected 
or not. In these critical 12 h the person might come in contact with another infected per-
son and acquire the virus. With the help of AuNP we can reduce both the amount of time 
required for testing a person and the amount needed to spend for testing. These AuNP 
based assay test is done in an molecular level i.e. it checks the RNA of the person. This 
helps in accurate result for the identification of the virus. If this is the case, then it might 
prove positive for everyone because it’ll be helpful in finding out who is infected and can 
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treat the person well before it gets worsened. Because the test kits available in the market 
doesn’t give the results at the earliest time, this methododlogy can be helpful. [179].

Covid Vaccines

The endurance of the human for the past 3 years become an dispute due to the outbreak of 
Covid 19. Severe Acute respiratory syndrome-Cov-2 (SARS-CoV-2) affects both humans 
and animals. Many researchers were in demand of developing Covid vaccines by collabo-
rating with pharma companies. WHO reported on 9th June 2020 that among 136 vaccine 
candidates, 16 where nano based vaccines which are under clinical trials [180]. S proteins 
are the chief goal for the Corona virus vaccine production as it plays a role in its patho-
genisis. Chen et  al made a study using synthetic viral like particles as an effective vac-
cination tool in an avian model of Corona virus infection. Synthetic virus like particles 
were prepared by incubating the 100 nm gold nanoparticles in the optimal viral protein 
concentration solution. This enhanced the antibody titer, increased the lymphatic antigenic 
delivery, splenic T-cell response and decreased the infection symptoms. In comparison 
with the whole inactivated virus, synthetic viral like particles produced a better antivi-
ral protection [181]. NPs in general are most preferred when it comes to destroy a deadly 
virus. This is mainly because of their nano size and the flexibility to alter a nanoparti-
cle according to the virus. Covid 19 virus, an enveloped shape virus, which ranges from 
50nm - 150nm in diameter has undergone many mutations. The exterior of this virus is 
covered by proteins in form of spikes which infects our cells. The genetic material of this 
virus is said to be ssRNA. This is one of the main reason for using a nanoparticle in killing 
this virus. Nanoparticle has the tendency to mimic a virus. This a good thing because it 
gives us the ability to directly attack the virus without affecting the nearby cells. The main  

Fig. 2  Mechanism of Photodynamic therapy. PDT takes place through type I and type II reactions that can 
create ROS for killing the cancer cells
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path of these virus is to attack our respiratory system by binding with the cells in the res-
piratory system and affecting them with the help of protein spikes. There many ways to 
stop this from happening. As of now there are no confirmed therapeutic ways to destroy 
these viruses with the help of NPs. All of these are still in clinical trials. But it is well 
known that NPs is the way to destroy the virus efficiently [182].

Current Limitations

As we have discussed above, AuNP gives us the possibility to be used in cancer diagnos-
tics and therapeutics. But it is foolish to not consider the other side of the coin. These NPs 
might have side effects on health of the human beings. There are many studies in the cyto-
toxicity of AuNP, toxic effects of size, efficacy, response of NPs, biodistribution. But these 
researches give out contradicting results leaving us in a challenging situation. Absence of 
solid information on the effects of NPs could have serious effects and a negative impact on 

Fig. 3  Mechanism of Nanobio-
sensor. The biological receptor 
contains the recognition element 
that can specifically bind with the 
target molecule and covert them 
into measurable signal through 
the transducer. The signal gets 
amplified and recorded as output
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human health. Chaves et al., studied toxicity of gold nanoparticles by in vitro using HT- 29 
and HepG2 cell lines and in vivo using Wister rats. For this study, reserchers used 10 ppm 
of 10, 30 or 60 nm gold nanoparticles for the experiments. AuNP increased the production 
of ROS in cells at 16 h and at the 32 h the overproduction was normalised. As a result of 
in vivo studies, AuNP produced an increase in protein carbonyl groups formation and lipid 
peroxidation, which was measured by Thiobarbituric acid reactive substance (TBARS). 
Gold content got accumulated in liver, intestine, spleen, faeces,urine and kidney of rats 
[183]. Li et al., proposed that AuNP obstructs the proliferation of cells by dysregulating 
the cell cycle genes and it also affects the genomic stability and DNA repair [184]. This 
findings shows that there is a side of bane for gold nanoparticles and it is very important to 
evaluate the toxicity of any metal and metaloxide nanoparticles [185].

Conclusion

There are various metal NPs that as a predominant application in various fields of science. 
In which AuNP and AgNP has a vast range of application such as antimicrobial, antiin-
flamatory, diagnosis, anticancer agent and also has therapeutic activity such as in dentistry, 
orthopedics, cancer therapy, etc.,. which are mentioned above. Most of the researches 
are still in clinical trials. Some of them were already applied for treatment and diagnosis. 
Future research is necessary to conclude the safety aspects of nano silver and gold.
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