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Abstract: The magnetization M of an Fe(Se, Te) single crystal has been measured as a function of
temperature T and dc magnetic field H. The sample properties have been analyzed in the case of a
magnetic field parallel to its largest face H||ab. From the M(T) measurement, the Tc of the sample and a
magnetic background have been revealed. The superconducting hysteresis loops M(H) were between
2.5 K and 15 K showing a tilt due to the presence of a magnetic signal measured at T > Tc. From the
M(H) curves, the critical current density Jc(H) has been extracted at different temperatures showing
the presence of a second magnetization peak phenomenon. By extracting and fitting the Jc(T) curves
at different fields, a pinning regime crossover has been identified and shown to be responsible for the
origin of the second magnetization peak phenomenon. Then, the different kinds of pinning centers of the
sample were investigated by means of Dew-Hughes analysis, showing that the pinning mechanism in
the sample can be described in the framework of the collective pinning theory. Finally, the values of the
pinning force density have been calculated at different temperatures and compared with the literature in
order to understand if the sample is promising for high-current and high-power applications.

Keywords: iron-based superconductors; dc magnetic properties; second magnetization peak
phenomenon; pinning force; magnetism and superconductivity

1. Introduction

In 2008, the discovery of the iron-based superconductors (IBSs) [1] was received with great
interest by the scientific community primarily because it was largely believed that magnetism
and superconductivity could not coexist. After the first studies on these new compounds,
it was clear that they seemed to overcome the HTS weak points. In fact, the IBSs showed
low anisotropy values [2–7] and a preferable superconductor–normal–superconductor (SNS)
behavior of the grain boundary junctions [8–10]. Despite their low Tc values, it has been
demonstrated that the IBSs can be suitable for magnet and wire production and/or high-
power applications and high-current transport thanks to their high values of critical current
density Jc, irreversibility field and upper critical field [11–16] as well as their good inter-grain
connectivity [8,13,17,18]. Among the various IBS families, the 11 family has attracted a lot of
interest due to its very simple crystalline structure and to the possibility of easily doping it
with several elements of the periodic table [19–23] in order to improve the superconducting
properties of the compounds. Among the compounds of the 11 family, Fe(Se, Te) is one of
the most studied compounds in recent years due to its relatively high Tc (for single crystals
between 12 K and 14.5 K), its chemical stability and also because it does not present poisonous
elements in its stoichiometry. Moreover, the high values of critical current density and upper
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critical field makes this compound appealing in view of power applications [11,24–26]. Among
the features of Fe(Se, Te), there is a rich variety of vortex phenomena together with the presence
of particular pinning structures (such as columnar defects, twin boundaries, etc.) which can
generate the interesting second magnetization peak phenomenon. It is characterized by an
anomalous increasing trend of Jc with increasing magnetic fields [27–33] which attracts even
more interest to the samples presenting this phenomenon due to their capability to sustain
high currents at high magnetic fields. In this work, we present an analysis of the pinning
properties of a single crystal having twin boundaries in the case of a magnetic field applied
along its largest face (H||ab). Based on our previous studies, the second magnetization peak
phenomenon manifests when the field is applied perpendicular to its largest face (H||c) [34],
and we explore further the vortex behavior of the material in the H||ab field configuration in
terms of this phenomenon and its associated pinning features. First, we obtained the Tc of the
sample by means of an M(T) measurement. Then, we extracted the critical current densities as
a function of field from the superconducting hysteresis loops at different temperatures. After
that, by fitting the established functional dependencies of Jc(T) at different magnetic fields
within the frames of the Kim model and the Dew-Hughes pinning force scaling approach,
the different kinds of pinning centers of the Fe(Se, Te) single crystal have been analyzed.
In addition, we have identified surface (planar) type pinning centers in certain field and
temperature ranges. Finally, starting from the Jc(H) curves, the pinning force density values at
different temperatures were calculated and compared with values reported in the literature,
confirming the suitability of this material for high-power applications.

