Assessment and correlation of anxiety, depression and serum cortisol levels in patients with oral submucous fibrosis and leukoplakia: A clinicohematological study

P. Manshi¹, Amit R. Byatnal², DNSV. Ramesh³, Ashwini Deshpande², Vikram Simha Reddy⁴, M. Najmuddin⁵

¹Private Consultant, Oral Medicine and Radiology, ³Department of Oral Medicine and Radiology, AME's Dental College, Raichur, Karnataka,
²Department of Dentistry, Zydus Medical College and Hospital, Dahod, Gujarat, ⁴Department of Oral Pathology, G. Pulla Reddy Dental
College and Hospital, Kurnool, Andhra Pradesh, India, ⁵Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry,
Jazan University, Jazan, Kingdom of Saudi Arabia

Abstract

Context: Potentially malignant disorders (PMDs) of the oral cavity like oral submucous fibrosis (OSMF) and leukoplakia are known to be caused due to addictive habits, while serum cortisol is accepted to be a stress hormone.

Aim: The present study was aimed to assess and correlate the anxiety, depression and serum cortisol levels in habit-associated PMDs such as OSMF and leukoplakia and compare it with healthy subjects.

Materials and Methods: Ninety patients were included in the study and were divided into three Groups, namely Group I (OSMF), Group II (leukoplakia) and Group III (control group). Serum cortisol levels and severity of anxiety and depression using the Hamilton Anxiety Rating Scale (HAM-A) and Hamilton Depression Rating Scale (HAM-D) were recorded and correlated.

Results: A significant correlation existed between serum cortisol level and levels of both anxiety and depression between Group I and II as compared to the control group.

Conclusion: There exists a definite correlation between serum cortisol levels and the levels of anxiety and depression in patients with leukoplakia and OSMF, with increasing levels of serum cortisol and higher values in both the HAM-A and HAM-D scales in patients with both OSMF and leukoplakia. PMDs such as leukoplakia and OSMF have an established cancer-causing potential. Anxiety and depression although prevalent are underdiagnosed and poorly understood. Hence, a holistic approach in the treatment of such pathologies including hematological investigations and psychological evaluation should be mandatorily made a part of the workup and treatment plan.

Keywords: Anxiety, depression, leukoplakia, oral submucous fibrosis, serum cortisol

Address for correspondence: Dr. Amit R. Byatnal, Department of Dentistry, Zydus Medical College and Hospital, Dahod - 389 151, Gujarat, India. E-mail: amitbyatnal@gmail.com

Submitted: 01-Jan-2022, Revised: 24-Jan-2022, Accepted: 24-Jan-2022, Published: 21-Mar-2023

Access this article online				
Quick Response Code:	Website:			
	www.jomfp.in			
	DOI: 10.4103/jomfp.jomfp_1_22			

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Manshi P, Byatnal AR, Ramesh D, Deshpande A, Reddy VS, Najmuddin M. Assessment and correlation of anxiety, depression and serum cortisol levels in patients with oral submucous fibrosis and leukoplakia: A clinicohematological study. J Oral Maxillofac Pathol 2023;27:54-9.

INTRODUCTION

Stress is a feeling of emotional or physical tension, which manifests itself as somatic and/or psychological symptoms such as lethargy, insomnia, anxiety and/or depression. Anxiety can be defined as "an emotional state, characterized by uneasiness, discomfort and fear about some defined or undefined threat" while depression is "a state of unhappiness or sadness," which is experienced from time to time. [1] Stress utilizes two mechanisms to deteriorate our immune system, thereby facilitating a disease process. The first is a biological mechanism, which is mediated through the "hypothalamic-pituitary-adrenal (HPA) axis" and the production of "cortisol." The second is the behavioral mechanism which promotes poor health behavior such as smoking, alcoholism, unhealthy diet, poor oral hygiene habits and para functional habits. This results in a deterioration of oral health as a response to these habits and causes a variety of oral diseases.^[1] In the course of time, people develop habits including consumption of gutka, tobacco, betel nut chewing, pan chewing and smoking, leading to the development of potentially malignant disorders (PMDs).

Oral submucous fibrosis (OSMF) and leukoplakia are some of the most common oral mucosal diseases in human beings and constitute entities that deserve to be investigated as psychosomatic diseases. It has been stated that up to 40% of cancer patients suffer from a significant level of distress. Cortisol also known as the "stress hormone" has been used as an indicator in stress evaluation. Cortisol is the major glucocorticoid in humans and has influences on metabolism, immunoregulation, vascular responsiveness, cognition and behavior. [2] In recent years, the important relationship between chronic physical illnesses and psychiatric disorders has been studied extensively. However, literature on psychiatric morbidity in OSMF and leukoplakia remains scarce.[3] The aim of the study was to estimate and correlate levels of anxiety, depression and serum cortisol in patients with OSMF and leukoplakia, thereby establishing a significant clinicohematological relation.

