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Abstract

In animal cells, cytokinesis is powered by a contractile ring of actin filaments (F-actin) and 

myosin-2. Formation of the contractile ring is dependent on the small GTPase, RhoA1,2, which is 

activated in a precise zone at the cell equator3. It has long been assumed that cytokinesis and other 

Rho-dependent processes are controlled in a sequential manner, whereby Rho activation via 

guanine nucleotide exchange factors (GEFs) initiates a particular event, and Rho inactivation via 

GTPase activating proteins (GAPs) terminates that event. MgcRacGAP is a conserved cytokinesis 

regulator thought to be required only at the end of cytokinesis4,5. Here we show that 

MgcRacGAP’s GAP activity is necessary early during cytokinesis for the formation and 

maintenance of the Rho activity zone. Disruption of GAP activity by point mutation results in 

poorly focused Rho activity zones, while complete removal of the GAP domain results in 

unfocused zones that display lateral instability and/or rapid side-to-side oscillations. We propose 

that the GAP domain of MgcRacGAP plays two unexpected roles throughout cytokinesis: first, it 

transiently anchors active Rho, and second it promotes local Rho inactivation resulting in the 

constant flux of Rho through the GTPase cycle.

Cytokinesis in animal cells relies on the centralspindlin complex, which is comprised of the 

kinesin MKLP-1 and the Rho GAP MgcRacGAP5,6. This complex is thought to activate 

Rho via Ect2, a Rho GEF that binds MgcRacGAP7,8. It is currently thought that the GAP 

activity of MgcRacGAP functions only at the end of cytokinesis to inactivate Rho and 

thereby disassemble the cytokinetic apparatus5,9. This model is consistent with standard 

ideas about Rho regulation in which GEFs and GAPs are thought to act sequentially. An 

alternative model proposes that GEFs and GAPs act simultaneously, so that Rho undergoes 

rapid flux through the GTPase cycle during cytokinesis and other processes that require 

rapid actomyosin dynamics3. In this “GTPase flux model”, the GAP activity of 

MgcRacGAP is envisioned as being employed throughout cytokinesis to help limit the 

spread of the Rho activity zone10.

Previous studies addressed whether the MgcRacGAP’s GAP activity is required for 

cytokinesis but arrived at differing conclusions11–14; the role of the GAP activity in 
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controlling the Rho zone was not monitored. To test the role of MgcRacGAP’s GAP 

activity, we employed Xenopus laevis embryos, a vertebrate system that permits imaging of 

Rho activity during cytokinesis3. The role of MgcRacGAP in this system was first tested by 

blocking expression of MgcRacGAP using one of two different antisense morpholinos; MO.

1, which targets the beginning of the coding region or MO.2, which targets the 5′ UTR (Fig. 

S1a). Each morpholino resulted in more than 95% reduction in endogenous MgcRacGAP 

levels (Figs. 1a, S1d, S1e) and strongly inhibited cytokinesis as judged by quantifying 

multinuclearity (Fig. 1c, d and Fig. S1b, c), consistent with other systems4,5,8,13,14. In 

contrast, a 5 mispair control MO had virtually no effect (Fig. S1a–c).

The fact that MO.2 targets the 5′ UTR allowed a gene replacement strategy in which this 

morpholino was microinjected along with MgcRacGAP mRNAs lacking the 5′ UTR of the 

endogenous mRNA. Three mRNAs were used: wild type MgcRacGAP (WT Mgc), 

MgcRacGAP with a point mutation that disrupts GAP activity (Mgc R384A)4, and 

MgcRacGAP lacking the GAP domain entirely (Mgc ΔGAP) (Fig. 1b). This approach 

permitted replacement of the endogenous MgcRacGAP with comparable levels of the three 

constructs (Fig. S1f–h). Phenotypic analysis revealed that while WT Mgc resulted in strong 

suppression of the multinuclearity phenotype, the GAP-DEAD mutants were significantly 

less effective (Fig. 1c, d). Further, as described below, time-lapse imaging revealed that 

many of the GAP-DEAD cells that do manage to divide do so abnormally. Together, these 

results indicate that MgcRacGAP’s GAP activity is indeed necessary for proper cytokinesis.

Since the GAP-DEAD mutations are outside the previously identified interaction domains of 

MgcRacGAP for MKLP-1, Ect2, anillin, or the N-terminal PRC1 binding site (Fig. 

