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Aberrant DNA methylation 
reprogramming in bovine SCNT 
preimplantation embryos
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DNA methylation reprogramming plays important roles in mammalian embryogenesis. Mammalian 
somatic cell nuclear transfer (SCNT) embryos with reprogramming defects fail to develop. Thus, 
we compared DNA methylation reprogramming in preimplantation embryos from bovine SCNT 
and in vitro fertilization (IVF) and analyzed the influence of vitamin C (VC) on the reprogramming 
of DNA methylation. The results showed that global DNA methylation followed a typical pattern 
of demethylation and remethylation in IVF preimplantation embryos; however, the global genome 
remained hypermethylated in SCNT preimplantation embryos. Compared with the IVF group, locus 
DNA methylation reprogramming showed three patterns in the SCNT group. First, some pluripotency 
genes (POU5F1 and NANOG) and repeated elements (satellite I and α-satellite) showed insufficient 
demethylation and hypermethylation in the SCNT group. Second, a differentially methylated 
region (DMR) of an imprint control region (ICR) in H19 exhibited excessive demethylation and 
hypomethylation. Third, some pluripotency genes (CDX2 and SOX2) were hypomethylated in both 
the IVF and SCNT groups. Additionally, VC improved the DNA methylation reprogramming of satellite 
I, α-satellite and H19 but not that of POU5F1 and NANOG in SCNT preimplantation embryos. These 
results indicate that DNA methylation reprogramming was aberrant and that VC influenced DNA 
methylation reprogramming in SCNT embryos in a locus-specific manner.

DNA methylation is an important epigenetic modification that occurs predominantly at CpG dinucleotides. It is 
involved in a number of key genomic functions, such as gene imprinting, X chromosome inactivation, genome 
stability, retrotransposon silencing and gene inactivation in cancer1–3. DNA methylation is catalyzed by members 
of the DNA methyltransferase (DNMT) family. The DNMT family mainly consists of three members: DNMT1, 
DNMT3a and DNMT3b. DNMT3a and DNMT3b are called de novo DNA methyltransferases and are responsible 
for the initial establishment of new DNA methylation patterns4,5. DNMT1 plays an important role in the faithful 
maintenance of DNA methylation patterns during DNA replication6,7.

The removal of DNA methylation is termed DNA demethylation. DNA demethylation can occur by two dif-
ferent mechanisms. The first, termed “active” demethylation, occurs rapidly and independent of cell division 
and is catalyzed by unknown enzymes that cleave the methyl group8. The other mechanism, called “passive” 
demethylation, occurs when DNA methylation is passively diluted by DNA replication following cell division 
due to the absence of the maintenance methyltransferase DNMT19. Ten-eleven translocation (TET) family, 
which includes TET1, TET2 and TET3, is generally believed to play important roles in the progression of active 
demethylation. Recent studies have found that DNA demethylation occurs via a combination of active and pas-
sive demethylation10–12.

DNA methylation patterns are obviously reprogrammed in mammalian preimplantation embryos13. 
Genetic expression analysis indicates that Tet3, but not Tet1 and Tet2, is expressed at high levels in oocytes and 
zygotes but rapidly decreases beginning at the 2-cell stage14,15. TET3 can oxidize 5-methylcytosine (5-mC) to 
5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC) during the active 
demethylation of the paternal genome at the zygote stage10,11,16–18. The oxidized derivatives of 5-mC are further 
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passively diluted by DNA replication during early cell division12. Through either the conditional deletion of Tet3 
from the female germ cells or the siRNA-mediated down-regulation of zygotic Tet3, studies have found that TET3 
is responsible for the conversion of 5-mC to 5-hmC in the paternal genome15,16. The deletion of Tet3 causes an 
increased frequency of developmental failure in embryos16. The above results suggest the importance of proper 
TET3-catalyzed DNA methylation reprogramming in normal mammalian early embryonic development.

Somatic cell nuclear transfer (SCNT) is a technique by which differentiated cells can be converted to the 
totipotency state through a mechanism that depends on the reprogramming of epigenetic modifications. Despite 
success in cloning various animal species, the use of somatic cells as the source of donor nuclei has raised many 
practical and relevant concerns, such as increased abortion rates, high birth weights and perinatal death19–21. 
The anomalies associated with SCNT embryos may be caused by the incomplete reprogramming of epigenetic 
modifications in the somatic cell nucleus of an enucleated oocyte that involves the normal transcriptional reac-
tivation of embryonically expressed genes22,23. The reprogramming of DNA methylation during normal mouse 
fertilization and SCNT embryonic development is partially understood14–16; however, the changes that occur 
during embryonic development vary among species23. Thus, it is important to investigate the reprogramming of 
DNA methylation in other species to expand our understanding of the mechanism responsible for the abnormal 
development of SCNT embryos.