MATERIALS AND METHODS

The study included patients reporting to the institutional outpatient department. 90 patients between 20 and 45 years of age were included and assigned to the 3 groups of 30 patients each:

- Group I 30 patients with clinically and histopathologically proven OSMF [Figure 1]
- Group II 30 patients with clinically and histopathologically proven leukoplakia [Figure 2]

Figure 1: Patient with oral submucous fibrosis and reduced mouth opening

 Group III – 30 age- and sex-matched healthy controls without any signs and symptoms of the above-mentioned diseases.

Patients were included for the study based on the following inclusion criteria of patients being willing for the study, patients above 18 years of age with a definite history of habits of smoking and smokeless tobacco with by-products of tobacco and areca nut chewing were included. PMDs of clinically and histopathologically diagnosed OSMF and Leukoplakia. The exclusion criteria of the study were patients unwilling for the study and patients with ongoing treatment of either of the included diseases. Individuals with physiological conditions such as pregnancy or systemic diseases and medically compromised patients including psychiatric disorders. Patients with oral mucosal disorders and periodontal diseases.

A detailed case history recording symptoms and history of habits was recorded. The patients were examined under standard examination settings. Hamilton Anxiety Rating Scale (HAM-(A) questionnaire and Hamilton Depression Rating Scale (HAM-D) questionnaire were recorded in the presence of a psychiatrist.

The HAM-A scale^[4] comprised 14 items (anxious mood, tension, fears, insomnia, intellectual, depressed mood, somatic complaints muscular, somatic complaints sensory, cardiovascular symptoms, respiratory symptoms, gastrointestinal symptoms, genitourinary symptoms, autonomic symptoms and behavior at interview) and 5 responses (with scores 0, 1, 2, 3 and 4 indicating not present, mild, moderate, severe and very severe, respectively) to each item. The patient selected one response (answer) for each item (question) after which the total score (range from 0 to 56) was calculated.

Figure 2: Patient with leukoplakia of the left labial mucosa

The HAM-D scale^[5] comprised 17 items (depressed mood, feeling of guilt, suicide, insomnia early, insomnia middle, insomnia late, works and interests, retardation, agitation, anxiety psychic, anxiety somatic, somatic symptoms gastrointestinal, somatic symptoms general, genital symptoms, hypochondriasis, loss of weight and insight) and 3–5 responses (with scores between 0 and 4) for each item.

The interviewing clinician had to select one response (answer) for each item (question) and then the total score (range 0–52) was calculated.

All the patients were scheduled for blood analysis for cortisol levels in the morning. Standard aseptic protocol was followed and 5 ml of venous blood was drawn and all the samples were analyzed immediately. The serum cortisol level was estimated using electrochemiluminescence immunoassay ROCHE COBA E 411. The accepted normal serum cortisol level ranged from 138 to 600 nmol/L. The study was approved by the institutional ethical committee and required informed consents were also obtained from the participants of the study.

Statistical analysis

The data collected were tabulated using Microsoft excel. The data were analyzed using Statistical package for Social Sciences (SPSS) for Windows, version 25.0. (Armonk, NY: IBM Corp). Descriptive statistics such as mean, standard deviation and percentage were used. The Shapiro–Wilk test was used for assessing the normality of distribution of all parameters. Comparison of variables between two groups with normal distribution was carried out using independent samples *t*-test. Comparison of means of more than two groups was carried out using one-way analysis of variance with *post hoc* Tukey's HSD for data meeting the assumption of homogeneity of variances and *post hoc* Games–Howell

test for data violating the assumption of homogeneity of variances. Chi-square or Fisher's Freeman–Halton Exact tests by cross-tabulation were applied to compare frequencies. Spearman's rank correlation was used to assess strength and direction of association between depression level and anxiety level with serum cortisol levels. P < 0.05 was considered statistically significant.

RESULTS

This study was conducted to determine the levels of anxiety, levels of depression and serum cortisol level in OSMF and leukoplakia patients. After analyzing the tabulated data, the following results were obtained.

Of the included study patients, the mean age calculated was 33.56 ± 6.45 years; more males were diagnosed with both diseases than females. Gender distribution of patients showed that 81 (90%) were male and 9 (10%) were female. Of the enrolled patients, 60% had tobacco-related habits. Of all the recorded habits, 29 (48.3%) patients consumed gutkha or betelnut, 21 (35%) patients reported a cigarette smoking habit and only 10 (16.7%) patients reported smoking beedis (locally made cigarettes).

