
Knockdown of TANK-Binding Kinase 1
Enhances the Sensitivity of
Hepatocellular Carcinoma Cells to
Molecular-Targeted Drugs
Fengxia Du1, Huiwei Sun2, Fang Sun2, Shiwei Yang3, Haidong Tan3, Xiaojuan Li2,
Yantao Chai2, Qiyu Jiang2* and Dongdong Han3*

1Department of Pharmacy, Medical Support Center of PLA General Hospital, Beijing, China, 2Department of Infectious Diseases,
Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China, 3Organ Transplant Center
and Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China

The protein kinase, TANK-binding kinase 1 (TBK1), not only regulates various biological
processes but also functions as an important regulator of human oncogenesis. However,
the detailed function and molecular mechanisms of TBK1 in hepatocellular carcinoma
(HCC), especially the resistance of HCC cells to molecular-targeted drugs, are almost
unknown. In the present work, the role of TBK1 in regulating the sensitivity of HCC cells to
molecular-targeted drugs was measured by multiple assays. The high expression of TBK1
was identified in HCC clinical specimens compared with paired non-tumor tissues. The
high level of TBK1 in advanced HCC was associated with a poor prognosis in patients with
advanced HCC who received the molecular-targeted drug, sorafenib, compared to
patients with advanced HCC patients and a low level of TBK1. Overexpression of
TBK1 in HCC cells induced their resistance to molecular-targeted drugs, whereas
knockdown of TBK1 enhanced the cells’ sensitivity to molecular-targeted dugs.
Regarding the mechanism, although overexpression of TBK1 enhanced expression
levels of drug-resistance and pro-survival-/anti-apoptosis-related factors, knockdown
of TBK1 repressed the expression of these factors in HCC cells. Therefore, TBK1 is a
promising therapeutic target for HCC treatment and knockdown of TBK1 enhanced
sensitivity of HCC cells to molecular-targeted drugs.

Keywords: TANK-binding kinase 1, advanced hepatocellular carcinoma, molecular-targeted drugs,
epithelialmesenchymal transition, drug resistance, pro-survival, anti-apoptosis

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common and frequent primary liver tumor, and its risk
factors are mainly viral hepatitis and alcohol abuse (Lin et al., 2020; Nhlane et al., 2021; Powell et al.,
2021). Despite the progress made in neonatal Hepatitis B virus (HBV) vaccination and HBV anti-
tumor symptomatic treatment, there are still more than 80 million people infected with HBV and
other hepatitis viruses (HCV) in China (Polaris Observatory Collaborators, 2018; Sung et al., 2021;
Polaris Observatory HCV Collaborators, 2022). Due to the high HBV and HCV infection rates in
East Asia and the Asia-Pacific region represented by China, and as the diseases progress, patients
have a high risk of eventually developing HCC (Wang et al., 2014; Zhang S et al., 2017; Tan and
Schreiber, 2020). HCC has an insidious onset and a long disease course (Wang et al., 2014; Zhang S
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et al., 2017; Tan and Schreiber, 2020). Most patients are in an
advanced stage at the first diagnosis and cannot receive radical
treatment strategies such as liver transplantation or surgical
resection (Kim et al., 2017; Llovet et al., 2018; Wang and Wei,
2020). For advanced HCC, one of the main drug treatment
strategies is molecular-targeted therapy: patients orally take
various small-molecule, multi-target protein kinase inhibitors
(Roskoski, 2019; Roskoski, 2020; Roskoski, 2021; Roskoski,
2022). Although global, multi-center clinical trials show that
these molecular-targeted drugs can help delay disease
progression in patients with HCC, improve patients’ quality of
life, and prolong patients’ survival (Bruix et al., 2017; Kudo et al.,
2018), these drugs still have many shortcomings: 1) individual
differences in patients with advanced HCC onmolecular-targeted
drugs treatment are very large, and only some patients are
sensitive to molecular-targeted drugs (Zhu et al., 2017; Tang
et al., 2020); 2) the treatment cycle of molecular-targeted drugs is
very long, and patients are prone to develop drug resistance as
treatment progresses (Zhu et al., 2017); and 3) these drugs are
toxic and side effects of molecular-targeted drugs cannot be
ignored (Zhu et al., 2017). Although many advances have been
made in research on molecular-targeted drugs, the molecular
mechanisms leading to drug resistance in HCC is still unclear and
there is no ideal indicator molecule to signal the prognosis of
patients receiving molecular-targeted drug therapy (Zhu et al.,
2017). Therefore, there is a great need to elucidate the molecular
mechanism of HCC resistance to molecular-targeted drugs and to
study and discover new intervention targets to achieve safer and
more effective molecular-targeted therapy.