1b)6,8,15,16, it is unlikely that the deficits in cytokinesis result from failure of GAP-DEAD 

MgcRacGAP to bind these proteins and/or resultant defects in midzone organization. This 

point was tested via immunoprecipitation of MKLP-1 with MgcRacGAP, which showed that 

the two GAP-DEAD MgcRacGAP mutants immunoprecipitate MKLP-1 as well as WT Mgc 

(Fig. S2a). Further, localization analysis showed that WT Mgc and the GAP-DEAD mutants 

all localized to ingressing furrows during cytokinesis (Fig. 1e–g), indicating that failure of 

the GAP-DEAD mutants to rescue cytokinesis as well as WT Mgc does not result from 

failed subcellular targeting of MgcRacGAP. To further ensure that the effects of these 

mutations stemmed from their defects in the GAP domain, rather than in spindle midzone 

organization, spindles were characterized by immunofluorescence. We found no apparent 

differences in spindle shape, midzone density, or midzone organization in the mutants 

relative to either the WT replacement (Fig. S2b) or uninjected controls (not shown). As a 

more quantitative measure, we also compared the ratio of the pole-to-pole distance to total 

cell length in early anaphase spindles, since weakening or loss of the midzone results in 

greater separation of the poles17. No significant differences were found between spindles in 

the WT Mgc or GAP-DEAD replacement embryos (WT Mgc = 0.59 ± 0.07; R384A = 0.58 

± 0.05; ΔGAP = 0.56 ± 0.05; mean ± S.D. n = 20 spindles for each group). In addition, we 

monitored the distribution of several different proteins known to interact with MgcRacGAP 

and/or the central spindle: MKLP-1, Plk1, Aurora B, and anillin. We found that all of these 

players showed apparently normal early (anaphase) and late (telophase) localization to the 

central spindle in WT Mgc, R384A, and ΔGAP replacement embryos (Fig. S2c).
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The above results indicated that MgcRacGAP’s GAP activity is required for cytokinesis. To 

understand the basis of this requirement, the effects of these mutations on the Rho activity 

zone were assessed using GFP-rGBD, which reports GTP-bound Rho3,18. Over-expression 

of WT Mgc led to Rho activity zones that were more focused (80% of the breadth of 

controls) and less intense than controls (Fig. 2a, b, e; Fig. S3a, b; and Movie S1). In contrast, 

expression of either Mgc R384A or Mgc ΔGAP resulted in Rho activity zones that were 

broader than those in control cells and often failed to ingress efficiently, leading to failed 

cytokinesis (Fig. 2c–e). Specifically, the Rho activity zones in cells expressing Mgc R384A 

were 1.9-fold broader and more intense than controls (Fig. 2c, e; Fig. S3a, b; and Movie S2). 

Similarly, Rho activity zones in cells expressing Mgc ΔGAP were also increased in breadth 

(1.3-fold broader than controls) and intensity (Fig. 2d–e; Fig. S3a, b; and Movie S2). 

Expression of either GAP-DEAD mutant also led to increased active Rho signal outside of 

the Rho zone (Fig. S3a, c). We also noted that the changes in Rho zone breadth increased 

relative to the longitudinal diameter of the Xenopus blastomeres, becoming particularly 

broad in GAP-DEAD expressing cells (Fig. S3d). In addition, the Mgc ΔGAP-expressing 

cells exhibited another phenotype: positional instability such that the zones moved laterally 

across the surface of the embryo. In extreme cases, this instability was manifest as rapid 

side-to-side oscillations (average oscillation velocity = 0.340 ± 0.004 μm/sec) (Fig. 2d and 

Movie S2).

The potential effects of GAP-DEAD MgcRacGAP on Rac and Cdc42 activity were also 

examined. In control cells, elevated Rac and Cdc42 activity at cell-cell boundaries was 

observed, but we did not detect any cortical pattern of Rac or Cdc42 activity when Rho 

activity was rising at the equator (Fig. S4). Further, in contrast to the striking accumulation 

of active Rho caused by Mgc R384A, no obvious changes in Rac or Cdc42 activity were 

seen following expression of Mgc R384A (Fig. S4). These results suggest that in this 

system, MgcRacGAP is acting primarily on Rho rather than Rac or Cdc42 to control the 

assembly of the cytokinetic apparatus, although Rac and Cdc42 may participate in the cell-

cell junction assembly that follows in the wake of the furrow19.