Vitamin C (VC), a general antioxidant, is responsible for maintaining the catalytic activity of a group of iron- 
and 2-oxoglutarate-dependent dioxygenases24. Previous studies have shown that VC can enhance somatic cell 
reprogramming during the generation of induced pluripotent stem cells (iPSCs)25. VC is also beneficial for the 
enhancement of the in vitro and in vivo development of porcine SCNT embryos26. However, the influence of VC 
on the development of and DNA methylation reprogramming in bovine SCNT embryos is still unknown.

It is reported that DNA methylation between in vivo embryos and IVF embryos showed no significant dif-
ference27, so IVF embryos were used as a control to analyze DNA methylation of SCNT embryos in this study. A 
previous study showed that there was no difference in DNA methylation in the intragenic DMR within the bovine 
IGF2 gene between bovine IVF and in vivo blastocysts28. To reveal the mechanisms of the abnormal development 
of SCNT embryos, this study investigated the reprogramming of DNA methylation during bovine IVF and SCNT 
preimplantation embryonic development and examined the influence of VC on the development of and DNA 
methylation reprogramming in bovine SCNT preimplantation embryos.

Results
IF staining for 5-mC and 5-hmC in IVF and SCNT preimplantation embryos.  The reprogramming 
of global DNA methylation during bovine IVF and SCNT preimplantation embryonic development was analyzed 
by immunofluorescent (IF) staining for 5-mC and 5-hmC. IF staining indicated that the 2-cell embryos showed 
strong IF signals for 5-mC. The signal gradually decreased until 8-cell embryos were formed, and then increased 
until the blastocyst stage during bovine IVF preimplantation embryonic development. In IVF blastocysts, both 
inner cell mass (ICM) and trophectoderm cells were methylated. IF staining for 5-hmC showed that 5-hmC was 
present in all bovine IVF preimplantation embryos. 5-hmC was also observed in both ICM and trophectoderm 
cells, and 5-mC was observed in bovine IVF blastocysts (Fig. 1A,C,D). However, each bovine SCNT preimplan-
tation embryo showed stronger IF signals for 5-mC than the corresponding IVF preimplantation embryos, and 
the 5-mC signal did not show obvious changes in the bovine SCNT preimplantation embryos. More interestingly, 
no 5-hmC signal was observed in any of the developmental stages of the bovine SCNT preimplantation embryos 
(Fig. 1B,C).

Methylation of satellite I and α-satellite.  Satellite I and α​-satellite were selected as the repeat elements 
to be tested for DNA methylation reprogramming in bovine IVF and SCNT preimplantation embryos. Bisulfite 
sequencing results showed that satellite I had a moderate DNA methylation level in sperm (35.8 ±​ 2.5%) and 
a high DNA methylation level in MII oocytes (59.8 ±​ 4.5%). Furthermore, the level of DNA methylation sig-
nificantly decreased in IVF 4-cell embryos (17.6 ±​ 3.2%) and then decreased even further in IVF blastocysts 
(6.9 ±​ 2.5%). However, satellite I was highly methylated in bovine embryonic fibroblasts (BEFs) (82.8 ±​ 4.5%) and 
SCNT blastocysts (70.5 ±​ 4.7%) (Fig. 2A). The results also revealed that satellite I was insufficiently demethylated 
and hypermethylated in the SCNT blastocysts (82.3% ±​ 3.7%) when granulosa cells (88.0 ±​ 5.6%) were used as 
the donor cells (Supplementary Fig. 5), indicating that the dynamic DNA methylation changes in the SCNT pre-
implantation embryos were not donor cell-specific.
α​-Satellite showed a moderate level of DNA methylation in sperm (38.5 ±​ 4.7%) and a high level of DNA 

methylation in MII oocytes (55.8 ±​ 3.4%). The moderate level of DNA methylation slightly decreased in IVF 
4-cell embryos (22.6 ±​ 2.1%) and then persisted until the blastocyst stage of development (22.6 ±​ 4.5%) following 
bovine IVF preimplantation. α​-Satellite was highly methylated in both BEFs (70.5 ±​ 1.5%) and SCNT blastocysts 
(70.5 ±​ 1.5%) (Figs 2B and 3).

Methylation of H19.  We selected one DMR in the IGF2/H19 locus as a representative imprinted gene to test 
DNA methylation reprogramming during bovine IVF and SCNT preimplantation embryonic development. The 
results showed that the DMR was highly methylated in sperm (93.4 ±​ 5.5%) but hypomethylated in MII oocytes 
(3.1 ±​ 0.7%). Moderate DNA methylation was maintained in bovine IVF 4-cell embryos (38.8 ±​ 1.9%) and blasto-
cysts (46.2 ±​ 4.5%), but high DNA methylation was observed in BEFs (62.5 ±​ 7.5%). The DMR DNA methylation 
level significantly decreased in bovine SCNT blastocysts (10.5 ±​ 1.8%) compared to BEFs (62.5 ±​ 7.5%) (Figs 3 
and 4).