As a member of the ubiquitous serine/threonine kinases that
play important roles in regulating immune or inflammatory
responses, the TRAF-associated NF-κB activator (TANK)
binding kinase 1 (TBK1) has been considered as a therapeutic
target (Li et al., 2017; Xu et al., 2020; Taft et al., 2021). It was
initially considered an activator of the NF-κB pathway via
inhibiting the activation of the IKK [inhibitor of nuclear
factor-κB (IκB) kinase]-related pathway (Alam et al., 2021).
Recently, aberrant TBK1 expression and/or activity have been
identified in various human malignancies, including lung cancer,
pancreatic cancer, breast cancer, and colorectal cancer (Revach
et al., 2020; Alam et al., 2021; Herhaus, 2021). TBK1 has also been
considered to be an oncogene (Revach et al., 2020; Alam et al.,
2021; Herhaus, 2021). However, the roles of TBK1 in HCC are
still unclear. Moreover, inflammation is closely related to the
occurrence and progression of tumors (Donisi et al., 2020;
Heinrich et al., 2021; Huang et al., 2021). NF-κB and its
related signaling pathways not only play an important role in
the body’s immune response and physiological mechanisms such
as inflammation but also promote the occurrence and
progression of various malignant tumors (Yang et al., 2019;
Jiang et al., 2021a; Zhou Q et al., 2021). In addition, NF-κB
can also induce the resistance of malignant tumor cells to anti-
tumor drugs (Ding et al., 2021; Kumar et al., 2021; Shen et al.,
2021; Smith and Burger, 2021). To this end, the present study
intends to systematically investigate the molecular mechanism by
which TBK1 regulates the resistance of HCC cells to molecular-
targeted drugs. Exploring the significance of TBK1 as an

intervention target sensitize HCC cells to molecularly-targeted
drugs is of great value.

MATERIALS AND METHODS

Cell Lines and Vectors
The cell lines used in this study were mainly liver-derived, non-
tumor cell lines (L-02) and some HCC cell lines (including
MHCC97-H, MHCC97-L, HepG2, Huh-7, BEL-7402, and
SMMC-7721). These cell lines are maintained in our
laboratory and detailed in previous publications (He X et al.,
2021; Yang H et al., 2021; Jiang Q et al., 2021; Li et al., 2021). The
expression levels assessed in these experiments included the full-
length sequence of TBK1 and its siRNA, which were prepared as
the lentivirus (these were transduced into lentivirus vectors). The
target sequence of TBK1 siRNA was 5′-TAAACTTCTATTAGA
AAGCTA-3′ and siTBK1 was used in pcilencer2.1U6 vectors. All
sequences were confirmed by DNA sequencing. The cells were
infected with the viral vectors and cells with the neomycin-
resistance selectable marker were screened and selected by
treatment with G418.