Rho activity was also examined using the gene-replacement approach. Rho activity zones 

were strongly reduced in cells where MgcRacGAP was knocked down with MgcRacGAP 

MO.2 (Fig. 2f), presumably due to the inability of the centralspindlin complex to localize 

Ect2 in the absence of MgcRacGAP7. Gene replacement with WT Mgc resulted in 

formation of focused Rho zones (Fig. 2g and Movie S3). In contrast, gene replacement with 

either of the GAP-DEAD mutants led to broader Rho activity zones with increased intensity 

(Fig. 2h, i; Fig. S3a, b; and Movie S4). Notably, gene replacement with Mgc ΔGAP led to 

Rho zones that were unstable and moved laterally (Fig. 2i and Movie S4), and gene 

replacement with either GAP-DEAD mutant resulted in increased Rho activity outside the 

Rho zone (Fig. S3a, c). Thus, the GAP activity of MgcRacGAP is needed to confine Rho 

activation to the equator.

The increase in Rho zone width and intensity observed with the GAP-dead mutants is 

consistent with the GTPase flux model where MgcRacGAP’s GAP activity is required 

throughout cytokinesis to keep the Rho activity zone focused. This model also predicts that 

constitutively-active Rho should mimic the GAP-DEAD MgcRacGAP phenotype. Indeed, 
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constitutively-active Rho leads to excess Rho activity outside the furrow, broad Rho zones, 

and slower onset to furrowing, similar to the R384A mutant (Fig. 2j). In contrast, the 

sequential GEF/GAP model in which the GEF acts at the beginning of cytokinesis and the 

GAP acts at the end predicts that cytokinesis defects would not be observed until much later.

To determine the downstream consequences of having abnormal Rho zones, we imaged F-

actin in live cells. Control cells exhibited transient F-actin patches throughout the cortex and 

concentrated F-actin signal at the furrow (Fig. 3a and Movie S5). Similar to control cells, 

cells expressing WT Mgc had focused accumulation of F-actin at the furrow (Fig. 3b and 

Movie S5). In contrast, Mgc R384A-expressing cells exhibited a broad accumulation of F-

actin at the furrow (Fig. 3c and Movie S6). In cells expressing Mgc ΔGAP, F-actin 

accumulation was broader than in controls, and F-actin oscillated rapidly back and forth, as 

did the Rho activity zones (Fig. 3d and Movie S6). Thus, disruption of MgcRacGAP’s GAP 

activity leads to abnormal distribution and dynamics of downstream Rho targets. This failure 

to form an efficient contractile array likely leads to the observed cytokinesis failure.

To better characterize the GAP-DEAD mutant phenotypes, Rho activity zones were 

analyzed in z-stack time-lapse montages (Fig. 4a), which revealed features not apparent 

from the en face views. In control cells, Rho zones formed and remained tightly focused as 

furrowing began, while in cells over-expressing WT Mgc the zone was even more tightly 

focused and furrowed faster. In contrast, the Rho zones in Mgc R384A-expressing cells 

were very broad, intense, and slow to furrow. In Mgc ΔGAP-expressing cells, the zone was 

likewise broader and slower to furrow than in controls. As the lateral oscillations began, the 

Rho zones moved in a wave-like fashion, leaving active Rho behind in its wake, such that at 

some time points, the zone appeared to split, although one of the zones quickly 

predominated (Fig. 4a). Two other striking features of the Mgc ΔGAP-expressing Rho zones 

were apparent from the z kymographs: first, the lateral distance traversed by the oscillating 

zones remained relatively constant, as if something defined boundaries between which the 

zone was confined. Second, the average maximum displacement of the oscillating zones 

(9.3% of the longitudinal diameter) was remarkably similar to the maximum breadth of the 

zones in R384A-expressing cells (8.2% of the longitudinal diameter, Fig. S5a).

The GTPase flux model predicted broader and more intense Rho activity zones in GAP-

DEAD mutants, but it did not predict zone instability and oscillation. The oscillations might 

represent Rho activity moving in association with moving elements of the contractile ring. 

However, the z kymographs indicated that oscillation started before actomyosin-powered 

ingression. Further, imaging of Rho and F-actin together showed that active Rho appeared 

before F-actin accumulation (Fig. S5b), while during oscillations, F-actin signal trailed the 

Rho signal as the zones moved laterally (Fig. S5c). A second possible explanation is that the 

oscillations reflect underlying oscillations of the spindle, which controls the Rho zone3. 

