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New Canadian regulations have required that all use of antibiotics in livestock animal production should
be under veterinary prescription and oversight, while the prophylactic use and inclusion of these agents
in animal feed as growth promoters are also banned. In response to this new rule, many Canadian animal
producers have voluntarily implemented production practices aimed at producing animals effectively
while avoiding the use of antibiotics. In the swine industry, one such program is the ‘raised without
antibiotics’ (RWA) program.
In this paper, we describe a comprehensive investigative methodology comparing the effect of the

adoption of the RWA approach with non-RWA pig production operations where antibiotics may still
be administered on animals as needed. Our experimental approach involves a multi-year longitudinal
investigation of pig farming to determine the effects of antibiotic usage on the prevalence of antimicro-
bial resistance (AMR) and pathogen abundance in the context of the drug exposures recorded in the RWA
versus non-RWA scenarios.
Surveillance of AMR and pathogens was conducted using whole-genome sequencing (WGS) in conjunc-

tion with open source tools and data pipeline analyses, which inform on the resistome, virulome and bac-
terial diversity in animals and materials associated with the different types of barns. This information
was combined and correlated with drug usage (types and amounts) over time, along with animal health
metadata (stage of growth, reason for drug use, among others). The overarching goal was to develop a set
of interconnected informatic tools and data management procedures wherein specific queries could be
made and customized, to reveal statistically valid cause/effect relationships.
Results demonstrating possible correlations between RWA and AMR would support the Canadian pig

industry, as well as regulatory agencies in new efforts, focused on reducing overall antibiotics use and
in curbing the development and spread of AMR related to animal agriculture.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Antimicrobial drug pollution in aquatic ecosystems and food
webs constitute a serious concern in worldwide public health, agri-
culture, aquaculture and environmental biodiversity and sustain-
ability. Worldwide, antibiotic usage exceeds 100,000 tons per
year [1]. Levels of antimicrobial use varies dramatically from coun-
try to country, for example, some countries in Europe reportedly
use lower quantities of drugs to treat animals compared with
humans [2]. In Canada, however, 82% of total antimicrobial active
ingredients (�1.5 � 106 kg) sold in 2014 was distributed for use
in food-producing animals [3]. This amount is consistent globally,
where an estimated 73% of all antimicrobials are administered on
farm animals [4]. This extensive and increasing usage of antibiotics
in agriculture and aquaculture has been on-going for around
75 years, with usage trends correlating with antimicrobial drug
discoveries made over the period [5,6,7]. The main consequence
of this is the appearance of antibiotic-resistant bacterial strains
that have undergone selection in various human/animal and envi-
ronmental microbial communities in what is commonly referred to
as antimicrobial resistance (AMR). Over the past decade, concerns
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about AMR have increasingly been raised by various scientific com-
munities; in future years, it will certainly be one of the major
health challenges that will need to be addressed in order to main-
tain a supply of clinically-relevant drugs for human and animal
therapeutic use.

The industry of pig farming is a major economic player in the
Canadian animal agriculture sector. Overall, the antibiotics com-
monly and extensively utilized by pig producers belong to the
tetracycline and macrolide classes [8]. Historically, approximately
only 25% of the total antibiotics used are for treating diseases.
The remaining quantity of drugs was used for disease prevention
and growth promotion. This implies that, even when pathogenic
bacteria are the intended targets of the antibiotics, many non-
pathogenic bacterial species are also affected and thus may consti-
tute a continuing reservoir of AMR. Since simply using antibiotics
may contribute to AMR, it follows that any drugs used should
strictly be applied to treat infections in sick animals. In response
to increasing public apprehension regarding the use of antibiotics
in livestock production along with general concerns about the
spread of AMR, various measures, such as a total ban on the use
of antibiotics in livestock feed as growth promoters and strict reg-
ulations on the use of any antibiotic for the treatment of sick ani-
mals, are being implemented in Canada. Indeed, these regulations
were implemented by the Public Health Agency of Canada (PHAC)
in December 2018, which mandate that the use of all medically
important antimicrobials (MIAs) in animal agriculture production
now fall under veterinary prescription and oversight and that these
agents can no longer be provided prophylactically, nor included as
growth promoters in animal feed [9]. In advance of this new rule,
some Canadian producers voluntarily implemented procedures
wherein animals are effectively raised without the use of antibi-
otics (RWA) from birth to slaughter.

In this paper, we describe an integrated investigation methodol-
ogy comparing the effect of the adoption of the RWA approach
with non-RWA conventional operations where antibiotics may be
administered to any animal as needed, as opposed to the RWA
approach wherein any sick animals that require antibiotics are
taken out of the program and marketed as conventional non-
RWA pigs. Here, we employed a longitudinal study of pig farms
to determine the effects of the RWA program on the prevalence
of antimicrobial resistance genes (ARGs) as well as pathogen abun-
dance. The approaches employed in this study are intended to
facilitate the quantification of the effectiveness of reducing the
total on-farm use of antibiotics on the frequency of detection of
both ARGs and the pathogens that frequently carry them. Accord-
ingly, we present an experimental design based on multi-year
surveillance monitoring of conventional farms still using antibi-
otics as usual (except in feed) and farms that have entered the
RWA program. This monitoring strategy focuses on 3 key parame-
ters: antibiotic usage, antibiotic resistance, and prevalence of
pathogens. The workflow proposed here covers a multi-step study
experimental design performed: i) over time, ii) with the collection
and transcription of data records (drugs and treatment reasons)
from participating barns, iii) sampling farm animals and their envi-
ronment, iv) subjecting samples to whole-genome sequencing
(WGS), and v) processing WGS data via comprehensive metage-
nomic analyses through the CosmosID platform (taxonomy and
resistome profiling, and pathogens prevalence).