2. Materials and Methods

An FeSe0.5Te0.5 twinned single crystal sample with dimensions 3 × 3 × 0.2 mm3 (a × b
× c) fabricated by means of the Bridgman technique was analyzed. The fabrication details are
reported elsewhere [34]. By means of SEM-EDX analysis, a slightly deviated final stoichiometry
Fe0.96Te0.59Se0.45 was found and it is typical for the crystal growth and synthesis in FeSeTe [35–38]
and in the basic compound FeSe [39–41]. The sample was characterized using dc magnetic
measurements in “parallel field configuration”, i.e., with the magnetic field applied parallel
to its largest face (H||ab). The magnetization as a function of the temperature M(T) and of
the magnetic field M(H) was measured by means of a Quantum Design PPMS-9T equipped
with a VSM option. The residual trapped field inside the PPMS dc magnet was reduced
below 1 × 10−4 T before each measurement following the procedure reported elsewhere [42,43].
The M(T) measurement was performed in zero field cooling (ZFC)-field cooling (FC) conditions.
In particular, the sample was cooled down to 2.5 K in a zero magnetic field, then a field of 0.01
T was switched on and the data were acquired for increasing temperatures up to 300 K. After
that, the sample was cooled down while acquiring FC magnetization. In terms of the M(H)
measurements, the sample was cooled down to the measurement temperature in the absence of
field and thermally stabilized for about 30 min. Then, the magnetic field was ramped with a
sweep rate equal to 0.01 T/s to reach +9 T, then back to −9 T, and finally to +9 T again to acquire
the complete hysteresis loop.

The pinning force Fp values, expressed in N/m3, were calculated at different temperatures
using the formula FP = JcB where B is the applied magnetic field H expressed in T.

3. Results and Discussion

The superconducting critical temperature Tc of the sample was obtained by performing
a M(T) measurement in zero field cooling (ZFC)-field cooling (FC) conditions with an
applied field of 0.01 T. The result is shown in Figure 1. The Tc was determined as the
value of the temperature corresponding to the onset of the ZFC branch. As indicated by a
red arrow in the inset of Figure 1, where an enlargement of the curve in the region of the
superconducting transition is reported, this value is approximately 14.5 K, in agreement
with the literature [38,44–47]. It is worth underlining the presence of a non-zero signal
above Tc in the ZFC magnetization together with a magnetic irreversibility between the
ZFC and FC curves (indicated by a double arrow in the inset of Figure 1) usually associated
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with a magnetic background. This could be due to magnetic impurities present in the
sample as already reported for Fe(Se, Te) [35–38]. It is worth underlining that the magnetic
background width in the H||ab configuration (this article) is about 15 times larger than
the H||c configuration reported in Ref. [34] on the same sample. This could be ascribed to
the fact that the material is magnetically anisotropic and that the magnetic signal is more
activated when the field is parallel to the ab face.
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Figure 1. Magnetization as a function of temperature M(T) measured in ZFC-FC conditions with an
applied magnetic field µ0H = 0.01 T. Inset: a magnification of the temperature region between 0 K and
160 K shows the presence of a magnetic background. The red arrow indicates the Tc of the sample.

To investigate the superconducting and pinning properties of the sample, the M(H)
measurements were performed at different temperatures in the range between 2.5 K and
15 K. In the main panel of Figure 2, the superconducting hysteresis loops are reported.
It is important to underline that the curves are slightly tilted due to the presence of the
magnetic background. To explore the contribution of the magnetic background to the
overall signal, the M(H) curve just above Tc, i.e., T = 15 K, was measured and is shown
in the inset of Figure 2. Comparing this curve with the superconducting ones, it can be
noted that the M(H) signal at T = 15 K is not negligible, especially at high magnetic fields
and high temperatures. Nevertheless, the width of M(H) in the superconducting state
is much larger than the hysteresis of the magnetic curve at T = 15 K. However, before
calculating the critical current density Jc, the magnetic contribution was subtracted from
the superconducting hysteresis loops, by using an analogous procedure to the one reported
in Ref. [48], in order to be completely sure that it does not influence the calculation of Jc.Materials 2021, 14, x FOR PEER REVIEW 4 of 12 
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At this point, the critical current density as a function of the magnetic field Jc(H) was
extracted at different temperatures by using the Bean critical state model [49,50]:

