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Introduction: Alport syndrome (AS) is a hereditary type IV collagen disease. It starts shortly after birth,

without clinical symptoms, and progresses to end-stage kidney disease early in life. The earlier therapy

starts, the more effectively end-stage kidney disease can be delayed. Clearly then, to ensure preemptive

therapy, early diagnosis is an essential prerequisite.

Methods: To provide early diagnosis, we searched for protein biomarkers (BMs) by mass spectrometry in

dogs with AS stage 0. At this very early stage, we identified 74 candidate BMs. Of these, using commercial

enzyme-linked immunosorbent assays (ELISAs), we evaluated 27 in dogs and 28 in children, 50 with AS

and 104 healthy controls.

Results: Most BMs from blood appeared as fractions of multiple variants of the same protein, as shown by

their chromatographic distribution before mass spectrometry. Blood samples showed only minor differ-

ences because ELISAs rarely detect disease-specific variants. However, in urine , several proteins, indi-

vidually or in combination, were promising indicators of very early and preclinical kidney injury. The BMs

with the highest sensitivity and specificity were collagen type XIII, hyaluronan binding protein 2 (HABP2),

and complement C4 binding protein (C4BP).

Conclusion: We generated very strong candidate BMs by our approach of first examining preclinical AS in

dogs and then validating these BMs in children at early stages of disease. These BMs might serve for

screening purposes for AS before the onset of kidney damage and therefore allow preemptive therapy.
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A
S is a hereditary type IV collagen disease and is
the most common monogenetic cause of chronic

kidney disease (CKD). In its classical form, AS leads to
end-stage kidney disease early in life. Angiotensin-
converting-enzyme-inhibitors are able to delay disease
progression if nephroprotective therapy is initiated
preemptively. Therefore, it is unfortunate that early
diagnosis of AS1 is rare and only available where the
diagnosis has already been made in relatives. This is
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because there are no preclinical or screening diagnostic
parameters before the onset of proteinuria despite
nonspecific microhematuria. Therefore, there is no
practicable BM yet in use for the preclinical detection
of AS despite several early cellular alterations recently
being claimed as potential “early” BMs.2-7 Histopatho-
logical changes occur only late in disease progression.
Genetic testing is recommended in symptomatic chil-
dren.8 However, many children with AS are diagnosed
too late to benefit very much from preemptive therapy.

AS develops only slowly in early childhood because
of the maturation of the glomerular basement mem-
brane (GBM). This delay opens a “window of oppor-
tunity” for early diagnosis and therapy. Thus, there is
Kidney International Reports (2023) 8, 2778–2793
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Figure 1. General time courses of disease biomarkers. There are
several hypothetical BM types that are differently targeted by our
approach. Type A: BMs applicable preclinically; increase indicates
alterations starting in a preclinical stage and persisting under pro-
gression. Type B: truly preclinical BMs; indicating only preclinical
alterations. Type C: early BMs; increase indicates alterations
simultaneous with the development of early clinical signs, often
overlooked or neglected (e.g., in AS, hematuria). Type D: late BMs;
increase indicates subsequent alterations in manifested disease.
This type (e.g., in AS, (micro)-albuminuria, decline of eGFR) is
already in clinical use and was not part of our search. Type A and B
were searched for in juvenile AS-mice (4 weeks13) and AS-dogs (7
weeks). This search might also detect type C. Human samples
usually come from different points of individual disease develop-
ment. Their evaluation might therefore miss type B BMs. However,
all BMs detected (A, B, or C) are likely to be more suitable for early
diagnosis of kidney injury than those currently applied. AS, Alport
syndrome; BM, biomarker.
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an urgent need for preclinical BMs to act as GBM alarm
signals before proteinuria. The earlier angiotensin-
converting-enzyme-inhibition starts in an affected
child, the better the chances are of improving life
quality and life expectancy.9-11

Early diagnosis is therefore very important and was
the ultimate target of our research into early BMs.
However, finding BMs is also important for monitoring
responses to therapy and for finding new therapeutic
strategies.

Therefore, because early diagnosis is so important,
we restricted our search for BMs to early stages of AS:
stage 0 (isolated microhematuria) and stage I (micro-
albuminuria).12 We defined stage 0 as “preclinical,”
because, despite microhematuria, there is no other
specific sign of ongoing kidney disease. Searching for
preclinical BMs is very challenging and not possible in
toddlers. In addition, different time courses must be
considered.

Our investigation spanned 10 years. It fell naturally
into 4 parts, each building on the other as follows:

1. Screening in animal models: Our discovery phase
started in animal models of AS with the goal of
uncovering BMs of type A and B for glomerular
injury (Figure 1). Mice and dogs with AS are ideal
subjects for such an investigation because, given
that type IV collagens are highly conserved, AS
develops in all mammals.13-19 Our search started in
preclinical mice,13 and was improved by data from
dogs.

2. Validation in animal models: We validated some
BMs in AS animals at preclinical stages of disease
thereby demonstrating the reliability of the prote-
omic search principle.