Clinical Specimens and qPCR
Clinical tissue specimens were obtained from patients with
advanced HCC (52 patients) and paired, non-tumor tissues
from the same patients were also obtained. These specimens
were maintained in our laboratory and used as detailed in
previous publications (Feng et al., 2018; Shao et al., 2018;
Zhang et al., 2018). The expression levels of TBK1 and other
factors were examined by qPCR according to previous
publications and manufacturer instructions. The primers used
in these experiments were: E-cadherin, 5′-CTCCTGAAAAGA
GAGTGGAAGTGT-3′; 5′-CCGGATTAATCTCCAGCCAGTT-
3′; N-cadherin, 5′-CCTGGATCGCGAGCAGATA-3′; 5′-CCA
TTCCAAACCTGGTGTAAGAAC-3′; vimentin, 5′-ACCGCA
CACAGCAAGGCGAT-3′; 5′-CGATTGAGGGCTCCTAGC
GGTT-3′; BCL2, 5′-GATCGTTGCCTTATGCATTTGTTTTG-
3′; 5′-CGGATCTTTATTTCATGAGGCAC GTTA-3′; NICD
(Notch NICD, the intracellular domain of Notch protein), 5′-
CCGACGCACA AGGTGTCTT-3′, 5′-GTCGGCGTGTGAGTT
GATGA-3′; survivin, 5′-ACATGCAGCTCGAATG AGAACAT-
3′, 5′-GATTCCCAACACCTCAAGCCA-3′; cIAP-1, 5′-GTG
TTCTAGTTAATCCTG AGCAGCTT-3′; 5′-TGGAAACCA
CTTGGCATGTTGA-3′; cIAP-2, 5′-CAAGGACCACCG
CATCTCT-3′; 5′-AGCTCCTTGAAGCAGAAGAAACA-3′;
TBK1, 5′-CCCTTTGAAGGGC CTCGTAG-3′; 5′-ACCCCG
AGAAAGACTGCAAG-3′; NF-κB p50 (NFKB), 5′-TTTTCG
ACTACGCGGTGACA-3′; 5′-TCCTGCACAGCAGTGAGA
TG-3′; NF-κB p65 (RELA), 5′-TGAACCGAAACTCTGGCA
GCTG-3′; 5′-CATCAGCTTGCGAAAAGGAGCC-3′; and
loading control β-actin, 5′-CACCATTGGCAATGAGCGGTT
C-3′; 5′-AGGTCTTTGCGGATGTCCA CGT-3′. The heat-
map of the qPCR results were obtained according to the
methods by Zhou et al., 2020 and Yin et al., 2019 (Yin et al.,
2019; Zhou W et al., 2021). The results of qPCR are displayed as
heat maps, and the heat maps are drawn based on the relative
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folds of the expression levels of each factor in each group relative
to the control group. At this time, the control group itself has no
change compared with itself, so the folds of change is 0, the
increase is a positive number of folds, and the decrease is a
negative number folds. Each heat-map has a colored ribbon as an
indication of the rates/folds of changes.

Cell-Survival Analysis
The following molecularly-targeted drugs used in this study were
obtained by Dr. Cao Shuang of Wuhan Engineering University
through chemical synthesis: sorafenib, regorafenib, lenvatinib,
cabozantinib, and anlotinib. All pure-drug powders with a purity
of greater than 99% were used in this study (see Table 1 referring
to the purity of drugs via HPLC [High Performance Liquid
Chromatography]). For the cytotoxic chemotherapeutics,
etoposide (Cat. No. S1225), adriamycin (Cat. No. S1208),
paclitaxel (Cat. No. S1150) or gemcitabine (Cat. No. S1714) was
purchased from Selleck Corporation, Houston, Texas,
United States. The small molecular inhibitor of TBK1
(MRT67307, Cat. No. S6386) was purchased from Selleck
Corporation. For cell experiments, pure powders of these drugs
were dissolved in organic solvents, such as DMSO (Dimethyl
sulfoxide), according to previous publications (Ma et al., 2016;
Wang J. H et al., 2021), then diluted in DMEM (Dulbecco’s
Modified Eagle Medium) without FBS (fetal bovine serum). The
concentration of molecular-targeted drugs used in the cell-survival
analysis were: 30 μmol/L, 10 μmol/L, 3 μmol/L, 1 μmol/L, 0.3 μmol/
L, 0.1 μmol/L, 0.03 μmol/L, and 0.01 μmol/L. The concentrations of
cytotoxic chemotherapeutics were listed in Table 2. The cells were
treated with various concentrations of the drugs for 48 h and counts
of living cells were determined by the MTT assay. The inhibitory
rates, or the IC50 values (half rate of inhibition), of the drugs on
HCC cell survival were calculated according to previously published
methods (Ma et al., 2016; Wang J. H et al., 2021).

Subcutaneous Tumor Model
First, the sorafenib solution used in the animal experiments was
prepared according to the method described in a previous
publication (Jia et al., 2016; Feng et al., 2019; Sun et al., 2019).
Specifically, pure sorafenib powder was dissolved in PEG400
(polyethylene glycol 400), Tween 80, and DMSO, then diluted
with sterilized normal saline (Wang Y et al., 2021; Du et al., 2021;
Jie et al., 2021; Zou et al., 2021). The final dose of sorafenib
formulation used for treating the nude mice by oral administration
was approximately 0.5 mg/kg. The siTBK1 was transfected in
MHCC97-H cells and TBK1 into MHCC97-L, after which the
cells were injected subcutaneously into nude mice. The nude mice
were then given sorafenib by oral gavage at doses of 2 mg/kg,

1 mg/kg, 0.5 mg/kg, and 0.2 mg/kg for almost 21 days (once per
2 days). The tumor weights and tumor volumes were examined.