Methylation of pluripotency genes.  Pluripotency genes, such as POU5F1, NANOG, SOX2 and CDX2, 
play important roles in the segregation and maintenance of embryonic and extraembryonic tissues29. Therefore, 
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we analyzed the DNA methylation status and mRNA expression levels of these pluripotency gene promoter 
regions in oocytes, BEFs, bovine IVF preimplantation embryos and bovine SCNT blastocysts. We found that the 
pluripotency genes could be divided into two groups based on the results.

The first group, consisting of POU5F1 and NANOG, followed a DNA demethylation pattern during bovine 
IVF preimplantation embryonic development. The DNA methylation levels in IVF blastocysts (33.6 ±​ 2.8% 
and 17.7 ±​ 3.5%) were lower than those in sperm (66.5 ±​ 3.8% and 69.2 ±​ 2.9%), oocytes (44.9 ±​ 2.3% and 
51.8 ±​ 6.5%) and 4-cell embryos (43.5 ±​ 2.5% and 63.9 ±​ 1.5%). Furthermore, the DNA methylation levels in 
SCNT blastocysts (43.0 ±​ 3.9% and 25.8 ±​ 2.5%) were lower than those in BEFs (68.5 ±​ 4.5% and 44.2 ±​ 2.3%) 
but higher than those in IVF blastocysts (Figs 3 and 5). The mRNA expression levels of POU5F1 and NANOG 
in IVF and SCNT blastocysts were significantly higher than those in BEFs and other preimplantation embryos 
(P <​ 0.01), but the mRNA expression levels in SCNT blastocysts were significantly lower than those in IVF blas-
tocysts (P <​ 0.01) (Supplementary Fig. 6A,B).

The genes in the second group, SOX2 and CDX2, were hypomethylated throughout the development of bovine 
IVF preimplantation embryos (sperm: 0.7 ±​ 0.5% and 1.8 ±​ 0.4%; oocytes: 15.0 ±​ 1.5% and 1.6 ±​ 0.9%; 4-cell 
embryos: 7.2 ±​ 1.1% and 0.5 ±​ 0.2%; and IVF blastocysts: 1.0 ±​ 0.5% and 0.9 ±​ 0.2%, respectively). These genes 
were also hypomethylated in bovine SCNT blastocysts (3.8 ±​ 1.7% and 0%) and BEFs (3.8 ±​ 1.5% and 1.8 ±​ 0.2%) 
(Figs 3 and 6). The BSP-PCR product of CDX2 with BEFs genome, which has been treated with CpG MTase 
(M.SssI) enzyme, was used as positive control (95.3 ±​ 4.5%). SOX2 and CDX2 always showed significantly higher 
mRNA expression levels in oocytes, IVF preimplantation embryos and SCNT blastocysts than in BEFs (P <​ 0.01). 
The SOX2 mRNA level was significantly lower in SCNT blastocysts than in IVF blastocysts (P <​ 0.01). However, 
there was no significant difference in CDX2 mRNA levels between the SCNT and IVF blastocysts (P >​ 0.05) 
(Supplementary Fig. 6C,D).

Influence of VC on locus-specific DNA methylation in bovine SCNT blastocysts.  Previous stud-
ies have shown that VC can enhance somatic cell reprogramming during the generation of induced pluripotent 
stem cells (iPSCs)25. In this study, we explored the influence of VC on locus-specific DNA methylation in bovine 
SCNT blastocysts. We found that supplementation with VC (50 μ​g/ml) significantly increased the cleavage rate 

Figure 1.  Immunofluorescent (IF) staining of 5-mC and 5-hmC in bovine oocytes and IVF and SCNT  
preimplantation embryos. (A) The distribution of 5-mC (red) and 5-hmC (green) in bovine IVF preimplantation 
embryos. (B) The distribution of 5-mC and 5-hmC in bovine SCNT preimplantation embryos. (C,D) The 5-mC 
and 5-hmC signal intensities were measured in at least 5 embryos at each developmental stage. The signal intensity 
in IVF 2-cell embryos was used as a calibrator sample (set to 1). The results represent the mean ±​ standard 
deviation of five independent experiments. *​*​P <​ 0.01. BL: IVF blastocysts.
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Figure 2.  Dynamic DNA methylation profiles of satellite I and α-satellite in bovine gametes, IVF 
preimplantation embryos, SCNT blastocysts and BEFs. (A) Satellite I showed hypermethylation in gametes. 
After fertilization, the zygotic genome lost DNA methylation in 4-cell embryos, and the DNA methylation 
levels further decreased in blastocysts. However, BEFs and SCNT blastocysts maintained a high level of 
satellite I methylation. (B) α​-satellite showed slight DNA demethylation from gametes to IVF blastocysts and 
hypermethylation in BEFs and SCNT blastocysts. The filled (black) circles correspond to methylated cytosines, 
the unfilled (white) circles indicate unmethylated cytosines and the small vertical lines without a circle 
correspond to missing values. The number denotes the percentage of methylated cytosines observed at all of the 
CpG sites. BL: IVF blastocysts; NT-BL: SCNT blastocysts; and BEFs: bovine embryonic fibroblasts.