WGS is a widely available tool with demonstrated potential for
AMR surveillance; its utilization can help decipher many complex
microbiota-related questions including possible exploratory corre-
lations between various available microbially-related databases
[10,7]. In this study, we illustrate several examples of AMR surveil-
lance and determining pathogen prevalence from WGS data ana-
lyzed through user-friendly pipelines that provide information on
the resistome profiles, as well as bacterial diversity. Such informa-
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tion collected and combined with drug-use and animal health
metadata can be used to reveal a potential correlation between
RWA and AMR, and thus support Canadian pig farmers in their
efforts to reduce antibiotics use in pig production as well as health
and agriculture agencies in their governance plans on antibiotic
regulations.
2. Methodology

2.1. Experimental design

Our methodology included the periodic collection of metadata
comprised of all records of administered drugs and illnesses or
treatment reasons reported in the barn. Samples from the animals
and the barn environment were also periodically collected then
sequenced and metagenomically-compared.

2.2. Sample collection

A 2.5-year longitudinal surveillance schedule mainly based on a
6-month sampling interval, from both animals and barn environ-
ments, was conducted. Animal samples included fecal and nasal
swabs obtained from 6-week old piglets and 3rd-parity sows. At
each time point, both the piglets and the sows were sampled to
examine the age-dependent effect. Fecal samples were collected
aseptically from 3 animals of each age (piglets or sows) and stored
in 50 mL sterile tubes, whereas the nasal swabs were collected
from 3 animals using the Swab Collection and DNA Preservation
System (Norgen Biotek Corp. Thorold, ON). The nasal swab samples
were aimed to detect potential subsets of respiratory viruses along
with other microorganism categories and their associated AMR
that may not be well represented in the manure and fecal samples.
Environmental samples included manure and soil collected from
inside and around the barns and stored in 50 mL sterile tubes.
Manure samples were collected from the manure lagoon or the
manure collection pit, while soil samples were collected from the
ground surface near the entrance of the barns. Sample handling
was conducted in accordance with CDC’s Biosafety in Microbiolog-
ical and Biomedical Laboratories (BMBL) manual for level 1 mate-
rials [11].

2.3. WGS Shotgun-Illumina HighSeq

To identify the total ARGs (resistome) and bacterial-related
diversity as well as the prevalence of pathogens in the collected
samples, random shotgun next-generation sequencing (NGS) was
performed via a third-party service using an Illumina HiSeq plat-
form (Omega-Bioservices, Norcross, GA, USA). Samples were han-
dled according to the sequencing service procedures and shipped
to Omega-Bioservices for DNA extraction, data quality determina-
tion, and NGS. Accordingly, 1 g of sample material was used for
DNA extraction using the Mag-Bind Universal Pathogen DNA Kit
(Omega Bio-tek, Inc. Norcross, GA, USA), and the purity and yield
of the DNA were checked using the Quant-iTTM PicoGreenTM ds
DNA System kit (ThermoFisher Scientific, Pittsburgh, PA, USA).
Shotgun NGS libraries were constructed from DNA using Kapa
Biosystems Prep Kit following the manufacturers’ protocols
(Roche�, KK2103 Pleasanton, CA, USA). Samples representing a dis-
tinct time point were run on 1 lane of a HiSeq4000/X Ten (Illu-
mina), generating a total of 100–120 GB of 150-bp paired-end
data reads. Eight samples per run produced an average minimum
of �30 Million reads (MReads) per sample with each sample gen-
erating 2 FASTQ files (R1 Forward read and R2 Reverse read) shared
through the BaseSpace Sequence Hub. Sequences were then sub-
jected to quality control processes (i.e., denoising and trimming
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the adaptors) and reported with the MultiQC tool (https://multiqc.
info/) prior to uploading onto the CosmosID platform for metage-
nomic analysis (CosmosID Inc., Rockville, MD, USA). CosmosID
focuses on the rapid gene markers characterization of microorgan-
isms, pathogens and anti-microbial resistance for infectious dis-
ease identification, food safety inspections, pharmaceutical
discovery, public health surveillance and microbiome analysis
[12,13].