Statistical Analysis
Statistical analyses were performed by using the SPSS 9.0 statistical
software (IBM Corporation, Armonk, NY, United States; two-way
ANOVAwith theBonferroni correction). The IC50 values ofmolecular-
targeted drugs were calculated by using Origin software (Origin 6.1;
OriginLab Corporation, Northampton, MA, United States).

RESULTS

TANK-binding kinase 1 Expression is
Associated With the Resistance of
Sorafenib in Advanced Hepatocellular
Carcinoma
First, the expression of TBK1 in clinical specimens was examined. As
shown in Figure 1A, the expression levels of TBK1 were much
higher in HCC specimens compared with paired non-tumor tissues.
Moreover, the HCC patients were divided into two groups: the
TBK1-high group or the TBK1-low group, according to the median
value of the TBK1 expression levels in the HCC specimens
(Figure 1B). The prognosis of patients received sorafneib
treatment in the TBK1-high group treated with the molecular-
targeted drug sorafenib was significantly worse than that of the
patients in the TBK1-low group. The OS (overall survivial) of the
patients in the TBK1-high group and the TTP (time to progress) of
sorafenib treatment were significantly shorter than those in the
TBK1-low group (Figures 1C,D and Table 3).

Next, the expression of TBK1 in hepatic cell lines was
examined. As shown in Figure 2, the expression level of TBK1
was much higher in HCC cells compared with the non-tumor
hepatic cell line L-02. Among the selected HCC cells, the
expression level of TBK1 in MHCC97-H cells was the highest,
while the expression level of TBK1 in MHCC97-L cells was the
lowest, and the expression level of TBK1 in HepG2 was moderate.
Because of these results, expression of TBK1 was knocked down
using siRNA in MHCC97-H cells or TBK1 was overexpressed in
MHCC97-L cells. TBK1 was simultaneously overexpressed and
knocked down in HepG2 cells.

After knockdown or overexpression of TBK1 in HCC cells, the
cells were treated with a series of doses of molecularly-targeted drugs
to determine the effect of TBK1 in HCC cell death after treatment
with molecularly-targeted drugs. The results shown in Table 4,
Table 5, Table 6 demonstrate that molecularly-targeted drugs can
kill HCC cells in a dose-dependentmanner. Overexpression ofTBK1
in MHCC97-L and HepG2 cells can significantly downregulate the

TABLE 1 | The purity of drugs used in the presence work from HPLC.

Drugs Purity from HPLC (%)

Sorafenib 99.1
Cabozentinib 99.5
Lenvatinib 99.3
Regorafenib 99.2
Anlotinib 99.5

TABLE 2 | The concentrations of cytotoxic chemotherapies in cell-based assays.

Drugs Concentrations (μmol/L)

paclitaxel 0.0003 0.001 0.003 0.01 0.03 0.1 0.3
etoposide 0.003 0.01 0.03 0.1 0.3 1 3
adriamycin 0.001 0.003 0.01 0.03 0.1 0.3 1
gemcitabine 0.001 0.003 0.01 0.03 0.1 0.3 1
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killing effect of these drugs on HCC cells, and the IC50 values of the
drugs on the cells were significantly increased (Table 4 and Table 5).
Knockdown of TBK1 with its siRNA enhanced the antitumor
activation of molecular-targeted drugs on HCC cells, and the
drugs’ IC50 values decreased (Tables 5 and Table 6). Therefore,
TBK1 is associated with the resistance of HCC cells to molecular-
targeted drugs and TBK1 could be considered as a promising target
for HCC treatment.

Knockdown of TANK-binding kinase 1
Repressed Drug-Resistance Related
Factors
The effect of TBK1 expression on drug-resistance related factors was
examined by qPCR. As shown inFigure 3A, overexpression ofTBK1

in HepG2 cells upregulated drug resistance-related factors while
knockdown of TBK1 downregulated drug resistance related factors.
Specifically, cellular pro-survival-/anti-apoptosis-related factors and
epithelial-mesenchymal transition-related factors were affected (the

FIGURE 1 | The clinical significance of TBK1 in HCC. (A) The expression of TBK1 in HCC clinical specimens or paired non-tumor tissues (non-tumor regions of the
liver in the HCC patients). (B) The median value of TBK1 in patients in the TBK1-high group or the TBK1-low group. (C,D) The OS (overall survival) or TTP (time to
progress) of the patients in the TBK1-high group or the TBK1-low group who received sorafenib treatment. pp < 0.05.

TABLE 3 | The endogenous TBK1 level associated with the clinical outcome of
patients received sorafenib treatment.