Figure 3.  A diagram showing the differences in methylation levels of seven genes in bovine sperm, 
oocytes, IVF 4-cell embryos, IVF blastocysts, SCNT blastocysts, SCNT blastocysts treated with vitamin 
C and BEFs. The results represent the mean ±​ standard deviation of three independent experiments in which 
at least fifty cells or blastomeres were analyzed. For each gene, different lowercase letters denote a significant 
difference (P <​ 0.05), and the same letter represents no significant difference (P >​ 0.05). 4-cell: IVF 4-cell; BL: 
IVF blastocyst; NT-BL: SCNT blastocyst; VC-NT-BL: SCNT blastocyst treated with vitamin C; and BEF: bovine 
embryonic fibroblasts.
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at 48 h (60.7 ±​ 3.5% and 77.7 ±​ 2.2%, P <​ 0.01) but did not influence the blastocyst rate on day 7 (21.0 ±​ 1.2% 
and 22.3 ±​ 0.9%, P >​ 0.05), the number of ICM cells per blastocyst (21.47 ±​ 3.95 and 20.23 ±​ 2.33, P >​ 0.05) and 
the total number of cells per blastocyst (92.73 ±​ 9.25 and 89.31 ±​ 10.42, P >​ 0.05) (Supplementary Table 2 and 
Supplementary Fig. 7).

Figure 4.  DNA methylation status in the DMR of the bovine H19 locus. Sperm was hypermethylated, while 
oocytes were hypomethylated. Moderate methylation was maintained in IVF preimplantation embryos and 
BEFs. In contrast, SCNT blastocysts were hypomethylated. BL: IVF blastocysts; NT-BL: SCNT blastocysts; and 
BEFs: bovine embryonic fibroblasts.

Figure 5.  Dynamic DNA methylation profiles of POU5F1 and NANOG in bovine gametes, IVF preimplantation 
embryos, SCNT blastocysts and BEFs. (A) POU5F1 showed low levels of DNA demethylation from gametes and 
BEFs to IVF and SCNT blastocysts. (B) NANOG showed lower DNA methylation levels in IVF and SCNT blastocysts 
than in gametes and BEFs. BL: IVF blastocysts; NT-BL: SCNT blastocysts; and BEFs: bovine embryonic fibroblasts.
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The results of bisulfite sequencing showed that treatment with VC influenced the reprogramming of 
locus-specific DNA methylation in bovine SCNT preimplantation embryos in a different way. Treatment with VC 
improved the methylation of satellite I (37.0 ±​ 1.7%), α​-satellite (40.0 ±​ 2.5%) and H19 (30.1 ±​ 3.1%) in bovine 
SCNT blastocysts, which are more closely related to bovine IVF blastocysts (Figs 3 and 7). Treatment with VC 
did not decrease the DNA methylation levels of the NANOG (71.2 ±​ 3.1%) and POU5F1 (63.6 ±​ 3.5%) genes in 
bovine SCNT blastocysts (Figs 3 and 7), although it did significantly decrease mRNA expression levels in bovine 
SCNT blastocysts (P <​ 0.01) (Supplementary Fig. 8A,B). SOX2 (10.5 ±​ 2.1%) and CDX2 (0%) retained the same 
hypomethylation status in SCNT blastocysts treated with VC (Figs 3 and 7). Treatment with VC did not influence 
the mRNA expression level of CDX2 (P >​ 0.05), but it did significantly increase the mRNA expression level of 
SOX2 (P <​ 0.01) in SCNT blastocysts (Supplementary Fig. 8C,D).

Discussion
A certain proportion of the embryos produced by nuclear transfer display developmental and metabolic abnor-
malities and have extremely low survival rates30. Studies of SCNT frequently cite the failure of the oocyte to prop-
erly reprogram the donor nucleus as the sole cause of the developmental defects31. The aberrant reprogramming 
of the methylation-controlled regions between the imprinted genes and satellite loci were found in cloned bovine 
fetuses32; however, the DNA methylation reprogramming patterns in bovine SCNT preimplantation embryos are 
not fully elucidated. In this study, the DNA methylation reprogramming patterns in bovine SCNT embryos were 
analyzed and compared with those in the IVF group.