2.4. CosmosID pipeline: data normalization and analyses

Eight samples per run produced between 20 and 100 Million
reads (MReads) per sample, for a total number of reads ranging
from 1000 to 1200 Mreads. For comparative analyses among the
non-RWA and RWA groups, all data sets were subsampled to a
fixed 20 MRead depth to ensure uniform population diversity
and reduce bias in the data analyses arising from variation in read
depth. This subsampling method was obtained by rarefying ran-
domly sampled reads without replacement from each of the 8 sam-
ples up to the common count of 20Mreads using the seqtk tool
package available at https://github.com/lh3/seqtk. The rarefying
depth from each run was set to the lowest Mreads/Sample with a
total coverage while the rest of the reads were discarded [14].
Thereby, the difference in the number of reads obtained from dif-
ferent samples reflects biological differences in the samples.

In our described workflow, the metagenomic shotgun analysis
employed a functionality-based strategy wherein functional gene
products were identified regardless of which bacterial/microbial
species the genetic material originated from. This read-based pro-
filing method allowed multiple profiling targets, including those
based on taxonomic, resistome and virulome criteria. In this proce-
dure, all our unassembled sequencing reads were analyzed using
the CosmosID software package that utilizes data mining algo-
rithms and curated databases that provide fine resolution for
organism identification and discrimination at the strain-level, as
well as genes of interest and accurate measurement of their rela-
tive abundances. CosmosID algorithm is based on GENIUS Software
that uses data-mining K-mer and highly-curated dynamic com-
parator databases, such as GenBook [15], that disambiguates
Mreads from a metagenomic sample into discrete microorganisms
(or potential gene products) engendering the particular sequences.
A complete description of the k-mer-based profiling assignment
algorithms used is provided elsewhere [16,17,14,18].

2.5. CosmosID comparators

GenBook comparator databases comprise nearly 160,000 phylo-
genetically organized genomes and gene sequences. The results
include tables and visualizations for genome databases (i.e., bacte-
ria, fungi, protists, viruses, and respiratory viruses) as well as for
gene databases (i.e., antimicrobial resistance and virulence fac-
tors). The CosmosID platform constitutes both a subset of genomes
sequenced by CosmosID and its collaborators, in addition to pub-
licly available genomes or gene sequences through NCBI- RefSeq/
WGS/SRA/nr, PATRIC, M5NR, IMG, ENA, DDBJ, CARD, ResFinder,
ARDB, ARG-ANNOT, MVIRDB, and VFDB. The CosmosID pipeline
has been optimized for processing unmapped/unaligned sequence
reads of lengths <100 bp and offers a flexible tool used to compare
whole genomes with enhanced discriminatory power. It uses a first
precomputation phase that outputs a reference microbial database
to a whole-genome phylogeny tree, with sets of fixed-length k-mer
fingerprints identified with distinct nodes of the tree [12,19]. A
second per-sample computation phase searches short sequence
reads against the fingerprint sets and gives fine-grain composition
and relative abundance estimates at all nodes of the tree; it uses
edit distance-scoring techniques to compare a target sample with
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a reference set [12,19]. The first comparator finds reads with an
exact match with an n-mer uniquely identified with a set of refer-
ence strains, with the second statistically scoring the entire read
against the reference to verify that the read is uniquely identified
with that set. The analysis turnaround time was 20–30 min from
uploading sequences to metagenomic reporting that included four
profiling variables for each hit detected (bacterium, virus, or
ARG. . . etc); i) unique match frequency which is the number of
unique k-mer found in the queried sample and equivalent to the
number of reads that match the hit. ii) unique match % is the num-
ber of unique matches divided by the number of total unique pat-
terns for that hit in the reference database. iii) total matches % is the
total number of matches (unique + shared) divided by the total
number of patterns for that hit in the reference database. iv) rela-
tive abundance is calculated based on the number of hit-specific k-
mers and their observed frequency in the sample and then normal-
ized to represent the abundance of each detected hit. In addition,
CosmosID provides a filtering method that allow calls to meet a fil-
tering threshold for high confidence that these calls are in the sam-
ple. The filtering threshold which determines if results are
considered significant is based on internal statistical scores deter-
mined by analyzing a large number of diverse metagenomes.
Organisms listed in the filtered results are likely to be present in
the sample. Unfiltered (total) results include those in the filtered
results and usually additional organisms. Organisms listed in the
unfiltered (total) results but not in the filtered results need further
validation to determine if they are actually present in the sample –
either by deeper sequencing of the sample followed by re-analysis
or by orthogonal validation using targeted PCR or other method.

2.6. Exploration of possible readouts

The profiling of taxonomy is achieved through microbial identi-
fication to the species, subspecies, and strain level along with
quantification of identified organism’s relative abundance at each
taxonomic level through GenBook comparators and the GENIUS
software implemented within the CosmosID algorithm. CosmosID
databases currently contain over 15,000 bacterial, 5000 viral, 250
protists and 1500 fungal species. These include curated public
databases NCBI- RefSeq, PATRIC, M5NR, IMG, ENA, and DDBJ.

The ‘‘Pathobacteriome” profile was identified using the bacterial
pathogens subset of the taxonomy profiles. This subset includes
only pathogenic bacteria identified at the strain level. The table
listing of bacterial species obtained from taxonomy profiling was
further used for manual assignment of risk groups (RG1, RG2,
etc.). The bacterial species lists were first queried against the ani-
mal and human RG database https://health.canada.ca/en/epatho-
gen. This database comprises 1479 RG2 entries, including 789
RG2 for humans, 227 RG2 for animals and 463 RG2 for both.
Unclassified species were further checked against the Bacterial
Diversity Meta-database, available in the public domain https://
bacdive.dsmz.de. The pathobacteriome profiles represented all
identified organisms classified as risk groups other than the RG
level 1.