However, direct comparison of F-actin and microtubules showed that in ΔGAP-expressing 

cells, the microtubules of the mitotic spindle did not oscillate even when F-actin oscillations 

were apparent (Fig. 4b–d and Movie S7). Thus, spindle movement cannot be responsible for 

the oscillations.
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It thus seems likely that the oscillations reflect a more direct role for MgcRacGAP in Rho 

activity zone control. We suggest that MgcRacGAP not only mediates Rho GTPase flux but 

also serves as a transient Rho-GTP anchor. In this view, MgcRacGAP would first bind to 

Rho-GTP generated by Ect2 and/or other GEFs20. Rho-GTP could then bind to a Rho 

effector, since the affinity of active Rho GTPases for their effectors is typically greater than 

for their GAPs21, or if no effectors are locally available, Rho-GTP would eventually be 

inactivated by the GAP activity of MgcRacGAP. This hypothesis is consistent with the 

available structural information and binding experiments, which indicate that the R384A 

substitution would suppress GAP activity without preventing interaction of MgcRacGAP 

with Rho-GTP22–26. Thus, the R384A mutant would still have the anchoring function but 

would not contribute to GTPase flux, explaining the progressive accumulation of active 

Rho. In contrast, the ΔGAP mutant, which completely lacks the GAP domain, would neither 

contribute to anchoring nor GTPase flux. Consequently, Rho could simply diffuse away 

from the equator following activation.

Oscillation is indicative of poorly damped feedback; thus, our results suggest that the 

anchoring function of MgcRacGAP normally protects Rho-GTP from unrestrained 

feedback. The mechanism of feedback remains to be determined, but our results show that it 

is spatially constrained in that both the R384A-induced Rho zone spreading and the ΔGAP-

induced oscillations occupy remarkably similar maximal lateral dimensions. Because 

previous work has shown that limited suppression of microtubule polymerization results in 

broadening of cytokinetic Rho zones3, we suspect that microtubules spatially define the 

equatorial palette upon which Rho activation persists during cytokinesis. In addition, it was 

recently shown that positive feedback between the cortex and microtubules is essential for 

polarization during cytokinesis in monopolar cells27. The authors of that work suggest that 

this feedback may help focusing the furrow, a notion that is consistent with the results 

presented here.

While it had been assumed that the GEFs and GAPs regulating cytokinesis work in a 

sequential manner, our results demonstrate that the GAP activity of MgcRacGAP is 

necessary throughout cytokinesis in order to maintain a focused zone of Rho activity (Fig. 

4e). This is consistent with the recent demonstration that Aurora B kinase, which 

phosphorylates MgcRacGAP at several sites (see Fig. 1b)9,16,28 and stimulates the Rho 

GAP activity of MgcRacGAP9, is itself activated in a gradient at the cell equator 

immediately after the onset of anaphase29. Thus, Rho zones do not simply represent sites of 

local Rho activation, but instead sites where Rho is being rapidly driven through the entire 

GTPase cycle. Given the similarities between cytokinesis and other GTPase-dependent 

processes such as wound healing, morphogenesis, and polarity establishment10, the current 

results also imply that GTPase flux may be a general feature of processes that depend on 

dynamic actomyosin arrays.

Methods

Constructs, morpholinos, and antibodies

GFP-rGBD (to observe active Rho), GFP-wGBD (to observe active Cdc42), GFP-pGBD (to 

observe active Rac), and CA-Rho constructs were described previously18. Xenopus 
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MgcRacGAP constructs were generated using NCBI clone BC070771 (obtained from 

ATCC) as the template. The R384A point mutation was generated by PCR mutagenesis of 

the arginine 384 (CGA) codon to alanine (GCA). The Mgc ΔGAP deletion mutation was 

made by PCR using primers that flanked the splice site of the deleted region, amino acids 

362–504. For untagged constructs, MgcRacGAP or the GAP-DEAD mutants were cloned 

into the pCS2+ vector using Bam HI and Eco RI restriction sites. For C-terminally tagged 

GFP or 3XGFP tagged constructs, MgcRacGAP or GAP-DEAD mutants were cloned into 

the pCS2+ C-GFP or C-3XGFP vector using Bam HI and Eco RI restriction sites. GST-

MKLP-1 was made by PCR amplification of Xenopus MKLP-1 from NCBI clone BC84928 

(obtained from ATCC) and cloning it into pGEX-4T-3 using the Sma I and Not I restriction 

sites; GST-MKLP-1 was then subcloned into pCS2+ using the Xho I and Xba I restriction 

sites. The GFP-UtrCH and mChe-UtrCH probes for F-actin were described previously30. 