IF staining for 5-mC and 5-hmC can reveal global DNA methylation reprogramming during the development 
of preimplanted mammalian embryos13,33. Previous research found that both 5-mC and 5-hmC existed in porcine 
IVF and SCNT preimplantation embryos34. Strong 5-mC signals were detected in both porcine IVF and SCNT 
embryos from the 2-cell stage to the 8-cell stage. There was a sudden decrease in the 5-mC signal within morula 
nuclei and a significant increase at the blastocyst stage. The dynamic changes in the 5-mC signals in bovine IVF 
and SCNT preimplantation embryos have also been reported by others; however, the other investigators did not 
simultaneously analyze the dynamic changes in the 5-hmC signals23,35. We simultaneously analyzed the dynamic 
changes in the 5-mC and 5-hmC signals, and our IF staining results showed that the 5-mC signals gradually 
decreased from the 2-cell to 8-cell embryos and then increased from the 8-cell embryos to the blastocysts in 
bovine IVF preimplantation embryos. The change in the 5-mC signal in bovine IVF preimplantation embryos 
reflects the typical pattern of demethylation and remethylation that is observed in mice33. The 5-hmC signals were 

Figure 6.  Dynamic DNA methylation profiles of SOX2 and CDX2 in bovine gametes, IVF preimplantation 
embryos, SCNT blastocysts and BEFs. (A) SOX2 and (B) CDX2 were always hypomethylated in bovine gametes, 
IVF preimplantation embryos, SCNT blastocysts and BEFs. BL: IVF blastocysts; NT-BL: SCNT blastocysts; BEFs: 
bovine embryonic fibroblasts; and PC: positive control.
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observed in all of the developmental stages of the bovine IVF preimplantation embryos, indicating that DNA 
demethylation is actively occurring during the development of bovine IVF preimplantation embryos. The 5-mC 
signal was stronger in each developmental stage of the SCNT embryos than it was in the corresponding devel-
opmental stage of the IVF embryos, and no obvious change in the 5-mC signal was found in any developmental 
stage of the SCNT embryos. No 5-hmC signal was observed in any of the developmental stages of the bovine 
SCNT preimplantation embryos. Therefore, there was no or only slight DNA demethylation occurring during 
the development of bovine SCNT preimplantation embryos. The study on porcine IVF and SCNT embryos also 
found that the signal intensity of 5-mC in the SCNT preimplantation embryos was higher than that in their IVF 
counterparts; this phenomenon was also observed in our study on bovine IVF and SCNT embryos. The intensity 
of the 5-mC signal was higher in the inner cell mass (ICM) than in the TE regions, whereas the 5-hmC signal was 
uniformly distributed between the ICM and TE regions in porcine IVF blastocysts. In contrast, both the 5-mC 
and 5-hmC signals were symmetrically distributed between the ICM and TE cells in the porcine SCNT blastocyst. 
Our study found that 5-mC was symmetrically distributed between the ICM and TE cells in both bovine IVF 
and SCNT blastocysts and that 5-hmC was also uniformly distributed between the ICM and TE cells in bovine 
IVF blastocysts. However, no 5-hmC signals were observed in bovine SCNT blastocysts. Previous studies have 
found that the paternal genomic conversion of 5-mC into 5-hmC fails to occur and that the level of 5-mC remains 
constant in Tet3-deficient zygotes from conditional knockout mice16. Thus, the stronger 5-mC signals and the 
absence of 5-hmC might be caused by lower TET3 expression levels in bovine SCNT preimplantation embryos 
(Supplementary Figs 2 and 4).

Aberrant locus methylation reprogramming was also found in bovine SCNT fetuses32. Repeat elements cover 
most parts of the mammalian genome, and functional genes only comprise approximately 1.5% of the entire 
genome36,37. Therefore, most of the 5-mC IF staining signals correspond to multiple-copy repetitive regions38. A 
study of mouse embryos found that some repeat sequences, such as intracisternal A particle (IAPs) elements, are 
exempted from complete DNA demethylation, while other repeat sequences, such as long interspersed elements 
(LINEs) and long terminal repeat (LTR) retroelements, are substantially demethylated during early embryonic 
development39. The aberrant reprogramming of the methylation of repeat elements in bovine SCNT preimplan-
tation embryos has been found by Acil digestion27 and confirmed by our BSP-PCR results. Our results showed 
that the methylation levels in IVF blastocysts were lower than those in oocytes and sperm, indicating that a DNA 
demethylation process exists in satellite I and α​-satellite during bovine IVF preimplantation embryonic develop-
ment. However, satellite I and α​-satellite were highly methylated in BEFs and SCNT blastocysts, and no obvious 
reduction was observed in SCNT blastocysts compared to BEFs. The fact that the methylation of multiple-copy 
elements reflects global genomic methylation may explain why the 5-mC signals in the SCNT embryos were 