Similarly, the resistome, the collection of ARGs in the micro-
biome, was also profiled by querying unassembled sequence reads
against CosmosID’s curated ARG database, generating a table list of
identified and quantified ARGs. The CosmosID ARG database is
organized as a phylogenetic tree, which avoids the potential prob-
lems of highly similar sequences affecting abundance estimates. It
is also the result of combining multiple ARG databases, including
NCBI- RefSeq, PATRIC, M5NR, ENA, DDBJ, CARD, ResFinder, ARDB,
and ARG-ANNOT. Altogether, these databases comprise over 3600
ARGs. ARGs were identified based on percent of gene coverage
for each gene as a function of the gene-specific read frequency in
each sample. For each reference gene, sets of unique k-mers that
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span the entire gene are interrogated through the data sets and the
average frequency of all k-mers is recorded. This approach circum-
vents the need for read-assembly for each gene. The resultant ARG
profile table was then clustered into 16 classes of drug resistance
and 7 mechanisms of resistance, and based on a classification com-
bined from 2 pipelines with a focus on antimicrobial resistance
(https://megares.meglab.org/ and https://card.mcmaster.ca/).

The ‘‘Virome” profile identifies and quantifies the total viruses
present in the microbiome, with the ability to separate subsets of
respiratory viruses and bacteriophages.

The collection of virulence genes (VG) in the microbiome (the
virulome) can also be derived by querying unassembled sequence
reads against CosmosID-curated VG databases. The CosmosID VG
database is curated by combining mvirdb, VFDB and PATRIC
databases.
2.7. Statistical analysis

The diversity, ordination and differential abundance testing,
and both multivariate and univariate analyses, were applied to
the resultant taxa/ARG/VF abundance tables. These were used to
calculate observed and expected species richness (Shannon alpha
diversity indices and beta diversity distance matrices). We sam-
pled 5 farms (2 non-RWA and 3 RWA). For statistical analysis,
and for equal distributed comparisons, we included data from 4
farms (2 of each type of farm considered as 2 biological replicates).
Samples were repeated over time (to date, 3 time points have been
collected with a 6-month interval, with 2 future time point sam-
ples planned as this is an ongoing study). At each time point, both
the piglets and the sows were sampled to examine the age-
dependent effect. For all features (pathogen species, respiratory
virus, ARG class and virulence factors) Principle Coordinate Analy-
sis (PCoA) was performed to cluster samples based on abundance
(Jaccard distance matrix; community structure). Differentially
abundant features were identified using permANOVA, with PC-
ORD 7 software, and the estimation of the different microbial com-
munities’ relationships were calculated to generate PCoA plots rep-
resenting a mathematical evaluation of the distance and
correlation among the microbial communities. Individual features
such as individual ARG classes of drug resistance were compared
using 2-way parametric ANOVA with ‘non-RWA’ and ‘RWA’ as barn
groups, and ‘fecal’, ‘manure’ and ‘nasal swab’ or ‘timepoint
repeated measurements’ as sub-groups.
Table 1
Compilation of all types (and corresponding dosage) of drugs recorded in th

Type of drugs Drug name and concentration

Antibiotics Trimidox (trimethoprim & sulfadoxine
Biomycin (Oxytetracycline 200 mg/mL)
Penicillin G (1 mL = 3.105 IU = 297 mg)
Polyflex (ampicillin) (broad-spectrum p
Cevaxel RTU/Excenel (ceftiofur 50 mg/m
Nuflor (Florfenicol 300 mg/mL)

Anti-inflammatory Predef (isoflupredone acetate 2 mg/mL
Anafen (Ketoprofen 100 mg/mL)
Metacam (Meloxicam 5 mg/mL)

Vaccines Porcilis Ileitis vaccine
Suvaxyn E-Oral (Haemophilus parasuis B
FarrowSure B (Parvovirus vaccine)
Fostera PCV (Type 1-Type 2 Chimera)
LitterGuard Rotavirus Vac (C. perfringen
Circo/MycoGard (Porcine Circovirus Va

Anti-parasitic Bimectin (22,23-dihydroavermectin B)
Oxyto-sure (oxytocin)

Supplements Vitamaster (Mix vitamins/amino acids/
Iron Dexafer 200 (ferric hydroxide dex
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2.8. Data availability

DNA metagenomics sequencing data are available in Sequence
Read Archive (SRA) (https://submit.ncbi.nlm.nih.gov/subs/sra/),
Accessions PRJNA633402 (Fecal-piglet 1), PRJNA633385 (Fecal-
piglet 2), PRJNA633399 (Fecal-piglet 3) and PRJNA633392 (total
Manure).
3. Results and discussion