TBK1 mRNA expression P

High (n = 26) Low (n = 26)

TTP 8 12 0.01
6.0–9.9 (M) 9.8–13.4 (M)

OS 10 15 0.031
6.6–13.4 (M) 7.7–22.2 (M)

TTP, time to progress; OS, overall survival.

FIGURE 2 | The expression level of TBK1 in hepatic cell lines. The
expression level of TBK1 in hepatic cell lines was examined by qPCR. The
results were shown as Histogram form mean ± SD.
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expression level of E-Cadherin was upregulated or the expression
level of the factors was downregulated). On this basis, TBK1 was
knocked down inMHCC97-H cells, and TBK1was overexpressed in
MHCC97-L cells (Figures 3B,C). The trend of the results was
basically the same as that in HepG2 (Figures 3A-C). TBK1 did
not affect the expression of NF-κB’s p65 or p50, or Notch NICD
(FFigures 3A-C).

Next, to further confirm the effect of TBK1, the relationship
between the expressions of TBK1 with these factors in clinical
specimens was examined (Figure 4). As shown in Figure 4, the
expression level of TBK1 was positively associated with the
expression levels of Survivin (Figure 4A), BCL-2 (Figure 4B),
cIAP-1 (Figure 4C), and cIAP-2 (Figure 4D) (factors that
mediate the anti-apoptosis or pro-survival of cells); negatively
associated with the expression of E-cadherin (Figure 4E) (a
typical indicator of epithelial phenotype), and did not relate to
the expression of NF-κB’s p65 (Figure 4F) or p50 (Figure 4G), or
Notch NICD (Figure 4H). Therefore, knockdown of TBK1
repressed drug-resistance related factors’ expression level.

Knockdown of TANK-binding kinase 1
Enhanced the in Vivo Sensitivity of
Hepatocellular Carcinoma Cells to the
Molecular-Targeted Drug Sorafenib
The above results were based on in vitro, cellular experiments. To
further confirm the effect of TBK1 on HCC cells, in vivo

FIGURE 3 | The effect of TBK1 on the drug-resistance-related factors in HCC cells. (A)HepG2 cells were transfected with TBK1 or siTBK1 and the expression level
of drug-resistance-related factors were examined by qPCR. (B)MHCC97-L cells were transfected with TBK1 and the expression level of drug-resistance-related factors
were examined by qPCR. (C)MHCC97-H cells were transfected with siTBK1 and the expression level of drug-resistance-related factors were examined by qPCR. The
results are shown as heat-map.

TABLE 4 | The effect of TBK1 overexpression on the sensitivity of MHCC97-L cells
to molecular-target drugs, Sorafenib, Cabozentinib, Lenvatinib, Regorafenib
or Anlotinib.

Drugs Control TBK1

IC50 Values (μmol/L)

Sorafenib 1.67 ± 0.27 8.82 ± 0.25
Cabozentinib 1.43 ± 0.32 12.89 ± 0.30
Lenvatinib 1.88 ± 0.69 9.29 ± 0.44
Regorafenib 2.13 ± 0.92 7.42 ± 1.08
Anlotinib 1.71 ± 0.36 6.13 ± 0.34

TABLE 5 | The effect of TBK1 overexpression or knockdown on the sensitivity of
HepG2 cells to molecular-target drugs, Sorafenib, Cabozentinib, Lenvatinib,
Regorafenib or Anlotinib.

Drugs Control TBK1 siTBK1

IC50 Values (μmol/L)

Sorafenib 1.60 ± 0.20 5.22 ± 0.26 0.20 ± 0.05
Cabozentinib 1.43 ± 0.25 6.55 ± 0.52 0.27 ± 0.10
Lenvatinib 1.08 ± 0.12 4.82 ± 0.26 0.17 ± 0.06
Regorafenib 1.67 ± 0.13 5.23 ± 0.87 0.70 ± 0.01
Anlotinib 1.15 ± 0.69 3.62 ± 0.16 0.24 ± 0.15

TABLE 6 | The effect of TBK1 knockdown on the sensitivity of MHCC97-H cells to
molecular-target drugs, Sorafenib, Cabozentinib, Lenvatinib, Regorafenib or
Anlotinib.