3. Confirmation in children with AS: In order to see
whether our BM candidates occurred in humans, we
tested samples from children. These children were
in the early stages of AS and were part of the EARLY
PRO-TECT Alport trial.20 The samples were taken 4
years apart. We were therefore able to estimate the
time course of the BMs and the BM type (Figure 1).

4. Verification of “real-world” practicality: Finally, we
measured the BM candidates in an additional group
of children with early stages of AS and similar dis-
eases. Other nephropathies were also analyzed (in
preparation).

In the proof-of-concept phase, we evaluated our BM
candidates in dogs and humans by immunoassays. Our
goals were to determine the ability of our proteomic
strategy, to estimate the BM time courses, and the
strength of their ability to discriminate between
healthy and affected individuals.
Kidney International Reports (2023) 8, 2778–2793
METHODS

Animals and Sampling Protocol

The study protocol was reviewed and approved by the
Texas A&M University Laboratory Animal Care
Committee. One author, MN sampled from 7-week old
mixed-breed dogs with X-linked AS17 and unaffected
littermates. Texas A&M University Animal Rearing
Center raised the dogs. These dogs were not under any
treatment. Collected EDTA-blood was placed on ice.
For serum, whole blood was allowed to clot for at least
30 minutes. Urine was refrigerated. We centrifuged
the plasma at 3220 g for 20 minutes at 4 �C, serum at
this rate and at 20 �C, and urine at 453 g for 15 minutes
at 4 �C. We then stored aliquots at �80 �C. We
measured the protein-to-creatinine ratio and blood
chemistry values using a Vitros 250 analyzer (Johnson
& Johnson Co, Rochester, NY). And we measured
urine values using the dipstick Multistix (Bayer Corp,
Elkhart, IN).
2779



Table 1. Data of pooled dog samples used for mass spectrometry

Pool Litter

Pooled EDTA-plasma samples Laboratory data

Input for chromatographic pre-fractionation Urine Serum

Vol. (ml) Protein (mg/ml) Protein (mg) UPC Dipstick Blood Creatinine mg/dl Albumin g/dl

NM 1, 2, 2 0.78 78.85 61.5 0.48 � 0.41 Tr, N, N 0.39 � 0.01 2.80 � 0.08

NF 1, 3, 3 0.78 80.97 63.2 0.36 � 0.34 N, N, Tr 0.38 � 0.05 2.50 � 0.14

CF 1, 3, 3 0.78 83.58 65.2 0.14 � 0.11 N, N, 1þ 0.36 � 0.03 2.50 � 0.00

AM 1, 3, 3 0.78 79.27 61.8 0.92 � 0.53 1þ, 2þ, Tr 0.35 � 0.04 2.53 � 0.09

AM, affected male; CF, carrier female; N, negative; NF, unaffected female; NM, unaffected male; Vol., volume; Tr, trace; UPC, urinary protein-to-creatinine ratio.
Samples were obtained at week 7 of age.
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Samples Used for Proteomic Search

Equal volumes of 1 plasma sample from each of 3 dogs
were combined for each group (affected males [AM],
carrier females [CF)], and unaffected siblings [NM, NF]).
Each pool was prefractionated and subsequently
analyzed (Table 1).

Sample Preparation for Mass Spectrometry

Our native prefractionation workflow followed21

(Supplementary Methods). The chromatographic dis-
tributions of proteins are shown in Supplementary
Figures S1 to S3.

Selection of BM Candidates

BM candidates were selected from all identified protein
chains after pairwise comparison of data of 2 dimen-
sional-(2D-)subfractions from affected and nonaffected
dogs. Peptides supporting proteins identified in 2D-
subfractions from AM were compared with those of the
homologous 2D-subfractions from NM by Sieve, as well
as those from CF with those from NF. The quantifier
“ratio” is related to the concentration quotient (AM/
NM, CF/NF) and “hits” to the amount of the respective
protein in these subfractions. Sieve data on each pro-
tein identified were sorted to our separation matrix by
in-house macros to visualize the chromatographic dis-
tribution of altered protein variants according.21,22

Therefore, a BM was defined either by a >2-fold
higher concentration based on the “overall trend”
(Supplementary Methods, Formula 1) or by mean ra-
tios, when we saw exclusive synergistic alterations.
Alternatively, we defined a BM as a fraction out of an
entire protein family by a >5-fold higher mean ratio in
distinct clusters of subfractions, that is, a distinct
strongly elevated variant (Figure 2).

Analysis of Posttranslational Modifications

Kidney disease induces several metabolic changes.
Therefore, we additionally analyzed a few post-
translational modifications (PTM) of highly abundant
dog proteins to determine whether proteins were
already metabolically altered in preclinical AS. The
Proteome Discoverer (Thermo Fisher Scientific GmbH,
2780
Karlsruhe, Germany) performed this search21

(Supplementary Methods).

Proof-of-Concept

For proof-of-concept, it was also necessary to evaluate
the differences in BM concentrations and to assess their
sensitivity and specificity. We therefore measured
several BMs by ELISA in samples from dogs and
humans.