Figure 7.  The influence of VC on locus-specific DNA methylation reprogramming. VC improved the DNA 
methylation status of the satellite I, α​-satellite and H19 genes and increased the methylation levels of POU5F1 
and NANOG in bovine SCNT blastocysts. Treatment with VC did not affect the methylation of SOX2 or CDX2.
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stronger than they were in IVF embryos, and why no 5-hmC signals were found in SCNT embryos. The dereg-
ulation of imprinted genes caused abnormalities such as placental and fetal overgrowth and perinatal death in 
cloned animals40, and the differentially methylated regions (DMRs) at imprinted loci are resistant to the wave of 
active paternal and passive maternal DNA demethylation in the zygote and early preimplantation embryos of 
mice41 and pigs29. Our results found that the DMR in imprinted H19 was highly methylated (near 100%) in sperm 
and almost completely unmethylated (near 0%) in oocytes. Similar results were detected within the DMR of the 
IGF2 gene42. The DMR retained moderate DNA methylation in bovine IVF 4-cell embryos and blastocysts and 
high DNA methylation in BEFs. However, there was a slight decrease from gametes ((93.4 +​ 3.1)/2 =​ 48.25%) 
to 4-cell embryos (38.8 ±​ 1.9%) and an increase from 4-cell embryos to blastocysts (46.2 ±​ 4.5%). This dynamic 
change was also observed in the DMR region of the IGF2 gene during bovine IVF preimplantation embryonic 
development28. In bovine SCNT blastocysts, the DMR was hypomethylated (10.5 ±​ 1.8%), and even lower meth-
ylation levels were detected in bovine IVF blastocysts (46.2 ±​ 4.5%), indicating that DNA demethylation occurs 
at the DMR during bovine SCNT preimplantation embryonic development. This DMR hypomethylation may 
cause the abnormal allelic expression of imprinted H19, which could induce abnormalities in cloned animals43. 
Given that Dnmt1 was involved in the maintenance of methylation imprinting in cleavage-stage preimplantation 
embryos44,45, the low DNMT1 mRNA levels in bovine SCNT preimplantation embryos may explain the DNA 
hypomethylation in the DMR of H19 (Supplementary Fig. 3). Pluripotency genes, such as POU5F1, NANOG, 
SOX2 and CDX2, are essential for the segregation and maintenance of embryonic and extraembryonic tissues, and 
the transcriptional regulation of these pluripotency genes is thought to be governed by epigenetic modifications 
such as DNA methylation46,47. POU5F1 and NANOG followed a typical wave of DNA demethylation progression, 
whereas the CpG-rich regions of the SOX2 and CDX2 loci were hypomethylated throughout the development 
of porcine IVF preimplantation embryos29. The same DNA methylation reprogramming patterns of these pluri-
potency genes were found in our study of bovine IVF preimplantation embryos, and we also found a negative 
correlation between DNA methylation levels and the levels of POU5F1 and NANOG transcription. POU5F1 and 
NANOG were highly methylated in bovine SCNT blastocyst-stage embryos, and the abundance of POU5F1 and 
NANOG mRNA was significantly lower than it was in IVF blastocyst-stage embryos (Supplementary Fig. 6). The 
low TET3 mRNA levels in bovine SCNT preimplantation embryos may be the reason for the lack of demethyla-
tion of POU5F1 and NANOG that inhibited the expression of these genes.

Vitamin C (VC), a general antioxidant, is responsible for maintaining the catalytic activity of a group of iron 
and 2-oxoglutarate-dependent dioxygenases24. Previous studies have shown that VC can enhance somatic cell 
reprogramming during the generation of induced pluripotent stem cells (iPSCs)25 and improve the in vitro and 
in vivo development of porcine SCNT embryos26. In contrast to previous reports48, our results showed that sup-
plementation with VC (50 μ​g/ml) significantly increased the cleavage rate at 48 h (60.7 ±​ 3.5% and 77.7 ±​ 2.2%, 
P <​ 0.05) but did not influence the blastocyst formation rate on day 7 (21.0 ±​ 1.2% and 22.3 ±​ 0.9%, P >​ 0.05). We 
also found that VC had different effects on locus-specific DNA methylation reprogramming. VC improved the 
DNA demethylation of satellite I and α​-satellite during bovine SCNT preimplantation embryonic development. 
It also increased the DNA methylation levels of POU5F1 and NANOG and decreased the mRNA abundance in 
bovine SCNT blastocyst-stage embryos (Supplementary Fig. 8). Previous research found that VC has a vital role 
in determining the biological outcome of TET1 function at the cellular level49. Our results showed that TET1 was 
mainly expressed in SCNT embryos after the 4-cell stage and that the demethylation of POU5F1 and NANOG 
mainly occurred in IVF embryos after the 4-cell stage. These results may explain why VC did not improve the 
DNA demethylation of POU5F1 and NANOG during bovine SCNT preimplantation embryonic development.