Drugs Control siTBK1

IC50 Values (μmol/L)

Sorafenib 0.94 ± 0.51 0.07 ± 0.00
Cabozentinib 1.24 ± 0.60 0.23 ± 0.06
Lenvatinib 0.75 ± 0.25 0.14 ± 0.04
Regorafenib 0.83 ± 0.07 0.17 ± 0.02
Anlotinib 0.56 ± 0.18 0.22 ± 0.05
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FIGURE 4 | The relationship between TBK1with the drug-resistance-related factors in HCC specimens. The expression level of TBK1 and drug-resistance-related
factors in HCC specimens by qPCR. The expression level of TBK1 is on the abscissa, the expression level of each factor is on the ordinate, and the data are shown as a
scatter plot. Additionally, a regression equation was fit to the data (with its p-value) according to the trend of the scatter plot.
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experiments were performed using the nude mouse model. As
shown in Figures 5, 6, HCC cells (MHCC97-L and MHCC97-H)
could form subcutaneous tumor tissues in nude mice. Oral
administration of sorafenib inhibited the subcutaneous growth

of HCC cells in a dose-dependent manner. As shown in Figure 5,
overexpression of TBK1 induced the resistance of HCC cells to
sorafenib; the antitumor effect of sorafenib significantly
decreased (the IC50 value of the indicated concentrations of

FIGURE 5 | TBK1 induces resistance of MHCC97-L cells to the molecularly-targeted drug, sorafenib. After transfection of TBK1 in MHCC97-L cells, the cells were
inoculated into nude mice, and the nude mice were treated with sorafenib by oral gavage. Afterward, tumor tissues were collected to determine their volume and weight.
Results are displayed as photos of tumor tissue, tumor volume, and tumor weight. *p < 0.05.
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sorafenib increased from 1.25 ± 0.75 mg/kg to >2 mg/kg for
tumor volumes and from 1.03 ± 0.42 mg/kg to >2 mg/kg for
tumor weights). Next, the results shown in Figure 6 indicate that

knockdown of TBK1 via its siRNA in MHCC97-H cells enhanced
the sensitivity of HCC cells to sorafenib; the antitumor effect of
sorafenib significantly increased (the IC50 value of the indicated

FIGURE 6 | siTBK1 enhances the sensitivity of MHCC97-H cells to the molecularly-targeted drug, sorafenib After transfection of siTBK1 in MHCC97-H cells, the
cells were inoculated into nude mice, and the nude mice were treated with sorafenib by oral gavage. Afterward, tumor tissues were collected to determine their volume
and weight. Results are displayed as photos of tumor tissue, tumor volume, and tumor weight. pp < 0.05.
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concentrations of sorafenib reduced from 1.48 ± 0.91 mg/kg to
0.32 ± 0.25 mg/kg and from 1.67 ± 0.33 mg/kg to 0.41 ±
0.10 mg/kg for tumor weights), respectively. Therefore,
knockdown of TBK1 enhanced the in vivo sensitivity of HCC
cells to the molecular-targeted drug sorafenib.

Knockdown of TANK-binding kinase 1
Enhanced the Sensitivity of Hepatocellular
Carcinoma Cells to Cytotoxic
Chemotherapeutics
The above results were all based on molecularly targeted drugs,
and we further tested cytotoxic chemotherapeutic drugs to
supplement them. The results are shown in Table 7. The
cytotoxic chemotherapy drugs etoposide, adriamycin,
paclitaxel, and gemcitabine can inhibit the survival of
MHCC97-H cells in a dose–dependent manner and
overexpression of TBK1 in cells can induce cell resistance to
these drugs (the IC50 values these cytotoxic chemotherapies
significantly up-regulated), and knockdown of TBK1 could
significantly up-regulate the killing effects of these drugs on
HepG2 cells (the IC50 values of these cytotoxic
chemotherapeutic drugs were significantly down-regulated)
(Table 7). These results further confirmed the role of TBK1 in
HCC cells.

Small Molecular Inhibitor of TANK-binding
kinase 1 Enhanced the Sensitivity of
Hepatocellular Carcinoma Cells to
Antitumor Drugs
The above results are mainly based on the use of siRNA to knock
down the expression of TBK1, and further use the existing TBK1
small molecule inhibitor MRT67307 to treat HCC cells. As shown
in Figure 7, MRT67307 can dose-dependently down-regulate the
expression levels of NF-κB and Notch pathway-related drug
resistance factors in MHCC97-H cells, and inhibited the
survival of MHCC97-H cells in a dose-dependent manner. At
the same time, the 1 μmol/L dose of MRT67307 itself does not
have obvious cytotoxicity, but can significantly down-regulate the
expression levels of NF-κB and Notch pathway-related drug
resistance factors (Figure 7). Treatment of MRT67307 did not
affect the expression of NF-κB’s p65 or p50, or Notch NICD
(Figure 7). Therefore, the 1 μmol/L dose of MRT67307 was
selected for the next experiment. As shown in Table 8,
treatment of 1 μmol/L dose of MRT67307 significantly up-

regulate the antitumor effects of these drugs (including the
molecular-targeted drugs and cytotoxic chemotherapies) on
MHCC-97 cells (the IC50 values of these cytotoxic
chemotherapeutic drugs were significantly down-regulated)
(Table 8). Therefore, down-regulation of TBK1 enhanced the
sensitivity of HCC cells to antitumor drugs.