3.1. Examples in determining on-farm antibiotic usage patterns and
total use of drugs

To obtain accurate documentation of all drugs used in partici-
pating farms, we monitored and recorded the inventory and usage
of drugs on the farm, from August 2018 until December 2019
(16 months). These records included the type of drug/vaccines,
dosage, animal stage of development, reason for treatment, as well
as the date of drug administration. This information was extracted
from the routine barn treatment data sheets that are currently
required for all farms as part of the Canadian Quality Assurance
(CQA) of the Canadian Pork Excellence (CPE) program. Table 1
shows a list of drugs and dosages used in the participating barns.
The list of drugs comprises 6 antibiotics, 3 anti-inflammatories, 6
vaccines, 2 anti-parasitics, and 2 supplements. The information
and amounts of drugs given were cross-referenced against the
Provincial Veterinary Services and swine drug treatment databases
(https://www.drugs.com/vet/swine-a.html). The antibiotics mostly
given under the non-RWA production operation and belonged to
four classes: Antifolates (Trimidox), b-lactams (Penicillin G, Ampi-
cillin, Ceftiofur), Tetracyclines (Biomycin) and Amphenicols
(Nuflor) (Table 2). For the 16-month period indicated above, more
than 15.5 kg of antibiotics were used in the non-RWA barns
whereas less than 1 kg was used in the RWA barns (Table 2). In
non-RWA barns, a total of 22,499 treated animals were comprised
of 82% piglets, 16% grow-finishers and 2% sows; in these barns, a
combined 9410 g of Antifolates, 2048 g of b-lactams and 4113 g
of Tetracyclines were used over the period. In RWA barns, a total
of 1338 animals (91% piglets, 5% grow-finishers and 4% sows)
received a combined total of 160 g of Antifolates, 477 g of b-
lactams, 99 g of Tetracyclines, and 208 g of Amphenicols. Overall,
the antibiotic usage patterns reported here corroborate the Cana-
dian Integrated Program for Antimicrobial Resistance Surveillance
(CIPARS) 2016 report that collects, analyses, and communicates
e various participating barns.

Dosage

40 mg:200 mg/mL)

enicillin 25 g)
L)

1 mL/15 kg/day
1 mL/10 kg/day
6000 IU per kg (1 mL/50 kg)
6 mg/kg/day
3 mg/kg/day
15 mg/kg/day

) 5 mg/140 kg/day
9 mg/kg/day
0.4 mg/kg/day

acterin)

s/E. coli Bacterin-toxoid)
ccine, Type 2)

2 mL/pig

200 mg/kg
0.25–1.0 mL (5–20 units)

microminerals)
tran 200 mg/mL)

1 mL/45 kg/day
3 mL/piglet
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Table 2
Quantification of antibiotics given in the barns for the 3 production areas - P: Piglets, G-F: Grow-Finishers and S: Sows.

non-RWA RWA

Stage and % of animals 82% P 16% GF 2% S Total 91% P 5% GF 4% S Total
Number of treated animals 18,397 3646 456 22,499 1222 63 53 1338

Antibiotics Antifolates (Trimidox) 4062 g 2170 g 3178 g 9410 g 160 g 0 g 0 g 160 g
b-lactams 633 g 1401 g 14 g 2048 g 177 g 68 g 232 g 477 g

Tetracyclines (Biomycin) 1971 g 1586 g 556 g 4113 g 29 g 2 g 68 g 99 g
Amphenicols/Nuflor 0 g 0 g 0 g 0 g 206 g 2 g 0 g 208 g

Total of Antibiotics 15571 g 944 g
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trends in antimicrobial use and in antimicrobial resistance for
select bacteria from humans, animals, and retail meat across
Canada [20]. Indeed the CIPARS [20] reported a comparable (i.e.
tetracyclines 46%) relative proportions of antimicrobial classes uti-
lized in pigs. This, however, was focused on reporting data from
grower-finisher pig herds between 2012 and 2016 and reported
the antibiotic drugs as DDDvetCA = Canadian Defined Daily Doses
(average labelled dose) in milligrams per kilogram grower-finisher
pig weight per day (mg drug/kg animal/day). Our approach here
reported the exact amount (in grams) of the drugs used in all
development stages of pig production. Thus, our approach is more
comprehensive because it will allow examination of the possible
age-dependent effect of RWA measures. In addition, the vaccina-
tion and other non-antibiotic drug data were systematically
recorded and kept as metadata to possibly support further compar-
ative analyses between barns (data not shown).

3.2. Examples in clustering and reporting symptoms, diseases, and
treatment reasons

Barn health metadata regarding the reason for drug treatments
included 33 separate treatment categories that were clustered
based on similarities (and synonyms) of the clinical symptoms
and on their respective frequencies. This metadata standardization
allows monitoring and comparison of treatment reasons in RWA
approach with non-RWA conventional operations where antibi-
otics may still administered to any animal as needed, as opposed
to the RWA approach wherein any sick animals requiring antibi-
otics are taken out of the program and marketed as conventional
non-RWA pigs. Overall, the most prevalent illnesses and treatment
reasons recorded during the observation period were limping,
scours, respiratory impairment and infections. Scours symptoms
were frequently observed in non-RWA piglets and were usually
treated for 3 days with an anti-inflammatory combined with either
Antifolates or Tetracyclines combination of either Antifolates or
Tetracyclines with an anti-inflammatory (Fig. 1A). Limping symp-
toms were the 2nd most important reason for antibiotic treatment
in non-RWA barns, and were also treated with Antifolates or Tetra-
cyclines in piglets and sows, b-lactams were also used for this con-
dition in grow-finishers (Fig. 1A, C, E). Limping was the main
reason for the use of antibiotics in RWA barns. RWA piglets were
either treated with Antifolates or Amphenicols whereas RWA
grow-finishers and sows received b-lactams (Fig. 1B, D, F).