Dog Samples

We evaluated these features of BMs using samples from
mixed-breed dogs. These dogs were of the same cohort
as those used for proteomic search but not the same
animals. However, the number of samples was insuf-
ficient for statistical analysis because the human
COVID-19 pandemic during our research restricted
access.

Human Samples

We used 3 sets of human samples. All storage and
transport were at below �80�C.

Set 1 was of prospective longitudinal real-world
clinical serum and urine samples from the multicenter
trial “EARLY PRO-TECT Alport”20 (ClinicalTrials.gov
Identifier NCT01485978, Table 2). Samples from each
patient were obtained at 2 time points. The first point
was during the very early stages of AS and the second
about 4 years later.

Set 2 was obtained from the Jena University Hos-
pital, Germany, with serum and urine samples from
pediatric patients suffering from AS, including the
Alport spectrum of thin basement membrane ne-
phropathy, or benign familial hematuria. These dis-
eases were diagnosed clinically by family history,
ultrasound, histology, genetic analysis, or by estab-
lished renal parameters. For controls, we took serum
and urine samples using standard methods from chil-
dren with no known nephropathy (ethical approval
JUH: 2020-1800) (details in Table 3).

Set 3 was of pediatric control samples independently
obtained from the Leipzig Medical Biobank (Leipzig
Research Center for Civilization Diseases, LIFE-child)
(details in Table 3).
Kidney International Reports (2023) 8, 2778–2793
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Figure 2. Biomarker candidates identified by mass spectrometry. Criteria defining a biomarker: Biomarker selection in mice, see reference.13 BM
candidates in dogs were by weighted mass spectrometric data (Supplementary Methods, Formula 1). Peptides supporting the proteins in a
2D-sub-fraction from AM were compared by Sieve with those of the homologous 2D-sub-fraction from NM as well as those from CF with those
from NF. The quantifier “ratio” is related to the concentration quotient (AM/NM, CF/NF) of each specific protein in the sub-fractions compared. n.a.,
not altered; n.f., not found; 0, no cluster in this direction; x, overall trend higher in AM than in NM and in CF than in NF; o, increased parts/protein
variants in AM and CF; DIV/0: no protein detected in healthy controls (no ratio can be given); mean ratio, mean of all ratios with (continued)

H Rhode et al.: Biomarkers for Very Early Alport syndrome TRANSLATIONAL RESEARCH
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Figure 2. (continued) synergistic alteration of the protein (AM/NM or CF/NF). Red: candidate BMs; blue: some proteoforms might serve as
candidate BMs; green: candidate BMs in mice, criteria not fulfilled in dogs. Grey filling: positive APR; black filling: negative APR. Altogether, 124
protein chains were more abundant in affected than in unaffected dogs, either in males or females or both, and 74 proteins fulfilled the
definition for a BM candidate. AM, affected male; APR, acute phase protein; BM, biomarker; CF, carrier female; NF, unaffected female; NM,
unaffected male.
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Evaluation by Immune Assays

All measurements were carried out in duplicates
using commercial ELISA test kits (Supplementary
Table S1). We initially tested a few samples to
determine the measurable range and the dilutional
linearity of each assay. We were unable to measure
any promising BM candidates due to the limited
availability or specificity of the test kits. Further-
more, it was not possible to apply all the immune
2782
assays to all samples because of the limited sample
volumes.

Analysis of ELISA Results

The data were analyzed by SPSS version 27 (IBM Corp.,
Armonk, NY). Because the data distribution were non-
normal,we tested the similarity ofmediansusingKruskal-
Wallis tests. We followed these by post hoc analyses
using Mann-Whitney-U-test pairwise comparisons. The
Kidney International Reports (2023) 8, 2778–2793
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statistical significance was P < 0.05 (95% confidence in-
terval).We correlated the immune reactivity of BMswith
each other using SPSS (v. 27).

Moreover, we used correlation analyses with several
clinical data and receiver operating characteristic curve
analyses to assess the diagnostic values of each BM and
BM combination. Accuracy was judged moderate for
area under the curve 0.7 to 0.9 and high for area under
the curve >0.9.26
RESULTS

Discovery Phase: Proteomic Search in Blood

Plasma From Dogs With Preclinical Stage AS

The global protein distribution after prefractionation is
given (Supplementary Figures S1 and S2). The high
precision of our method21 allowed reliable comparisons
between the constituents of subfractions from different
samples.27 In total, using 2 analysis methods, we found
3115 protein chains using Proteome Discoverer, but 918
with Sieve (Supplementary Tables S2 and S3). The 3115
chains represented approximately 600 unique proteins
and the 918 chains represented approximately 300
unique proteins. The majority of proteins showed
several chromatographic clusters indicating the exis-
tence of diverse proteoforms with different degrees and
directions of alteration in AS. Only a few were uni-
formly increased or reduced in affected versus non-
affected dogs (Supplementary Figures S3–S6,
Supplementary Table S4).