In summary, aberrant DNA methylation reprogramming was observed in bovine SCNT preimplantation 
embryos compared to IVF preimplantation embryos. Stronger 5-mC signals and no 5-hmC signals were found 
during bovine SCNT preimplantation embryonic development. The locus-specific (POU5F1, NANOG, satellite 
I, α​-satellite and H19) reprogramming of DNA methylation was also abnormal in bovine SCNT preimplantation 
embryos. VC showed locus-specific effects on DNA methylation reprogramming in SCNT embryos. The aberrant 
DNA methylation reprogramming may be one of the reasons behind the frequent developmental and metabolic 
abnormalities and the extremely low survival rates of bovine SCNT embryos.

Materials and Methods
Chemicals and animals.  All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA), unless 
otherwise stated. All animal treatments were carried out in accordance with the experimental practices and 
standards approved by the Animal Welfare and Research Ethics Committee at Jilin University (Approval ID: 
20151008-1).

Sperm preparation and genomic DNA extraction.  Bovine frozen-thawed semen was purchased from 
Ketian Co., Ltd, Changchun, China. The sperm were collected by centrifugation and incubated with D-PBS for 
10 min at room temperature to remove somatic cell contamination. After centrifugation for 5 min at 10,000 g, the 
supernatant was discarded. The genomic DNA was extracted using the TIANamp Genomic DNA Kit (Tiangen, 
Beijing, China).

Oocyte collection and in vitro maturation.  Oocyte collection and in vitro maturation were similar to 
previous research50. Briefly, bovine ovaries were collected from a local abattoir and transported to the laboratory 
within 4 h, then cumulus-oocyte complexes (COCs) were aspirated from the follicles using an 18-gauge needle 
attached to a 10 ml syringe. The COCs with intact, unexpanded cumulus cells were cultured at 38.5 °C in 100 μ​l 
of maturation medium in a humidified 5% CO2 incubator. After 20 h of culture, the COCs were digested in 0.2% 
hyaluronidase for 3 min at 38.5 °C to separate all cumulus from oocytes. Oocytes with the first polar body (PB1) 
were considered matured and used for SCNT.
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Somatic cell nuclear transfer (SCNT).  Bovine embryo fibroblasts (BEFs) were used as donor cells for 
SCNT. BEFs were obtained from 2-day-old foetuses of Yanbian yellow cattle. For SCNT, cells were used within 
passages 3 to 7 at least 1 day after reaching confluence without serum starvation. The SCNT protocol was per-
formed as previously described51. Briefly, oocytes with the first polar body were transferred into TCM199-Hepes 
medium containing 7.5 μ​g/ml cytochalasin B, and then, the first polar body and surrounding cytoplasm were 
removed using a bevelled pipette. Single cells were individually transferred to the perivitelline space of the recip-
ient cytoplasts. Cell fusion was performed using two direct current pulses of 1.2 kV/cm for 10 μ​s by an Electro 
Cell Manipulator 2001 (BTX, San Diego, CA, USA) in 0.27 M mannitol, 0.1 mM CaCl2, 0.1 mM MgCl2, and 0.05% 
BSA. Fused eggs were activated with 5 μ​M ionomycin for 5 min at 24–25 h after the start of IVM, followed by 
treatment with 2 mM 6-DMAP in SOF medium containing 10% FBS for 4 h at 38.5 °C in 5% CO2 and 95% humid-
ified air. After the activation, the eggs were then washed in SOF three times and cultured under mineral oil in 
100 μ​l droplets of SOF with or without VC. The cleavage rates were determined 48 h after culturing, and the blas-
tocyst rates were determined 7 days after culturing.