3.3. Taxonomy profiling and prevalence of pathogens

Bacterial sequences accounted for 99.6% of all reads that
matched k-mer markers. Our CosmosID analysis resulted in the
identification of 726 bacterial strains belonging to 406 species,
94 genera, and 12 phyla. To determine the prevalence of pathogens
present in the samples, the initial focus of the analysis was on the
metagenomic taxonomy displaying the relative abundance and fre-
quencies of bacteria at the class level (Fig. 2) along with species/
strain level determinations (data not shown). Fig. 2 shows an
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example of taxonomy profiling in both non-RWA versus RWA for
both piglet fecal and manure samples. At the phylum level, 80–
90% of all the profiles were comprised of Firmicutes and Bacteri-
odetes. The stack-bars in the graph represent averaged data from
biological duplicates of the core bacteriomes from each type of
barn. The core microbiomes were comprised of up to 4 to 5 bacte-
rial classes with >3% relative abundance, over 3 time points of each
group sampled for the 16-month period. The piglet-fecal core bac-
teriome was comprised of Bacteroidia (5–36%), Negativicutes (7–
24%), Bacilli (9–51%) and Clostridia (20–26%). The manure core
bacteriome comprised of c-Proteobacteria (5–13%), Bacteroidia
(9–30%), Negativicutes (3.5–13%), Bacilli (29–53%) and Clostridia
(13–25%). This taxonomy profiling does not show any significant
RWA-dependent differences or shifts in bacterial class. Indeed,
the Permutation-based MANOVA (PerMANOVA) Bray-Curtis test,
comparing 8 bacteriome classes, showed no significant difference
between RWA and non-RWA treatments (p = 0.445). However,
we observed a significant difference in the taxonomic diversity
between piglet-fecal and manure samples that was independent
to the RWA effect (p = 0.0076).

Pathogen prevalence data was extracted from the subset of
human and/or animal RG2 species/strain abundances. In total,
the piglet fecal and manure ‘‘Pathobacteriomes” were comprised
of 154 and 161 pathogenic strains, respectively (See Supplemental
Table S1). This ‘‘Pathobacteriome” profiling showed an overall
reduction in the abundance of pathogens in RWA compared to
non-RWA barns (Fig. 3). In non-RWA piglet fecal samples, we
found 53, 124 and 63 different pathogens that respectively repre-
sented 13%, 9% and 16% of species profiles over the 3 time points
#1 (Nov 2018), #2 (May 2019) and #3 (Nov 2019). RWA piglet fecal
samples included 55, 63 and 74 pathogens that represented 9%, 3%
and 14%, respectively, of the 3 taxonomy profiles obtained over the
same respective time points.

In non-RWA manure, 65, 78 and 92 pathogens were identified
which represented 14%, 6% and 11% of the species profiles over
the respective time intervals. In contrast, the RWA piglet feces
had 82, 69 and 103 pathogens respectively representing 10%, 11%
and 8% of the 3 taxonomy profiles over time. In addition, we
observed that the prevalence of pathogens was significantly
reduced in both RWA and non-RWA fecal and non-RWA manure
samples collected during spring (May) compared to the fall season
(November).

3.4. Examples of resistome profiling

A key objective of this study was to determine and quantify the
effect of the RWA production approach on the prevalence of ARG
over time. To achieve this, we conducted comparative resistome
profiling which showed that ARGs present in the samples belonged
to a core resistome comprised of 4 main resistance classes: Tetra-
cyclines (32–50%), Aminoglycosides (18–36%), Macrolides (12–
32%) and b-Lactams (3–13%). The remaining ARGs genes were part
of the multi-drug resistant group (MDR) or were unclassified
(Fig. 4). Beta-diversity analysis of the resistome profiles of a total



Fig. 1. Cumulative data of clustered disease treatment reasons recorded for 16 months (August 2018–December 2019) from 2 non-RWA barns (A, C and E) and 2 RWA barns
(B, D, and F). Stacked bars represent up to 4 different administered antibiotic drugs.

Fig. 2. Metagenomic taxonomy profiling at the class-level from piglet feces and manure samples collected from non-RWA – (minus sign) and RWA + (plus sign). The stacked
bars represent averaged relative abundance of the core bacteriomes from each type of barn.
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of 24 samples sequenced (3-time points and 2 barns per group)
revealed 2 clusters of clearly separate groups of type of samples
– Fecal and Manure – with respect to ARGs abundance (Fig. 5).
The manure group had two close but distinct, sub-groups that
included RWA and non-RWA data. Alpha diversity ordination
2634
showed a significant permANOVA distance (p < 0.01) between
the groups of RWA resistomes and non-RWA resistomes in manure
data (Fig. 6A), which was time-independent (p > 0.05) (Fig. 6B). An
example of 3D ordination of manure resistomes illustrated that
ARG classes of drug resistance can be superimposed on the PCoA



Fig. 3. Pathogen prevalence in piglet feces and manure samples. The stacked bars represent the averaged relative abundance of the pathogen lists obtained from all
bacteriome classes by extracting the subset of human and/or animal RG2 species/strain.