In order to define BM candidates out of the list of
altered proteins, we either selected spots with a mean
ratio of $5.0 (Sieve) or, in the case of miscellaneous
clusters, we applied formula 1 (Supplementary
Methods) and accepted $2.0 as sufficient to define a
BM candidate. Therefore, all clusters, both increased
and reduced, were included in estimating a value for
the global alteration of the protein family. By this
procedure, we identified a total of 124 protein chains
determining 74 proteins as BM candidates (Figure 2,
Supplementary Table S4).

Several BM candidates were almost exclusively
increased in AM, such as serum amyloid A, comple-
ment component C9, HABP2, collagen type XIII a1
chain (ColXIII), and the capping actin protein of the
muscle Z-line alpha subunit. All other BM candidates
showed miscellaneous alterations (Supplementary
Figures S4–S6, Supplementary Table S4).

Adiponectin and complement C1q were higher in
male dogs with AS (AM) than in controls, in over-
lapping chromatographic clusters (Figure 2,
Supplementary Figure S7). The a1 chain of type I
collagen was more abundant in affected males and fe-
males, the a2 chain only in males than in controls. By
Kidney International Reports (2023) 8, 2778–2793
sequence analysis, we detected only the c-terminal
propeptides of both chains. ColXIII was more abundant
in AM in several subfractions than in unaffected ani-
mals (Supplementary Figure S8). The sequence detected
was located within the collagenous ectodomain. The
unprocessed angiotensinogen was also higher in AM
than in controls (Figure 2).

We next investigated PTMs. It is possible that
disease alters these PTMs, thereby altering protein
chromatographic profiles. We therefore analyzed
PTMs of some of the highly abundant proteins. The
major albumin and transferrin clusters did not differ
between groups. However, some of their minor clus-
ters differed in amount and in deamidation and car-
bamyolation rates. It is possible therefore that these
minor cluster differences are early indications of dis-
ease (Supplementary Results, Supplementary
Figures S10 and S11).

Validation in Dogs

We then validated the BMs by examining whether they
were present in representative dogs with AS. However,
it was only possible by ELISA, to quantify some of the
BM candidates in dog samples. Of those we were able to
quantify, the results of 7 were consistent with the mass
spectrometric data. These 7 were leucine-rich alpha 2-
glycoprotein 1 (LRG1), gelsolin (GS), procollagen type
I carboxy-terminal propeptide (PICP), ColXIII, serum
amyloid A, and adiponectin (Supplementary Table S5).
Although not comprehensive, these results confirm the
reliability of our proteomic results.

Confirmation of Candidate BMs for Early

Screening in Children With AS

Thirteen BMs in the blood and 14 BMs in urine were
significantly higher from children at early stage AS
than in healthy children (Table 4, Figure 3,
Supplementary Figure S9). Of these 14 in urine, 3
allowed the identification of all the disease groups
included. These were HABP2, complement factor H
(CFH), and C4BP. A further 5 differed for 3 disease
groups. These 5 were adiponectin, ColXIII, LRGP1,
formin 1 (FMN), and fibrinogen g-chain. Furthermore,
it is notable that 8 urinary BMs even allowed
discrimination between preclinical AS (less severe,
compare Table 2) and controls. Because several BMs
correlate with other BMs (Supplementary Table S6), we
multiplied the correlated BMs in order to improve the
significant differences between patients and controls.
Indeed, the products of urinary BMs increased the
overall discriminatory power (Table 5). As a conse-
quence of this procedure, we were able to identify 19
combinations of BMs and 54 times when patients had
significantly higher values than controls, and 11
2783



Table 2. Data from set 1; prospective samples (EARLY PRO-TECT Alport) from 35 male Alport patients
Sampling Age (yr, mean ± SD) Age (yr, range) ACI therapy (n) Serum creatinine (mg/dl, mean ± SD) Urine albumin (mg/g creatinine, mean ± SD) Values

All individuals (N ¼ 35) n

First 8.9 � 4.1 3–17 20 0.44 � 0.15 293.0 � 601.9 32

Second 12.5 � 4.1 6–21 24 0.58 � 0.19 578.9 � 1107.7 33

Genetic variants23

Less severe (n ¼ 7)

First 10.3 � 3.7 4–17 5 0.51 � 0.10 16.2 � 7.3 7

Second 13.6 � 3.8 7–20 5 0.58 � 0.13 14.8 � 11.8 6

Intermediate (n ¼ 17)

First 9.5 � 4.3 3–17 6 0.43 � 0.13 390.3 � 789.8 15

Second 13.4 � 4.3 6–21 10 0.62 � 0.22 647.5 � 1314.6 16

Severe (n ¼ 11)

First 7.0 � 3.0 3–13 9 0.38 � 0.14 245.3 � 391.8 10

Second 10.6 � 3.0 7–17 9 0.51 � 0.16 638.1 � 683.9 11

ACI, angiotensin-converting-enzyme-inhibition.

TRANSLATIONAL RESEARCH H Rhode et al.: Biomarkers for Very Early Alport syndrome
combinations that distinguished preclinical AS (less
severe, compare Table 2) from controls.