DISCUSSION

At present, molecularly-targeted drug therapy for HCC is a high-
interest research topic (Cerrito et al., 2021; El-Khoueiry et al., 2021;
Granito et al., 2021; Vogel et al., 2021). It is generally believed that the

TABLE 7 | The effect of TBK1 overexpression or knockdown in HepG2 cells to
Cytotoxic chemotherapies.

Drugs Control TBK1 siTBK1

IC50 Values (μmol/L)

paclitaxel 0.20 ± 0.03 0.77 ± 0.24 0.04 ± 0.01
etoposide 0.62 ± 0.10 1.18 ± 0.93 0.25 ± 0.07
adriamycin 0.34 ± 0.02 1.42 ± 0.25 0.10 ± 0.09
gemcitabine 0.50 ± 0.29 1.38 ± 0.26 0.14 ± 0.05

FIGURE 7 | The effect of TBK1’s inhibitor MRT67307 on the drug-
resistance-related factors in HCC cells. MHCC97-H cells were treated with the
indicated concentration of MRT67307 and the expression level of drug-
resistance-related factors were examined by qPCR. The inhibitory
activation of MRT67307 onMHCC97-H cells was examined byMTTmethods.
The results are shown as heat-map.

TABLE 8 | The effect of MRT67307 (1 μmol/L) on the antitumor effect of antitumor
drugs in MHCC97-H cells.

Drugs Control MRT67307 (1 μmol/L)

IC50 Values (μmol/L)

Sorafenib 1.06 ± 0.17 0.33 ± 0.10
Cabozentinib 1.20 ± 0.39 0.20 ± 0.03
Lenvatinib 0.72 ± 0.21 0.18 ± 0.06
Regorafenib 0.95 ± 0.82 0.30 ± 0.08
Anlotinib 0.77 ± 0.43 0.14 ± 0.09
paclitaxel 0.26 ± 0.11 0.03 ± 0.00
etoposide 0.49 ± 0.12 0.10 ± 0.08
adriamycin 0.56 ± 0.18 0.15 ± 0.04
gemcitabine 0.33 ± 0.07 0.12 ± 0.07
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resistance of HCC to molecularly-targeted drugs is a complex,
multistep, and multifactorial process (Busche et al., 2021; Mou
et al., 2021). It has been confirmed that the following factors can
be involved in inducing the resistance of HCC cells to molecularly-
targeted drugs: 1) mutual compensatory effect between RTKs
(receptor tyrosine protein kinases), MAPK, PI3K/AKT, HGF/
cMET, and other related pathways (Gao et al., 2012; Fu et al.,
2020); 2) mechanisms related to cell survival and anti-apoptosis
(Yang X et al., 2021; Jia et al., 2021); 3) epithelial-mesenchymal
transition (Chen et al., 2021; Xia et al., 2021); and 4) many factors
and mechanisms such as cancer stem cells (Ko et al., 2020; Xia et al.,
2020; Leung et al., 2021). Each of these mechanism-related signaling
pathways and important regulators can be used as intervention
targets for HCC treatment, especially molecular-targeted-drug
sensitization. There are differences in and connections between
these molecular mechanisms, and knowing how to avoid
inhibition of a single pathway or target and the compensatory
effects of other pathways is of great importance.