Distribution of study subjects according to the level of anxiety by HAM-A scale revealed that 22 (24.4%) patients had normal anxiety, 43 (47.8%) patients had mild anxiety and 25 (27.8%) had moderate anxiety. None of them had severe anxiety. Upon correlation, the mean serum cortisol level in patients with normal anxiety was 167.73 ± 30.55 nmol/L, mild anxiety was 350.18 ± 94.02 nmol/L and moderate anxiety was 478.55 ± 86.81 nmol/L and was statistically significant with P = 0.0001 [Table 1].

Among patients reporting normal anxiety levels, 22 (100%) were from Group III. Among patients suffering from mild anxiety, 15 (34.9%) were from Group I, 20 (46.5%) were from Group II and only 8 (18.6%) were from Group III. 15 (60%) patients with moderate anxiety levels were from Group I, while the remaining were from Group II, which was statistically significant with P=0.001 [Table 2]. The mean anxiety score was 18.30 ± 3.31 in Group I, 17.73 ± 3.38 in Group II and 7.60 ± 4.56 in Group III, which was statistically significant with P=0.0001 [Table 3].

Comparison of depression levels among study groups

Distribution of study subjects according to the level of depression by HAM-D scale revealed that 38 (42.3%) patients were recorded to have normal levels of depression, 25 (27.8%) patients had mild depression, 22 (24.4%) patients

had moderate depression, 3 (3.3%) had severe depression and 2 (2.2%) patients had very severe depression. The mean cortisol level was highest in patients with greater levels of depression and this result was statistically significant with P = 0.0001 [Table 4]. Of all the patients, a majority of patients with normal levels of depression (71.1%) were from the control group, while a majority of patients with mild depression (52%) were from Group II. Patients with moderate and very severe depression were equally distributed between Group I and II, while patients with severe depression (66.7%) were from Group II [Table 5]. The mean depression score was significantly increased in Group I and II with P = 0.0001 [Table 6].

Table 1: Comparison of serum cortisol level according to anxiety levels

Anxiety levels	n	Mean serum cortisol	One-way ANOVA		
		level (nmol/L), mean±SD	P	Significance	
Normal	22	167.73±30.55ª	0.0001	Significant	
Mild	43	350.18±94.02°			
Moderate	25	478.55±86.81°			

 $^{^{\}mathrm{a}}$ Games-Howell post hoc analysis, statistically significant at P < 0.05. SD: Standard deviation

Table 2: Comparison of anxiety levels among study subjects of all the groups

Group	P	nxiety lev	χ^2		
	Normal, n (%)	Mild, n (%)	Moderate, n (%)	P	Significance
Group I (OSMF)	0	15 (34.9)	15 (60.0)	0.001	Significant
Group II (leukoplakia)	0	20 (46.5)	10 (40.0)		
Group III (control)	22 (100.0)	8 (18.6)	0		
Total	22 (100.0)	43 (100)	25 (100.0)		

OSMF: Oral submucous fibrosis

Table 3: Comparison of mean anxiety score among study subjects of all the groups

3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1						
Groups	n	Mean anxiety	One-way ANOVA			
		score (mean±SD)	P	Significance		
Group I (OSMF)	30	18.30±3.31ª	0.0001	Significant		
Group II (leukoplakia)	30	17.73±3.38 ^b				
Group III (control)	30	7.60±4.56ab				

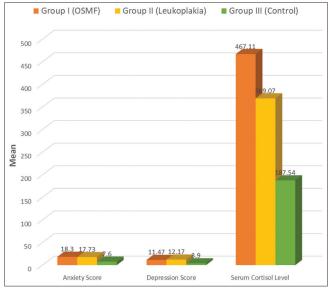
^{ab}Tukey HDS *post hoc* analysis, statistically significant at P<0.05. SD: Standard deviation, OSMF: Oral submucous fibrosis

Table 4: Comparison of serum cortisol level according to depression levels

Depression	n	Mean serum cortisol	One-	way ANOVA
levels		level (nmol/L), mean±SD	P	Significance
Normal	38	226.97±82.50 ^{abcde}	0.0001	Significant
Mild	25	362.44±74.45 ^{abcde}		
Moderate	22	462.05±92.56 ^{abce}		
Severe	3	512.18±101.14abd		
Very severe	2	662.06±39.01 ^{abce}		

 $^{^{}abcde}$ Tukey HDS $post\ hoc$ analysis, statistically significant at $P{<}0.05.\ SD:$ Standard deviation

Comparison of serum cortisol level among study groups


The mean serum cortisol level was highest in Group I (418.09 \pm 100.11 nmol/L) and least in Group III (187.54 \pm 43.32 nmol/L). This finding was statistically significant with P = 0.0001 [Table 6]. Serum cortisol levels were also significantly higher in tobacco users [Table 7].