Fig. 4. Metagenomic resistome: A Relative abundance of antibiotic resistance genes
(ARG) clustered in 5 classes: Tetracyclines, Aminoglycosides, Macrolides, b-
Lactams, and MDR and collected from non-RWA – (minus sign) and RWA + (plus
sign).
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of the plotted-resistome groups (Fig. 6C). Interestingly, using 2-
way parametric ANOVA to compare individual ARG classes of drug
resistance in manure samples showed a significant (p < 0.05)
Fig. 5. Resistome comparative beta diversity analysis prepared using the CosmosID pip
(containing a non-distinct sub-group of RWA (RWA-F) and non-RWA (nRWA-F)). The lar
sub-groups of RWA (RWA-M) and non-RWA (nRWA-M).
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decrease in the relative abundance of MDR-ARGs for the 1st time
point of the RWA resistome (Fig. 7A). However, a significant
(p < 0.05) increase in the relative abundance of Aminoglycoside-
ARGs was also observed in the RWA resistome (Fig. 7B). On the
other hand, the observed RWA effects were not significant with
respect to the piglet fecal resistomes (Fig. 7).

In addition to relative abundance normalization readouts
shown in the results above, the frequencies of taxa and features
can also be examined using an alternative comparison strategy.
The frequency readout represents the number of unique k-mer
occurrences in the queried sample which is roughly equivalent to
the number of reads that matched an identified organism or gene.
This readout thus displays the raw number of k-mer hits to unique
regions in a genome, rather than the normalized representation
that we see with relative abundance. In our data analysis, using fre-
quency as a parameter for comparative resistome analysis, we
were able to show that piglet fecal resistomes have significantly
decreased Tetracycline-ARGs and MDR-ARGs frequencies in RWA
compared to non-RWA resistomes (data not shown). For instance,
combining both readouts (abundance and frequency) helps to sig-
nificantly differentiate between RWA and non-RWA effects.
eline showing 2 distinct groups: the ellipse on the left represents the Fecal group
ge ellipse on the right represents the Manure group containing 2 close, but distinct,



Fig. 6. Ordination permANOVA analysis of the resistome profiling: (A). Ordination manure resistome RWA vs. non-RWA. (B). Type dependent ordination in manure
resistomes. (C). 3D ordination of manure resistomes showing drug resistance classes that co-occurred with PCoA of the plotted-resistome groups and the results of
permANOVA tests.

Fig. 7. Comparison of individual ARG classes of drug resistance between non-RWA
and RWA in piglet feces and manure samples. (A). Comparisons of relative
abundance of MDR-ARGs. (B). Comparison of relative abundance of Aminogly-
coside-ARGs. ANOVA 2-way analysis with repeated measures (3-time points)
comparing RWA vs. non-RWA. * p < 0.05.
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The comparison of genetic sequence data from various samples
obtained in this study provides valuable context to address the
question of AMR in the animals, barn and surrounding environ-
ment. Individual hogs, and their health, are a key focus in our study
and of paramount importance to the hog production continuum
and thus nasal swabs provide a ‘‘value-added” screen for agents
of respiratory disease that might not be well represented in
fecal/environmental samples. Together, these different data sets
can offer information about the status of AMR in the hog produc-
tion systems, as well as early-warning data regarding pathogens
of concern to hog and human health.

3.5. Additional readouts and potential correlations

In addition to resistomes, microbiome diversity, and the ‘Path-
omicrobiome’ subset, our WGS analyses also generated ‘Virulome’
as well as ‘Virome’ data sets and a ‘Respiratory Virome’ subset
(data not shown). Once abundance readouts are sorted into respec-
tive virulome and virome profiles, they could be used to query pos-
sible correlations with either the drug/vaccine data, clinical
symptoms/illnesses, the resistome and pathogens. This would fur-
ther generate, for example, possible relationships or co-
occurrences of pathogens with virulence factors and/or bacterio-
phages that could eventually help differentiate between barns
using an RWA approach and conventional barns. Further, compar-
ative work on such data sets could help determine whether certain
illnesses/symptoms are related to antibiotic classes or whether
correlations exist between specific sets or patterns of resistance
genes or pathogenicities.

Similar correlations have recently been tested between the
resistome and the ‘Virulome’ in the human gut and in different
combined environmental biomes [7]. The authors of this transver-
sal comparative study used environmental and human gut
microbes from distinct human populations from across the world
to demonstrate that great metagenome protein family richness
existed, greater than for the Resistome and Virulence diversities.
Furthermore, that virulence and pathogenicity indeed correlated
in and co-occurred across all types of samples (human gut and
environmental biomes). However, these correlations concerned
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the metagenomes richness (diversity) and not the relative abun-
dance or frequency of each feature hits as we describe here. Indeed,
the power of our designed workflow investigation lies in its poten-
tial for revealing greater insights into the effect of RWA with quan-
titatively measurable readouts and specific measurements.