EMTB-3XGFP, a probe for microtubules that was described previously, was a gift from 

Chloë Bulinski31; this probe was subcloned into pCS2+. mRNAs were transcribed in vitro 

from pCS2+-based vectors using the mMessage mMachine SP6 kit (Ambion). An antisense 

morpholino (Gene Tools) was made to target the last base of the 5′ UTR and the first 24 

bases of the coding sequence (MO.1) with the sequence 

TAGGTTCATCAGGTTTGTCGCCATC; this morpholino targets both paralogs of Xenopus 

MgcRacGAP. A morpholino the same as MO.1 but with 5 mispairs 

(TAGcTTgATCAcGTTTcTCcCCATC) was made as a control. A second morpholino that 

targets entirely within the 5′ UTR (MO.2) was generated so that knockdown could be 

rescued by re-expression of mRNAs that have a different 5′ UTR. This morpholino is 

actually a mixture of two morpholinos, with the sequences 

GGCACTCTCAGTGACACGCAGCCG and TTCTAATGGCACGGGAAGCCGGAAC, to 

target the two Xenopus MgcRacGAP paralogs, which have differing 5′ UTRs. A Xenopus-

specific polyclonal MgcRacGAP antibody was generated (Panigen) by immunizing rabbits 

with a synthetic peptide (generated by the University of Wisconsin Biotechnology Center) 

corresponding to amino acids 608–621 of Xenopus MgcRacGAP. The peptide was coupled 

to keyhole limpet hemacyanin, and antibodies were purified by peptide affinity 

chromatography and concentrated using a microcon column (Millipore). Other antibodies 

used include anti-GFP (clone JL-8, Clontech #632381), anti-GST (Amersham Biosciences 

#27-4577-01), anti-α-tubulin (DM1A, Sigma #T9026), anti-MKLP-1 (a gift from Todd 

Stukenberg, University of Virginia), anti-AuroraB (a gift from Johné Liu, University of 

Ottawa), anti-Plk1, and anti-anillin (both gifts from Aaron Straight, Stanford University).

Xenopus embryos and microinjections

Xenopus laevis females (obtained from NASCO) were induced to ovulate by injecting 

human chorionic gonadotropin (MP Biomedicals) into the dorsal lymph sac. Eggs were 

collected manually in a petri dish filled with a solution of 1X Marc’s Modified Ringers 

(MMR) (100 mM NaCl, 2 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM Hepes, pH 7.4). 

Fertilization was performed by removing buffer to 1/10 of the volume, eggs were exposed to 

testes isolated from Xenopus laevis males, and the petri dish was flooded with water to make 

a solution of 0.1X MMR. Fertilized eggs were dejellied with 2% cysteine in 1X MMR and 

washed extensively in 1X then 0.1X MMR. Fertilized eggs were stored in 0.1X MMR at 

17°C. Embryos were generally injected at the 2-cell stage with 5 nl of mRNA (needle 
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concentration = 0.5 mg/ml for GFP-rGBD, 0.25 mg/ml for GFP-UtrCH or mChe-UtrCH, 

0.125 mg/ml for EMTB-3XGFP, 0.005–0.001 mg/ml for MgcRacGAP expression, 0.5 

μg/ml for MgcRacGAP gene replacement); for double injections, the second injection was 

done at the 4-cell stage (5 nl) or the 8-cell stage (2.5 nl). For morpholino knock-down, both 

blastomeres at the two-cell stage were injected with 5 nl of 5 mM morpholino to ensure that 

MgcRacGAP would be knocked down throughout the embryo. Additional methods are 

available in Supplementary Information.

Immunofluorescence imaging of multinuclearity

Albino embryos were fixed overnight at room temperature 24 h post-injection in 3.7% 

formaldehyde, 0.25% glutaraldehyde, 0.2% Triton-X-100, and 66 nM Alexa 488-phalloidin 

(Molecular Probes) in the following buffer (80 mM K-PIPES, 5 mM EGTA, 1 mM MgCl2). 