TBK1 is an ideal intervention target for the sensitization of HCC to
molecular-targeted drugs, mainly based on the following facts. 1) NF-
κB can induce HCC by inducing the expression of survivin, cIAPs,
BCL-2, and other cell pro-survival and anti-apoptotic factors; cells are
resistant tomolecularly-targeted drugs (Kang et al., 2013). 2) NF-κB is
also regulated by Notch and other drug resistance-related pathways
(Xiu et al., 2020). The Notch pathway can induce the expression of
epithelial-mesenchymal transition-related factors in cells and the
epithelial-mesenchymal transition phenotype through NF-κB (Kang
et al., 2013; Xiu et al., 2020). 3) As a key regulator of NF-κB activation,
activated TBK1 not only induces the activation of the NF-κB pathway
but also induces the phosphorylation of AKT, resulting in anti-
apoptotic signals and pro-cellular survival. In this study, we not
only detected the effect of TBK1 on HCC cells in molecular
experiments, cellular experiments, and animal experiments but we
also detected the expression of TBK1 in clinical HCC tissue samples,
confirming that TBK1 has clinical significance (Ou et al., 2011; Gao
et al., 2021; Zhu et al., 2021). Theoretically, TBK1 may induce the
resistance of HCC cells to molecularly-targeted drugs, and our results
show that patients with a high TBK1 expression inHCC tissues have a
poor prognosis after receiving sorafenib treatment. Therefore, our
results are the first to report and confirm the role of TBK1 in
molecularly-targeted drug resistance in HCC.

In this study, we overexpressed and knocked down TBK1 in HCC
cells, then detected the expression levels of various factors, including:
1) survivin and cIAP related to cell survival and apoptosis -1/2, or
BCL-2; 2) epithelial-mesenchymal transition-related factors, such as
vimentin and N-cadherin (markers of mesenchymal transition), and
E-cadherin (marker of an epithelial phenotype); 3) P65 and P50 of
NF-κB; and 4) NICD of Notch protein (Zhang Y et al., 2017). These
factors are all drug resistance-related genes within the NF-κB pathway
and several other pathways are also involved. The results showed that
TBK1 could affect the pro-survival, anti-apoptotic, and epithelial-
mesenchymal transition-related factors, but not P65, P50, or NICD.
These results are also consistent with the mechanism of action of
TBK1 itself. In this study, five HCC-related, molecularly-targeted
drugs were selected, but the Notch/NF-κB pathway can activate/
desensitize HCC cells to molecularly-targeted drugs through cell-
promoting, anti-apoptotic-related, and epithelial-mesenchymal

transition-related factors, and eventually induce cell resistance to
molecularly-targeted drugs. This suggests that the role of Notch/
NF-κB pathway is not specific to drug selection, and downregulating
TBK1 expression is also a broad-spectrum, molecular-targeted-drug
sensitization strategy in HCC. The combined effect of different drugs
is of great importance. Using a variety of strategies, our research group
discovered some small molecule compounds with molecularly-
targeted-drug sensitization effects. Existing studies have shown that
TBK1 small molecule inhibitors have certain anti-tumor activity. In
the future, research on TBK1 small molecule inhibitors and the
combination of TBK1 small molecule inhibitors with molecular-
targeted drugs and other therapeutic strategies will be carried out.
There are few reports on the role and molecular mechanism of TBK1
in HCC (only 2-3 papers in PubMed) and unclear (Kim et al., 2010;
Zou et al., 2019; Jiang et al., 2021b). These articles focus on HCC-
related tumor immunity and HBV-related research (Kim et al., 2010;
Zou et al., 2019; Jiang et al., 2021b). This study is the first to report the
relationship between TBK1 and the resistance of HCC cells to
molecularly targeted drugs, which not only expands our
understanding of TBK1, but also provides new ideas and
implications for the treatment of HCC with molecularly
targeted drugs.

In addition to the Notch/NF-κB pathway, there are other
important signaling pathways in HCC cells for resistance to
antitumor drugs (Zhu et al., 2019; Ma et al., 2020; He Y et al.,
2021; He W et al., 2021; Guan et al., 2021; Yan et al., 2021). For
example, our research group found that molecular-targeted drugs
can act as ligands and agonists of the pregnane X receptor to induce
the transcription factor activity and downstream drug resistance
genes of PXR (Feng et al., 2018; Shao et al., 2018). These drug-
resistance genes can act as enzymes of drugmetabolism to accelerate
clearance rate of molecularly-targeted drugs and finally induce the
resistance of HCC cells to molecularly-targeted drugs. The effects of
PXR and its downstream drug-resistance genes onNotch/NF-κB are
similar to those of antitumor drugs, and they are all non-selective.
Moreover, this studymainly focused on the role of TBK1 inHCC. In
addition to HCC, TBK1 may also regulate the resistance of other
malignant tumor cells to antitumor drugs (Vu and Aplin, 2014; Zhu
et al., 2019; Cheng and Cashman, 2020; Zhou et al., 2020). In the
future, we will further explore the impact of TBK1 and its inhibitors
on other kinds of human malignancies.
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