Jc =
20∆M[

c
(
1 − c

3b

)] (1)

where ∆M = Mdn − Mup is the difference between the magnetization measured for decreasing
(Mdn) and increasing (Mup) applied fields, respectively. b (cm) and c (cm) are the length and
width of the cross section of the crystal perpendicular to the applied field. The obtained Jc(H)
curves are reported in Figure 3. Observing the curves in the main panel and in the inset of
Figure 3, it can be noted that a second magnetization peak phenomenon appears for T ≤ 7 K
which is not visible at first sight when looking at the M(H) curves. In general, the Jc(H) curves
have a field decrease that prevents determining the irreversibility field Hirr (evaluated as Jc ≈
100 A/cm2) even for the highest temperature shown in Figure 3 (11 K) and at 9 T.
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In order to deeply study the Jc(H) anomalous behavior reported in Figure 3, the Jc
curves as a function of temperature Jc(T) at different fields were extracted from the Jc(H).
In particular, by fitting the Jc(T) behavior with several pinning models reported in the
literature [51–57], it is possible to determine the pinning regime acting in the sample.
Among the pinning models, the three equations that best fit our experimental data across
the field range are the following ones:

Weak pinning : Jweak
c (T) = Jweak

c (0) e−T/T0 (2)

Strong pinning : Jstr
c (T) = Jstr

c (0) e−3(T/T∗)2
(3)

Weak + strong pinning : Jc(T) = Jweak
c (0) e−T/T0 + Jstr

c (0)e−3(T/T∗)2
(4)

where Jweak
c (0) is the value of Jc at T = 0 K, and T0 is the characteristic pinning energy of

weak (typically point-like) pinning defects [58–60]; Jstr
c (0) characterizes the contribution to

the Jc at T = 0 K and T* is the vortex pinning energy of strong pinning centers [59,61–63].
The absolute zero critical current approximation Jc(0) is an important fitting parameter
since its physical meaning arbitrarily marks the elimination of the thermal fluctuation
effects due to the flux creep. Specifically, the fitting procedure has shown a weak pinning
behavior for 0 T < µ0H ≤ 4 T due to point-like defects and a weak + strong pinning
behavior for 5 T ≤ µ0H < 9 T due to the gradual activation of the twin boundaries present
in this sample. In Figure 4, examples of the performed fit at different magnetic fields are
reported while in Table 1 the fit parameters values are reported. In a very recent work
on the same sample but in the H||c configuration [33], it has been demonstrated that
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the weak to strong pinning crossover in a sample presenting the second magnetization
peak phenomenon triggers its onset. Here, it is worth underlining that the complete
crossover to a strong pinning regime is not reached, indicating a delay in the complete
vortex crossover into the strong defects. It is important to note that we are assuming
the same triggering mechanism in the H||ab configuration since the results reported in
Ref. [33] are independent of anisotropy.
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Figure 4. Temperature dependence of Jc at µ0H = 1 T (a) and µ0H = 3 T (b) fitted with weak pinning
equation (blue dotted line) and strong pinning equation (red solid line); temperature dependence of
Jc at µ0H = 5 T (c) and µ0H = 7 T (d) fitted with the weak pinning equation (blue dotted line), the
strong pinning equation (red solid line) and the combination of weak and strong pinning equations
(solid green line).

Table 1. Parameters values of the fit procedure performed in Figure 4.

Fit Parameter µ0H=1 T µ0H=3 T µ0H=5 T µ0H=7 T

Jweak
c (0)(A/cm2) 390,640 205,490 137,140 110,070

T0 (K) 2.41 2.76 3.5 3.9
Jstr
c (0)(A/cm2) 177,780 93,400 77,455 67,570

T* (K) 7.70 9.09 9.40 10.00

From the fitting procedure, we can determine the Jc(H) at zero temperature dividing its
behavior in a weak and a weak + strong pinning region as reported in Figure 5. Moreover,
the weak pinning region, highlighted in blue in Figure 5, can be fitted with the dependence
expressed by the Kim model well [64–66] which is plausible for describing the field behavior
of a superconductor in the presence of an homogenous distribution of point-like defects.
From the fit reported in Figure 5 (red solid line), the zero field and temperature critical
current density Jc(0,0) can be extracted: Jc(0,0) ≈ 6.42 × 105 A/cm2.
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with the Kim model.