Correlation of serum cortisol levels with anxiety and depression

A very high statistically significant strong positive correlation was found between anxiety, depression and serum cortisol levels [Table 8]. The mean anxiety score was found to be significantly higher in Group I (18.30 \pm 3.31) and Group II (17.73 \pm 3.38) when compared to Group III (7.60 \pm 4.56). Similarly, the mean depression score was significantly higher among the same groups. Comparison of mean serum cortisol level between three groups showed significantly high mean serum cortisol levels in Group I (467.11 \pm 93.89) and Group II (369.07 \pm 81.24) when compared to controls (187.54 \pm 43.33) [Tables 3 and 6 and Graph 1].

DISCUSSION

Cortisol is a vital catabolic hormone produced by the adrenal cortex of the kidney and is released in a diurnal fashion, with blood levels peaking in the morning to facilitate arousal and steadily declining thereafter. Cortisol is a key player in stress response. In the presence of a physical or psychological threat, cortisol levels surge to provide the energy and substrate necessary to cope with stress provoking stimuli or escape from

Graph 1: Comparison of mean anxiety score mean depression score and mean serum cortisol level among all the groups

Table 5: Comparison of depression levels and mean depression score among study subjects of all the groups

Group			Fisher Freema	n Halton exact test			
	Normal, <i>n</i> (%)	Mild, n (%)	Moderate, n (%)	Severe, n (%)	Very severe, n (%)	P	Significance
Group I (OSMF)	8 (21.0)	9 (36.0)	11 (50.0)	1 (33.3)	1 (50.0)	0.001	Significant
Group II (leukoplakia)	3 (7.9)	13 (52.0)	11 (50.0)	2 (66.7)	1 (50.0)		
Group III (control)	27 (71.1)	3 (12.0)	0	0	0		
Total	38 (100.0)	25 (100.0)	22 (100.0)	3 (100.0)	2 (100.0)		

OSMF: Oral submucous fibrosis

Table 6: Comparison of mean depression score and mean serum cortisol levels among the study subjects of all the groups

Groups	n	Mea	an±SD	One-way ANOVA		
		Mean depression score	Mean serum cortisol level (nmol/L)	P	Significance	
Group I (OSMF)			467.11±93.89 ^a 369.07±81.24 ^a		Significant	
Group II (leukoplakia) Group III (control)						

^{ab}Games-Howell *post hoc* analysis, statistically significant at P < 0.05. SD: Standard deviation, OSMF: Oral submucous fibrosis

Table 7: Comparison of serum cortisol level among tobacco users and nonusers

Tobacco	n	Mean serum cortisol level (nmol/L), mean±SD	Indepe	Independent sample t-test		
			P	Significance		
Users	60	418.09±100.11	0.0001	Significant		
Nonusers	30	187.54±43.32				

SD: Standard deviation

Table 8: Correlation between serum cortisol levels and anxiety and depression

Variables	n	Serum cortisol
Anxiety	Correlation coefficient	0.837*
,	Significance (two-tailed)	0.0001
	n	90
Depression	Correlation coefficient	0.784*
	Significance (two-tailed)	0.0001
	N	90

^{*}Correlation is significant at 0.01 level

danger. However, although a stress-induced increase in cortisol secretion is adaptive in the short term, excessive or prolonged cortisol secretion may have crippling effects, both physically and psychologically. [6] In stressful situations, there is an activation of the HPA axis causing the release of cortisol, a hormone which shows a complex action on the metabolism of carbohydrates, proteins and lipids, besides acting on inflammatory and immunological responses and has been used an as evaluator of stress in many studies. Stress is considered one of the main etiological factors in many diseases.[7] It has been established with reasonable certainty that both physical and mental stress were related to an increase in cortisol levels. The interrelationship between chronic illness and psychiatric morbidity is also well established.[2]

In the present study, a majority of Group I (OSMF) had mild and moderate anxiety, which is in accordance with the study conducted by Kanodia *et al.*,^[3] where a majority of OSMF patients had mild anxiety. There have been no studies conducted, reporting levels of anxiety in patients with leukoplakia. The present study recorded mild anxiety levels and higher mean anxiety scores in patients with leukoplakia when compared with the controls, while patients with OSMF had the highest mean anxiety scores of the 3 Groups. Our study reported very few patients with severe and very severe depression, which is again similar to a previous report.^[3]

The mean cortisol levels were highest in patients with very severe depression. Group I had increased mean depression scores when compared to the control group. In the present study, Group II or patients with leukoplakia showed the highest intergroup mean depression score. Depression levels in patients with leukoplakia have not been reported for comparisons if any, with the current study.