Immunofluorescence (IF) staining.  The zona pellucida (ZP) of bovine oocytes or embryos were removed 
by treatment with 0.5% pronase in TCM-199 at 38.5 °C for 5 min. Zona-free oocytes/embryos were briefly washed 
in PBS and fixed in 4% paraformaldehyde for 30 min at room temperature. After fixation, the oocytes/embryos 
were washed in PBS and permeabilized in PBS containing 0.1% Triton X-100 for 20 min. Then, the samples were 
divided into two groups. One group of samples was stained for TET3. To block the non-specific binding sites, the 
samples were incubated for 1 h at room temperature in PBS containing 0.01% Tween-20 and 2% bovine serum 
albumin (BSA); this was followed by an incubation in blocking solution together with primary antibody raised 
against TET3 (dilution 1:50; Santa) overnight at 4 °C. The next day, the oocytes/embryos were washed in blocking 
solution and stained with Alexa Fluor 488 goat anti-rabbit (1:200; Invitrogen), which could recognize primary 
antibodies for TET3, for 1 h at room temperature. DNA was stained with 10 μ​g/ml Hoechst 33342 for 10 min. 
Another group of samples was stained for 5 mC/5 hmC. After permeabilization, the samples were then treated 
with 4N HCl for 30 min at room temperature and subsequently neutralized for 10 min with 100 mM Tris-HCl 
buffer, pH 8.5. Then, the samples were incubated for 1 h in blocking solution, followed by incubation with pri-
mary antibodies, anti-5 mC (1:100; Eurogentec) or anti-5 hmC (1:100; Active Motif) overnight at 4 °C. The next 
day, the samples were incubated with secondary antibodies, Alexa Fluor 568 goat anti-mouse (1:200; Invitrogen) 
and Alexa Fluor 488 goat anti-rabbit (1:200; Invitrogen), for 1 h at room temperature. All samples were mounted 
between a cover slip and a glass slide supported by four columns of a mixture of petroleum jelly and paraffin (9:1) 
and immediately observed under a fluorescent microscope (Nikon, Tokyo, Japan) equipped with a digital camera. 
All images were captured with the same exposure times and microscope settings. At least 5 embryos at each devel-
opment stage were analyzed. The fluorescence intensity was quantified by the Imageproplus 6.0.

RNA isolation, cDNA preparation and qRT-PCR.  At least thirty bovine oocytes or blastomeres of IVF 
and SCNT embryos was used to extract all RNA using the RNeasy Mini kit (Qiagen, Hilden, Germany). The 
1st-Strand cDNA Synthesis kit (Promega, Madison, WI, USA) was used to synthesize the first-strand cDNA. 
The primers used for qRT-PCR analysis are listed in Supplementary Table 1. The real-time PCR mix (20 μ​l) con-
sisted of 2 μ​l of cDNA, 10 μ​l of SYBR green master mix, 6.4 μ​l of RNase-free water and 0.8 μ​l each of forward and 
reverse primers (10 pmol) for each gene. The programme used for the amplification of all genes consisted of a 
denaturing cycle of 3 min at 95 °C, 40 cycles of PCR (95 °C for 10 s, 55 °C for 45 s, and 95 °C for 1 min), a melting 
curve analysis consisting of 95 °C for 1 min followed by 55 °C for 1 min, a step cycle starting at 55 °C for 10 s with 
a 0.5 °C/s transition rate, and cooling at 4 °C. Relative gene expression data were analysed using Quantitative 
Real-Time PCR (qRT-PCR) and the 2−ΔΔCT method. The qRT-PCR analysis were performed three times for 
each sample.

Sodium bisulfite genomic sequencing.  Bisulfite sequencing was used to analyse locus-specific DNA 
methylation of BEFs, oocyte, IVF and SCNT blastocysts as described52. Briefly, at least fifty cells or blastomeres 
were treated with a lysis solution (10 mM Tris-HCl, pH 7.6, 10 mM EDTA, 1% SDS, and 20 μ​g/μ​l of proteinase 
K in ddH2O) for 1.5 h at 37 °C. Then, the mixture was boiled for 5 min in a water bath, chilled on ice and quickly 
spun down. Then, 4 μ​l of 2 M NaOH (final concentration 0.3 M NaOH) was added, and the mixture was incubated 
at 15 min at 50 °C. Samples were mixed with 2 volumes of 2% low melting point agarose and pipetted into chilled 
mineral oil to form beads. Then, the beads were treated with freshly made bisulfite solution (2.5 M sodium meta-
bisulfite and 125 mM hydroquinone, pH 5) for 5 h in the dark and covered with mineral oil at 50 °C. The reactions 
were stopped by equilibration against 1 ml of Tris-EDTA buffer (pH 8.0) for 4 ×​ 15 min. After desulfonation in 
0.5 ml 0.2 M NaOH for 2 ×​ 15 min, the beads were washed with 1 ml Tris-EDTA buffer for 3 ×​ 10 min and H2O for 
2 ×​ 15 min, and then used for PCR. The PCR primer sequences were listed in Supplementary Table 1. The purified 
PCR fragments were then cloned into a PmdTM18-T vector for sequencing (TaKaRa, Japan). The PCR amplifica-
tions and subsequent sequencing were performed three times for each sample. At least 10 clones per gene were 
sequenced. DNA methylation situations from 0% to 20% was considered as low DNA methylation level, from 21% 
to 50% was considered as moderate DNA methylation level, from 51% to 1000% was considered as high DNA 
methylation level in our bisulfite sequence analysis.

Statistical analysis.  At least three technical replicates and biological replicates for each data analysis. Data 
were analyzed with Statistics Production for Service Solution (Version 16.0; SPSS, Chicago, IL, USA) by one-way 
ANOVA. A value of P <​ 0.05 was considered different, and P <​ 0.01 was considered significantly different.
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