Among the first 3 time points of the WGS analyzed thus far, we
have observed a substantial reduction in the Tetracycline-ARGs
class in RWA barns as compared to non-RWA barns. Since tetracy-
clines are among the drugs still heavily used in conventional barns,
this suggests that RWA measures could possibly reduce resistance
to tetracyclines. In addition, RWA barns also have a significantly
reduced group of MDR-ARGs. This could be linked to lower
amounts of various drug classes recorded as being used in RWA
barns compared to conventional (non-RWA) barns, such as the
Antifolates and b-lactams. Indeed, the MDR mechanism essentially
uses the efflux-resistance strategy (efflux pumps that expel
structurally-unrelated drugs), which include the Antifolate and b-
lactams efflux transporters [21,22].

Our experimental approach would also allow comparisons and
correlations of the type of animal samples (fecal vs. nasal swab),
environmental samples (manure vs. soil) and animal age samples
(piglet vs. sow), in addition to the longitudinal time-dependent
effects.
4. Contribution to the field statement

Antibiotics are used in livestock to treat illnesses and thereby
protect animal welfare. This use has been associated with the
emergence, selection and spread of resistant bacteria. Next-
generation sequencing (NGS) can be an alternative to phenotypic
susceptibility testing for surveillance of the prevalence of antimi-
crobial resistance. Our investigative methodology also allows com-
parison of the effect of RWA and non-RWA pig production
operations on overall drug consumption, pathogen loads, and the
prevalence of antimicrobial resistance genes.

We described a comprehensive NGS-WGS workflow analysis
that maps the reads directly to reference sequences which deter-
mined the taxonomy and resistome profiles as well as the patho-
gen prevalence in animals and their environment over time.
Furthermore, additional metadata inputs from pig farms allowed
a quantitative assessment of the effect of RWA on AMR. This
methodological approach can be used to investigate the potential
correlation between RWA practices and AMR to support the pig
industry, as well as regulatory agencies in new efforts focused on
reducing overall antibiotics use and in curbing the development
and spread of AMR related to animal agriculture.
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Glossary & definitions

AMR: Antimicrobial resistance
ARDB: Antibiotic Resistance Genes Database. Manually curated and unifying most

of the publicly available information on antibiotic resistance
ARG: Antimicrobial resistance gene
ARG-ANNOT: Antibiotic Resistance Gene-ANNOTation. Detects existing and puta-

tive new ARGs in bacterial genomes
CARD: The Comprehensive Antibiotic Resistance Database. Compiles resistance

genes, their products and associated phenotypes
CIPARS: Canadian Integrated Program for Antimicrobial Resistance Surveillance
DDBJ: The DNA Data Bank of Japan is a biological database that collects DNA

sequences. A member of the International Nucleotide Sequence Database Col-
laboration or INSDC

DDDvetCA: Canadian Defined Daily Doses
ENA: The European Nucleotide Archive is a repository providing free and unre-

stricted access to annotated DNA and RNA sequences
Frequency: A kmer is a nucleotide sequence of a certain length. It is common in

genomics to select all possible kmers of a fixed length for each read in a sample,
for example. The number of unique kmer occurrences in the queried sample.
This is roughly equivalent to the number of reads that matched to the organism
identified
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IMG: Integrated Microbial Genomes. A genome browsing and annotation platform
with all the draft and complete microbial genomes sequenced by the DOE-JGI
integrated with other publicly available genomes

Kmer: a kmer is a nucleotide sequence of a certain length. It is common in genomics
to select all possible kmers of a fixed length for each read in a sample, for
example

M5NR: non-redundant protein database (MD5nr) based on the use of MD5
checksums

MDR: Multi-drug resistance
MIAs: Medically Important Antimicrobials
MVIRDB: a microbial database of protein toxins, virulence factors and antibiotic

resistance genes for bio-defence applications
NCBI-RefSeq: NCBI Reference Sequences; The Reference Sequence database is open

access, annotated and curated collection of publicly available nucleotide
sequences and their protein products

PATRIC: the Pathosystems Resource Integration Center. Provides integrated data
and analysis tools to support biomedical research on bacterial infectious
diseases

PCoA: Principal Coordinate Analysis
PHAC: Health Agency of Canada
Relative Abundance: is calculated based on the number of organism-specific kmers

and their observed frequency in the sample and then normalized to represent
the abundance of each organism

ResFinder: Resistance finder is a database that captures antimicrobial resistance
genes from whole-genome data sets. The database uses BLAST in order to
accomplish this. The database allows inputs of full sequences, partial sequences,
or short sequence reads from other sequencing platforms

RWA: raised without the use of antibiotics
SRA: Sequence Read Archive
VFDB: Virulence Factor Database. Provides scientist quick access to virulence fac-

tors in bacterial pathogens
WGS: Whole Genome Sequencing
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