Verification of “Real-World” Practicality

To verify our BM candidates for “real-world” practi-
cality, we also examined whether BMs occurred in an
additional group of children with early stage AS or
other causes of microhematuria (Table 3). The receiver
operating characteristic curve analyses indicated the
diagnostic value of our BMs. For this analysis, the area
under the curve were >0.800 for serum TGF-ß1, for
complement factor I (CFI), for urinary ColXIII, HABP2,
CFH, C4BP, and combinations thereof. They also
exhibited reliable sensitivity and false positive rate,
either alone or in combination (Figure 4 and Table 6)
like with set 1 (Supplementary Table S10). Albumin-
uria did not correlate with any of our BM candidates,
only urinary lumican (LUM) did (Supplementary
Tables S7–S9). Urinary LUM also correlated with
urine albumin-to-creatinine ratio at progression of
disease (4 years later). Our early BM candidates did not
correlate with the parameters of late stage kidney
failure, such as glomerular filtration rate, or with in-
dicators of inflammation, that is, C-reactive protein
(CRP). We are therefore able to confirm the real world
practicality of several BMs for diagnostic purposes.

DISCUSSION

Our search included preclinical mice and dogs with AS,
a unique cohort of children from the EARLY PRO-
TECT Alport trial, and from children with early
stages of AS and similar glomerular diseases.28,29

After nondenaturing 2D-prefractionation, the ma-
jority of proteins appeared as a natural multitude of
chromatographic clusters including disease specific
proteoforms (Supplementary Figures S5–S7).13,21 Thus,
one BM-cluster did not reflect the general deviation of a
particular protein-family, rather the most meaningful
2784
variant out of many. Different clusters reflect hetero-
geneity, likely due to diverse PTM.21 Unfortunately,
most commercial ELISAs are not variant-selective, as is
required. Thus, out of all altered proteins, we selected
only BM candidates with considerable global elevation
derived from weighted mass spectrometric data, and
for which an ELISA was available.

Because the glomerulus has close contact with both
blood and urine, components are able to escape from
the glomerulus into both fluids.13 Although identified
in blood, the plurality of proteoforms might mask
strongly altered glomerular protein variants (as dis-
cussed above). In urine, however, we were able to
detect, immunologically, the proteoform that, very
probably, leaks from the injured glomerulus. This was
even possible using nonselective ELISA. Therefore,
urine, particularly useful in pediatrics, might better
mirror glomerular disturbances without accompanying
variants. This was confirmed by our ELISA results.

Our study uncovered several preclinical BMs for AS
(type A and B, Figure 1). We identified a variety of
extracellular matrix (ECM) components, acute phase
reactants, apo-lipoproteins, cellular and cytoskeletal
proteins (Figure 2). For example, a2-macroglobulin, a1-
acid glycoprotein and LRG1 are similarly increased in
both males and females, as well as several serpins,
adiponectin, GS, and myosin IXA. Others were differ-
ently altered reflecting either gender or stage related
differences. In accordance with preclinical mice with
AS,13 preclinical dogs with AS show neither elevated
markers of advanced CKD nor of acute kidney
injury.30-33

C-reactive protein (pentraxin), the main acute phase
reactants in dogs,32 was only minimally elevated,
supporting a lack of systemic inflammation at this early
stage of the disease. Several other acute phase reactants
were less in affected dogs than in controls or unaltered.
Some negative acute phase reactants (e.g., transferrin),
Kidney International Reports (2023) 8, 2778–2793
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Table 4. Significance levels (P-values) of BM concentrations in
blood and urine different in patients and healthy controls

BM
Concentration

range
ASa, TBMN, BFH

(set 2)

ASb severity (set 1)