Embryos were quenched 1 h at room temperature in PBS + 100 mM sodium borohydride 

and permeabilized 5 min in PBS + 0.5 % Triton-X-1000. Embryos were then subjected to 

RNAse treatment: first they were equilibrated in 2X SSC (0.3 M NaCl2, 0.03 M sodium 

citrate, pH 7.0), then they were incubated in 100 μg/ml DNAse free RNAse in 2X SSC for 

20 min at 37°C, and they were washed three times in 2X SSC. Embryos were stained with 5 

μM propidium iodide (Molecular Probes) in 2X SSC for 5 min and washed three times with 

2X SSC. Embryos were stained with 66 nM Alexa 488-phalloidin in 2X SSC for 4 h on a 

nutator in the cold room and washed three times with 2X SSC.

Microscopy

Images were collected on either a Zeiss Axiovert 100 M confocal microscope with Bio-Rad 

1024 Lasersharp Confocal software (Bio-Rad) equipped with 25X or 63X objectives or an 

Olympus Fluoview 1000 confocal microscope with FV10-ASW software equipped with 

20X or 63X objectives. 4D imaging was performed as described3. Live imaging was 

generally carried out 3–8 hours post-fertilization (16 cell stage to mid blastula transition).

Western blots for morpholino knock-down

24 h post-injection, 20 embryos for each sample were lysed in 100 μl ice cold PHEME lysis 

buffer (60 mM K-PIPES, 25 mM Hepes, 10 mM EGTA, 2 mM MgCl2, pH 7.0 

supplemented immediately before use with 1% Triton-X-100, 5 μg/ml leupeptin, 1 μg/ml 

aprotinin, 0.4 mM Pefabloc, 6 μg/ml chymostatin, 0.7 μg/ml pepstatin) by triteration through 

a P200 pipette tip in a 1.5 ml eppindorf tube. Samples were centrifuged at 14,000 rpm for 5 

minutes at 4°C to stratify the yolk proteins. The cytoplasmic layer was transferred to an 

Ultrafree MC column (Millipore) and centrifuged at 5,000 rpm for 5 min a 4°C. The flow-

through was mixed with boiling-hot 6X sample buffer and boiled for 10 min. Samples were 

loaded on 8% acrylamide gels, electrophoresed, and transferred to nitrocellulose 

membranes. Membranes were probed with anti-Xenopus MgcRacGAP antibodies (1:5000) 

or anti-α-tubulin antibodies (1:2500) overnight at 4°C, and appropriate HRP-conjugated 

antibodies (1:5000; Promega) were incubated with blots for 1.5 h at room temperature. 

Membranes were developed using an ECL detection kit (Pierce).
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Image processing and quantification

Time-lapse images were processed using Volocity (Improvision) and converted to 

Quicktime movies; still images were processed in Photoshop; quantification was performed 

using Image J; and statistical analysis was completed in Microsoft Excel. The student’s t-test 

(2-tailed, 2 sample unequal variance) was used to compare data and to calculate p-values. 

The percentage of multinuclear cells was counted for multiple embryos of each class. 

Average Rho zone breadth for multiple cells was measured a three locations along the Rho 

zone for a given cell and averaged, while longitudinal diameter at the widest point 

perpendicular to the Rho zone was measured. Intensity measurements were made at three 

locations within the Rho zone and three locations outside the Rho zone and averaged.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MgcRacGAP’s GAP activity is required for cytokinesis in Xenopus embryos
a, Western blot showing morpholino knock-down of MgcRacGAP protein levels by Mgc 

MO.1 and MO.2 (see Fig. S1a for morpholino target sites) as compared to uninjected or WT 

Mgc mRNA-injected Xenopus embryo lysates harvested 24 h post-injection. The top panel 

was immunoblotted with antibodies to Xenopus MgcRacGAP, and the bottom panel with 

antibodies to α-tubulin as a loading control. b, Domain diagram of MgcRacGAP and its 

GAP-DEAD mutants, R384A and ΔGAP. CC = coiled coil domain, C1 = putative phorbol 

ester/diacylglycerol binding domain, GAP = GTPase activating domain. Regions that 

interact with Ect2, MKLP-1, anillin, or PRC1 as well as sites phosphorylated by AuroraB 

are noted. c, Embryos were injected with MO.2 along with either water, WT Mgc mRNA, 

Mgc R384A mRNA, or Mgc ΔGAP mRNA. Embryos were fixed at 24 h post-injection and 

stained with propidium iodide to reveal the nuclei (red) and Alexa 488-phalloidin to 

visualize F-actin (green). Scale bar, 50 μm. d, The percent of multinucleate cells was 

quantified for gene replacement embryos from three independent experiments. Mean ± SE. 