In order to obtain more information about the type of defects present in the sample, the
Dew-Hughes model [67] can be used. In particular, the normalized pinning force density
Fp is calculated and plotted as a function of the reduced magnetic field (h = H/Hirr):

Fp/Fmax
p = Chp(1 − h)q (5)

where C, p and q are fitting parameters that allow individuation of the pinning type of the
material. Equation (5) takes into account a maximum in the Fp vs. h behavior. In particular,
for δl pinning, the Fp/Fp

max maximum occurs at hmax = 0.33 with C = 27.8, p = 1 and q = 2 in
the case of point pins, at hmax = 0.20 with C = 3.5, p = 0.5 and q = 2 in the case of surface pins,
while no maximum occurs with C = 1, p = 0 and q = 2 in the case of volume pinning. For δTc
pinning, the maximum is expected for higher h than δl pinning (see Ref. [67]). Therefore, to
use Equation (5), it is necessary to know the irreversibility field but, as mentioned before,
this is not possible for the Jc(H) curves up to 11 K. For this reason, the Jc(H) values at T =
12 K have been calculated (see inset of Figure 6). For T = 12 K, Jc is approximately equal to
100 A/cm2 at µ0Hirr = 2.6 T (see the blue arrow in the inset of Figure 6) and so it is possible
to apply the Dew-Hughes method. The result is reported in the main panel of Figure 6
where Fp/Fp
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The fit of Equation (5) with the experimental data gives hmax ≈ 0.2 with C = 3.33,
p = 0.49 and q = 1.86, thus indicating that the surface pins dominate the pinning mechanism
inside our samples at T = 12 K. Finally, since the sample has shown a second magnetization
peak phenomenon, it is interesting to study the field dependence of the pinning force at
different temperatures and to calculate the pinning force values, comparing them with the
literature. The results are reported in Figure 7. It can be noted that the Fp values decrease
with increasing temperature following the Jc behavior. On the other hand, it is worth
underlining that for T < 9 K, the pinning force curves have a monotonic increasing trend
with increasing magnetic field. This feature could be exploited since these temperatures are
typically considered for power applications of superconductivity. Moreover, comparing
the Fp values with those reported in the literature [16,38,68,69], it can be noted that they
are similar to the values reported for other Fe(Se, Te) single crystals (107 ÷ 109 N/m3) but
they are much higher if compared with bulk and polycrystalline Fe(Se, Te) samples (105

÷ 107 N/m3). It is worth underlining that our Fp values have been compared with the
H||c field configuration reported in the literature. This is not a problem since it is well
known that Fe(Se, Te) is a weakly anisotropic material [6,70,71]. It is also an interesting
observation that IBS systems tend to show stronger pinning abilities in samples with high
crystalline morphology, such as thin films [11,72–74], due to the effective naturally formed
disorder. This will have a positive effect on the power stability and performance of various
nano/micro-superconducting devices which similarly are affected by the vortex motion.
These high pinning force values together with the presence of the second magnetization
peak phenomenon indicate that the material can be promising for high-current and high-
power applications.
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4. Conclusions

We have studied an Fe(Se, Te) twinned single crystal fabricated by the Bridgman
technique by analyzing the dc magnetic measurements as a function of temperature and
magnetic field. In particular, the magnetic field was applied in a parallel field configuration
H||ab. By using M(T) measurements, we have obtained Tc = 14.5 K and noted the
presence of a magnetic background, probably due to magnetic impurities present in the
sample. A magnetic background was also observed in the superconducting hysteresis loops
M(H) performed at different temperatures which showed a tilt in their behaviors. After
subtracting the magnetic signal, the critical current density Jc at different temperatures was
extracted from the M(H) curves, showing the presence of a second magnetization peak
phenomenon which allowed the sample to sustain high Jc values even at high magnetic
fields. Extracting the Jc(T) curves from the Jc(H) ones, we analyzed them in terms of weak
and strong pinning regimes acting in the sample. Based on the Kim model analysis, it was
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found that in the parallel field geometry, the Fe(Se, Te) crystal (as for H||c in our previous
studies) similarly undergoes a pinning crossover from a weak pinning regime, ascribed to
planar point-like defects, to a weak + strong pinning regime due to the gradual activation
of the twin boundaries. However, in this case the SMP features are much broader and the
consequent non-monotonous peak change of Jc is observed only in certain temperature
(closer to Tc) and high field ranges. After that, using Dew-Hughes analysis, we identified
that the dominating pinning mechanism from surface (planar) defects affects the vortex
system at 12 K. Finally, we calculated the pinning force density Fp values, noting that
they have an interesting monotonous increasing trend as a function of magnetic field
at temperatures exploitable in practical situations. The Fp values of the sample were
compared with the ones reported in the literature, noting that they are much higher with
respect to the polycrystalline and bulk sample values, confirming the suitability of the
sample in its use for high-power applications.
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