Less severe intermediate severe

Serum

n [ 4--10 n [ 6--8 n [ 5--17 n [ 8--11

ADP ng/ml

a1AGP mg/ml 0.023 <0.001 0.004 0.005

AGT ng/ml 0.067

ColXIII ng/ml <0.001 0.085

GS mg/ml 0.020 0.024 0.009

LRGP1 pg/ml <0.001

HABP2 ng/ml 0.046 0.008

PICP ng/ml <0.001

TGFß ng/ml 0.004 <0.001 <0.001

VTN mg/ml 0.043

C9 ng/ml 0.074

C4BP ng/ml 0.011 0.040

CRP ng/ml 0.084 <0.001 0.005

LUM ng/ml

FMN pg/ml

CFH ng/ml 0.024 0.036 0.006

CFI ng/ml <0.001 0.007 <0.001

FGG ng/ml

C1q ng/ml 0.003 0.006 0.073

Urine

n [ 10--13 n [ 8 n [ 14--16 n [ 8--11

ADP ng/mg c <0.001 <.001 0.016

a1AGP ng/mg c 0.093 0.093 <0.001 <0.001

AGT ng/mg c 0.068

ColXIII ng/mg c 0.015 <0.001 <0.001

GS ng/mg c

LRGP1 ng/mg c 0.012 <0.001 <0.001

HABP2 ng/mg c 0.001 0.010 <0.001 <0.001

PICP pg/mg c 0.003 0.007 0.072

TGFß pg/mg c

VTN ng/mg c

C9 pg/mg c 0.016

C4BP ng/mg c <0.001 0.037 <0.001 <0.001

CRP pg/mg c 0.062 <0.001 <0.001 0.004

CFH ng/mg c 0.033 <0.001 <0.001 <0.001

CFI ng/mg c 0.098 <0.001 <0.001

FMN pg/mg c 0.013 0.057 <0.001 0.002

LUM ng/mg c

FGG ng/mg c 0.001 0.001 <0.001

C1q ng/mg c <0.001 <0.001

ADP, adiponectin; AGT, angiotensinogen; AS, Alport syndrome; BMI, body mass index;
BFH, benign familial hematuria; CFH, complement factor H; CFI, complement factor I;
CGFR, calculated glomerular filtration rate; CRP, C-reactive protein; eGFR, estimated
glomerular filtration rate; FGG, fibrinogen g-chain; FMN, complement factor I; LUM,
lumican; PICP, procollagen type I carboxy-terminal propeptide; SDS, standard deviation
scores (SDS; also known as z-scores); TBMN, thin basement membrane nephropathy;
VTN, vitronectin.
aAutosomal Alport syndrome (AS) and histologically determined AS without genetic
information.
bGenetic characterized AS (set 1, first samples).
The number of patients differs from BM parameter to parameter, because we were
unable to measure all parameters in all patients. Insufficient volumes of some
samples caused this. n: counts of patient values (min-max) included. P < 0.05 is
considered significant, P < 0.01 highly significant, (Mann-Whitney U-test). Some
P-values of 0.05 to 0.10 included to show tendencies. All other comparisons yield
nonsignificant differences. Bold: favored BMs. Urinary concentrations are
normalized by creatinine (c). Healthy controls: n ¼ 11–25 for serum; n ¼ 86–101 for
urine.
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Figure 3. Comparison of BM concentrations in sample set 1 from patients with AS and healthy controls. Second samples were taken about 4
years after the first. Significances: P < 0.05 (light blue bars); P < 0.01 (dark blue bars); all other not significant. c, d: Values below the detection
limit (¼ 0) are arranged close to the abscissa for visualization. (a) Lumican (LUM) in serum. Due to the small number of samples, dots indicate
tendency. (b) Complement factor I (CFI) in serum. (c) Complement factor H (CFH) in urine; (d) Hyaluronan binding protein 2 (HABP2) in urine.
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however, appeared to be greater. Therefore, the situa-
tion in dogs is similar to that in mice.13 Typical GBM
components,34-36 however, were greater in AS (e.g.,
fibrinogen g-chain, fibronectin, LUM, vitronectin
[VTN], and HABP2). There were no peptides from type
IV collagens. Our findings accord with the elevated
expression of type I collagen in dogs and mice with
AS.13,37 During collagen processing, the fragment PICP
is removed by ADAMTS. PICP is indicative for early
ECM remodeling and fibrosis.38-42 We retroactively
identified 5 peptides in AS mice that align as precisely
with murine PICP just as the canine sequences align
with canine PICP. Moreover, several members of the
ADAMTS-family are very homologous to ADAMs,
including ADAM8,43 which was identified in humans
with later stages of AS.44,45 Despite the significant de-
viation (Tables 4 and 5, and Supplementary Table S10),
the receiver operating characteristic curve analysis
shows urinary PICP appear insufficient for clinical use.

The transmembrane protein ColXIII is upregulated in
AS.46 Its ectodomain interacts with several matrix
components and is released by proteases.47-49 There-
fore, this BM candidate appeared as one of the most
promising BMs (Tables 4–6).
2786
Hyaluronan is an important component of the
filtration barrier and interstitial renal water reabsorp-
tion mechanism.50-52 HABP2 is crucial for hyaluronan
metabolism, in tissue homeostasis, and inflamma-
tion,50,53 and has enzymatic and regulatory activities.54

In children with AS, we verified HABP2 as one of the
most promising early BMs.

The plurality of ECM components indicate early
remodeling activity probably driven by TGF-ß1.55 Due
to the renal increase of TGF-ß1 mRNA in dogs at late
stages of AS,7,56-59 of urinary TGF-ß1 in children with
AS,31 and of TGF-ß1 in blood (Table 4), this mediator
indicates progression.