Uninjected, n = 10 embryos; Mgc MO.2 + water, n = 10; Mgc MO.2 + WT Mgc, n = 11; 

Mgc MO.2 + R384A, n = 11, Mgc MO.2 + ΔGAP, n = 11. ***p < 0.005. e–g, Frames from 

time-lapse movies showing the localization patterns of WT Mgc-3XGFP (e), 

R384A-3XGFP (f), or ΔGAP-3XGFP (g). Asterisks indicate midbodies (from previous cell 

divisions), which are extremely bright. Arrows indicate the localization of the constructs at 

the closing cytokinetic apparati. The mutants are detectable at the equator at least as soon as 

WT MgcRacGAP (see 200s time point). Scale bars, 20 μm.
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Figure 2. Testing the GTPase flux model
a–d, Embryos were injected with GFP-rGBD to monitor active Rho along with WT Mgc 

(b), Mgc R384A (c), or Mgc ΔGAP (d) and imaged during cytokinesis. Frames taken from 

time-lapse movies are shown. A single blastomere is outlined in red in the first frame, and 

the Rho activity zone is marked with an arrow in the second frame. Scale bars, 40 μm. e, 

Average Rho zone width / longitudinal diameter for multiple cells. Mean ± SE. Control, n = 

12 embryos; WT Mgc, n = 9; R384A, n = 10; ΔGAP, n = 12. *p < 0.05; **p < 0.01; ***p < 

0.005. f–i, Gene replacement experiments where embryos were injected with Mgc MO.2 to 

knock down endogenous MgcRacGAP along with mRNAs for WT Mgc (g), Mgc R384A 

(h), or Mgc ΔGAP (i). The embryos were also injected with GFP-rGBD to monitor active 

Rho. A single blastomere is outlined in red in the first frame, and the Rho activity zone is 

marked with an arrow in the second frame. Scale bars, 40 μm. j, Effects of constitutively-

active Rho (CA-Rho) on Rho zone dynamics. Frames taken from time-lapse movies 

showing Rho activity dynamics during cytokinesis in control cells and cells expressing CA-

Rho are shown. Cytokinetic Rho zones (arrows) are broader and brighter in cells expressing 

CA-Rho and are much slower to furrow. Moreover, the amount of Rho activity outside the 

equtorial regions is much higher in those cells expressing CA-Rho than the controls. Note 

that these phenotypes closely resemble those obtained with the R384A GAP-DEAD mutant. 

Scale bars, 40 μm.
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Figure 3. Downstream consequences of abnormal GTPase flux
a–d, Embryos were injected with GFP-UtrCH to monitor F-actin along with WT Mgc (b), 

Mgc R384A (c), or Mgc ΔGAP (d) and imaged during cytokinesis. Frames taken from time-

lapse movies are shown. A single blastomere is outlined in red in the first frame, and the 

Rho activity zone is marked with an arrow in the second frame. Scale bars, 40 μm.
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Figure 4. Rho activity zones in MgcRacGAP ΔGAP-expressing cells oscillate
a, z-stack cross-section kymographs of the region where the Rho activity zone is forming for 

control, WT Mgc-, Mgc R384A-, or Mgc ΔGAP-expressing cells. Appearance of the Rho 

activity zone is marked with an arrowhead, and the furrow is marked with an arrow. 

Asterisks indicate places where the Rho activity zone splits. b, Kymographs made along the 

lines shown in the first frame of c and d. Yellow dots indicate F-actin oscillations. c–d, 

Control (c) or Mgc ΔGAP-expressing cells (d) were co-injected with EMTB-3XGFP to 

monitor microtubules (green) and mChe-UtrCH to monitor F-actin (red) and imaged during 

cytokinesis. Frames from time-lapse movies are shown. Yellow dots in d are fiduciary 
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marks to help visualize the F-actin oscillations. Scale bars, 20 μm. e, Model showing that 

equatorial accumulation of Ect2 and MgcRacGAP leads to focused activation of Rho, which 

in turn leads to focused activation of Rho effectors. Our results are consistent with the 

GTPase flux model, suggesting that Ect2 locally activates Rho, while MgcRacGAP 

counterbalances Ect2 by locally inactivating Rho, keeping Rho in a constant state of flux 

through the GTPase cycle and maintaining a focused Rho activity zone at the cell equator.
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