A very high statistically significant and strong positive correlation was found between anxiety, depression and serum cortisol levels in patients with OSMF and leukoplakia. Such a relationship between increased depression with a concomitant increase in serum cortisol levels has been documented.[8] The increased depression and anxiety levels could be multifactorial and also be associated with symptoms of OSMF such as restricted mouth opening, inability to eat or chew various foods and speech problems. Substantiation of this requires more specific and detailed psychiatric evaluations. It could also result due to a stimulatory effect of depression on the hypothalamus pituitary adrenal axis, which increases the production of corticotropin-releasing hormone, leading to increase in serum cortisol level. Any disclosure of information regarding the presence of a PMD could itself result in anxiety and depression and requires further investigation to substantiate the same. It has been reported that psychiatric morbidity was found to be increased in patients with advanced stages of disease and up to moderate level of depression was seen in a majority of patients with OSMF.[9,10] This is similar to the present study where a strong association was found between psychiatric morbidity and advanced stages of OSMF and leukoplakia. Present lifestyle patterns exhibit addictive habits to deleterious substances such as smoking, consumption of gutkha and tobacco and the frequency of these habits may increase with a concomitant increase in stress, which also increases the prevalence of PMDs.^[11] It may therefore be said with reasonable certainty that an assessment of psychiatric morbidity would reflect the patients mental state, while the estimated levels of serum cortisol would indicate the stress pattern in these diseases. Both of these parameters could help in both early diagnosis and possible prevention of a life-threatening disease such as cancer. Hence, apart from diagnosis of these diseases, required psychological counseling should also be mandatorily added in the treatment regime.

CONCLUSION

The findings from our study revealed that there is a strong association between psychiatric morbidity like anxiety, depression, in patients with advance stages of OSMF and leukoplakia with a similar increase in serum cortisol levels. These levels also positively correlated with advanced stages of disease. It can therefore be concluded that there exists a strong positive correlation between serum cortisol level, anxiety level and depression level in patients with habit-oriented diseases like OSMF and leukoplakia. Till date, there have been no such studies in patients with leukoplakia, which is a prevalent PMD in India. Further studies with larger sample sizes would help in the correlation of other neuroendocrinal abnormalities among patients with other PMDs.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Aslam A, Hassan SH, Khan DA, Chaudhary MA. Psychological stress associated with aphthous ulcers and temporomandibular disorders. PAFMJ 2017;67:453-7.
- Sonal SS, Rakhi CM, Sunita KP. Stress evaluation using das scale and salivary cortisol in patients with oral lichen planus, oral submucous fibrosis, leukoplakia and squamous cell carcinoma. Int J Adv Res 2016;4:1049-55.
- Kanodia S, Giri VP, Giri OP, Devi MP, Garima Y. Assessment of anxiety, depression, and serum cortisol level in oral submucous fibrosis patients: A controlled clinical trial. Eur J Dent 2017;11:293-8.
- Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol 1959;32:50-5.
- Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56-62.
- Hannibal KE, Bishop MD. Chronic stress, cortisol dysfunction, and pain: A psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys Ther 2014;94:1816-25.
- Dagli RJ, Kumar S, Mathur A, Balasubrimanyam G, Duraiswamy P, Kulkarni S. Prevalence of leukoplakia, oral submucous fibrosis, papilloma and its relation with stress among green marbles mine laborers, India. Med Oral Patol Oral Cir Bucal 2008:13:E687-92.
- Shabaan MA, Shabaan I, Alatram AR, Gad EF. The relationship of serum cortisol levels with severity of depression and age in severe depression. Al Azhar Assiut Med J 2015;13:79-82.
- Kasturkar PR, Nagrale P, Patil M. Assess the level of depression among oral submucous fibrosis (OSMF) patients. Eur J Mol Clin Med 2020;7:2542-50.
- Mubeen K, Kumar CN, Puja R, Jigna VR, Chandrashekar H. Psychiatric morbidity among patients with oral sub-mucous fibrosis: A preliminary study. J Oral Pathol Med 2010;39:761-4.
- Baumeister RF. Addiction, cigarette smoking, and voluntary control of action: Do cigarette smokers lose their free will? Addict Behav Rep 2017;5:67-84.