Complement C1q and adiponectin are soluble defense
collagens and are involved in repair and tissue homeo-
stasis, with adiponectin also having antifibrotic ef-
fects.60,61 There are increased amounts of adiponectin in
a variety of CKDs, including focal segmental glomer-
ulosclerosis and lupus nephritis.62-65 These increased
amounts of adiponectin seem to indicate progression of
CKD, rather than being disease specific.66 Our data are
the first report of early alterations of adiponectin
(Tables 4 and 5). However, in the preclinical stages of
AS it has insufficient discriminatory power.
Kidney International Reports (2023) 8, 2778–2793



Table 5. Significance levels (P-values) of combined BM
concentrations in urine that are different in patients and healthy
controls

Product of BM

ASa, TBMN, BFH
(set 2)

ASb (set 1) less
severe Intermediate Severe

n [ 5--10 n [ 8 n [ 14--16 n [ 7--11

ADP � PICP 0.012 <0.001 <0.001 0.094

ADP � C9 <0.001 0.003

ADP � C4BP <0.001 0.040 <0.001

AGT � GS

AGT � C9

ColXIII � C4BP 0.002 0.076 <0.001 <0.001

ColXIII � FMN 0.002 0.052 <0.001 <0.001

GS � CFH 0.068 <0.001 <0.001 <0.001

GS � C9 0.098

GS � VTN

GS � CFI 0.033 0.005

LRGP1 � C1q 0.004 <0.001 <0.001

HABP2 � TGFß 0.031 0.030

HABP2 � FGG <0.001 0.004 0.001

VTN � AGT

VTN � C9

VTN � CFI 0.019

C9 � CFH 0.008 <0.001 <0.001

CRP � C1q <0.001 <0.001 0.001

CFH � CFI 0.029 <0.001 <0.001 <0.001

CFH � FGG 0.008 <0.001 <0.001 0.056

CFI � FGG 0.038 0.046 <0.001

CFI � a1AGP <0.001 <0.001

CFI � GS 0.033 0.005

FMN � FGG 0.008 0.005 <0.001

ColXIII � C4BP �
HABP2

0.003 0.012 <0.001 <0.001

ADP, adiponectin; AGT, angiotensinogen; BFH, benign familial hematuria; PICP, pro-
collagen type I carboxy-terminal propeptide; TBMN, thin basement membrane
nephropathy.
aAutosomal Alport syndrome (AS) and histologically determined AS without genetic
information.
bGenetic characterized AS (set 1, first samples).
The number of patients differ from BM parameter to parameter, because we were
unable to measure all parameters in all patients. Insufficient volumes of some samples
caused this. n: counts of patient values (min-max) included. P < 0.05 is considered
significant, P < 0.01 highly significant, (Mann-Whitney U-test). Some P-values 0.05 to
0.10 are included to show tendencies. All other comparisons yield nonsignificant dif-
ferences. Bold: favored BMs. Urinary concentrations are normalized by creatinine (c).
Healthy controls (n ¼ 84–99).

Figure 4. Receiver operating characteristic curves of urinary BMs,
comparison of patients with Alport syndrome, thin basement mem-
brane nephropathy, and benign familial hematuria (sample set 2)
with controls. Blue: Collagen XIII (ColXIII); green: hyaluronan binding
protein 2 (HABP2); magenta: complement C4 binding protein (C4BP);
red: reference line. BM, biomarker.
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We evaluated the g-chain of fibrinogen because it
was the most elevated in AM (Figure 2). Fibrinogen is
an intrinsic constituent of the GBM and acts as a
hyaluronan-binding protein. It is intrinsically linked to
blood coagulation and tissue fibrosis and is upregulated
in focal segmental glomerulosclerosis.34,67-69 And, uri-
nary fibrinogen g-chain has a high discriminatory
score both alone and, even more clearly, combined
with other BMs (Tables 5 and 6, and Supplementary
Table S10).

Out of a group of regulatory complement compo-
nents, C4BP has various roles such as cofactor for CFI-
mediated C4b inactivation, inhibiting apoptosis, and
inhibiting DNA release from necrotic cells.70,71 C4BP
interacts with various regulatory molecules (including
Kidney International Reports (2023) 8, 2778–2793
C-reactive protein, C1q, ficolins, CFH, and CFI, which
we also identified as BM candidates), modifying the
response to cell damage or apoptosis.72,73 These regu-
latory proteins are expressed in the podocytes, cells
key to AS.74 CFI, CFH, and C4BP are high in dogs with
AS (Figure 2) as well as in urine from children with AS
(Tables 4–6, and Supplementary Table S10).

From the family of leucine-rich repeat proteins, we
identified LUM and LRGP1 as early BM candidates.
These proteins are involved in protein interactions,
inflammation, signaling, and cell adhesion.75,76 In the
kidney, LUM belongs to the ECM network, whereas
intracellularly LRG1 prevents apoptosis and extracel-
lularly modulates TGF-b1-signaling. LRG1 therefore
plays a distinct role in tubular injury and lupus
nephritis.77-82 LUM and LRGP1 are upregulated in AM,
as in mice with AS.13 In urine from children with AS,
we were able to verify LRG1 by ELISA, but unable to
verify LUM. However, in set 1, LUM declined during
disease progression in all severity groups and is
therefore a convenient BM of type B (Figure 1) in the
same way as PICP and C1q, (Supplementary Figure S9).

In previous studies, reduced levels of GS, an
actin-interacting protein,83,84 are linked to organ
injury including CKD, correlating with disease
progress and mortality.85-87 We previously identified
GS as a BM in mice with AS.13 Dogs with early AS
2787



Table 6. Receiver operating characteristic curve analysis, comparison of patients with aAlport syndrome, thin basement membrane
nephropathy, and benign familial hematuria (set 2) with controls
BM Cut-off Sensitivity 1-specificity AUC BM3BM Cut-off Sensitivity 1-specificity AUC

Serum

TGFß 30.82 0.733 0.158 0.830

CFI 16760 0.769 0.111 0.846

Urine

ColXIII 0.98 0.617 0.131 0.817 ColXIII�FMN 13.75 0.725 0.232 0.796

HABP2 0.62 0.596 0.072 0.808 C4BP�ColXIII 5.20 0.723 0.102 0.856

C4BP 4.04 0.894 0.192 0.898 GS�CFH 579.6 0.745 0.253 0.815

CRP 4.29 0.674 0.210 0.765 LRGP1�C1q 0.90 0.667 0.105 0.801

CFH 21.72 0.851 0.153 0.903 C9�CFH 3058 0.617 0.121 0.799

CFI 1.07 0.596 0.224 0.718 CRP�C1q 0.72 0.694 0.221 0.806

FGG 183 0.591 0.1 0.753 CFH�CFI 20.74 0.702 0.182 0.850

C4BP�ColXIII�HABP2 2.16 0.652 0.052 0.819

AUC, area under the curve; CRP, C-reactive protein; FGG, fibrinogen g-chain.
Receiver operating characteristic curve analysis by SPSS (cf. Methods section). Only BMs with AUC >0.700 are shown.
aAutosomal Alport syndrome (AS) and histologically determined AS without genetic information.
Concentration ranges of BMs: Serum: TGF-ß1 and CFI, ng/mL. Urine: ColXIII, HABP2, C4BP, CFH, CFI, FGG, GS, LRGP1, and C1q, ng/mg creatinine; CRP, C9 and FMN, pg/mg creatinine.
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have heterogeneous results after mass spectrometry
(Supplementary Figure S6 and Figure 2). However, we
were able to observe slightly higher values in serum
from affected dogs (Supplementary Table S5) and in
urine from children with AS (Tables 4 and 5).

Several other proteins which are crucial for podo-
cytes, such as dynein, myosin IXA, FMN, talin 1, sac-
sin, and fukutin, were upregulated in AM.88 However,
we found no reliable ELISAs for these dog proteins.
Therefore, we only analyzed the human samples with
talin and FMN. FMN, validated, belongs to a family of
proteins involved in the polymerization of actin89 but
is not known as a BM for AS. FMN is notably higher in
urine than blood but only significantly so in children
with early stages of intermediate and severe AS and in
combination with ColXIII (Tables 5 and 6, and
Supplementary Figure S9).

Although increased in our study group vitro-
nectin,34,49,90-93 complement component C9,34 and
angiotensinogen have insufficient diagnostic power
(Tables 4–6).

Several minor subfractions of albumin and trans-
ferrin showed increased deamidation rates in AM,
probably by transglutaminase activities.94,95 Trans-
glutaminases also catalyze crosslinking of ECM mole-
cules. Coagulation factor XIII, which also has
transglutaminase activity, is increased in AM (Figure 2),
and possibly responsible for these modifications.96 We
detected minor parts of albumin carbamoylated already
in preclinical dogs with AS confirming21 although that
this nonenzymatic modification was associated with
advanced CKD.97 Their use for diagnostics however
requires PTM-specific ELISA.

Our most promising BMs did not correlate with in-
dividual and clinical parameters (Supplementary
Results). Therefore, our BMs reveal an additional
2788
benefit and no special cut-offs must be considered in
clinical practice.
CONCLUSIONS

We identified several promising real-world BM candi-
dates for very early stages of AS. We included the
requirement that diagnostic BMs must cover a wide
window of opportunity because the exact stage of AS in a
child depends on multiple factors such as the type and
location of the mutation, age, diet, protein and salt
intake, and other environmental factors. Preclinical
glomerular injury inAS is indicated by BMs of 3 different
origins as follows: (i) ColXIII, a membrane protein from
glomerular endothelial cells; (ii) HABP2, a constituent
from the GBM; and (iii) C4BP from podocytes. Moreover,
we were also able to establish several other components
usable for early diagnostics of AS, such as FMN, LRGP1,
and GS (from injured or destroyed cells), fibrinogen g-
chain (from ECM), C-reactive protein, CFH, CFI (regula-
tory complement components), as well as complement
factors C1q and complement component C9.

Although our results are statistically supported, and
promising, we had to obtain them from a limited
number of samples. This was because of the rarity of
the diseases and the pandemic conditions during our
research. Further studies therefore need to include
larger numbers of samples and ensure similar sample
numbers in the different BM groups. Such further
studies should also focus on the time course of our BM
candidates during disease progression. For application
in the real world, we suggest using a combination of
diagnostic BMs rather than single parameters.
Furthermore, in the near future, our BMs may also
serve as prognostic markers and markers of response to
nephroprotective therapy.
Kidney International Reports (2023) 8, 2778–2793
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