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Abstract

Recent theoretical studies have proposed that the redundant motor system in humans achieves well-organized
stereotypical movements by minimizing motor effort cost and motor error. However, it is unclear how this optimization
process is implemented in the brain, presumably because conventional schemes have assumed a priori that the brain
somehow constructs the optimal motor command, and largely ignored the underlying trial-by-trial learning process. In
contrast, recent studies focusing on the trial-by-trial modification of motor commands based on error information
suggested that forgetting (i.e., memory decay), which is usually considered as an inconvenient factor in motor learning,
plays an important role in minimizing the motor effort cost. Here, we examine whether trial-by-trial error-feedback learning
with slight forgetting could minimize the motor effort and error in a highly redundant neural network for sensorimotor
transformation and whether it could predict the stereotypical activation patterns observed in primary motor cortex (M1)
neurons. First, using a simple linear neural network model, we theoretically demonstrated that: 1) this algorithm consistently
leads the neural network to converge at a unique optimal state; 2) the biomechanical properties of the musculoskeletal
system necessarily determine the distribution of the preferred directions (PD; the direction in which the neuron is maximally
active) of M1 neurons; and 3) the bias of the PDs is steadily formed during the minimization of the motor effort.
Furthermore, using a non-linear network model with realistic musculoskeletal data, we demonstrated numerically that this
algorithm could consistently reproduce the PD distribution observed in various motor tasks, including two-dimensional
isometric torque production, two-dimensional reaching, and even three-dimensional reaching tasks. These results may
suggest that slight forgetting in the sensorimotor transformation network is responsible for solving the redundancy
problem in motor control.
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Introduction

The motor system exhibits tremendous redundancy [1]. For

example, an infinite number of muscle activation patterns can

generate a desired joint torque because multiple muscles span a

single joint; moreover, several combinations of neuronal activity in

the motor cortex can achieve exactly the same muscle activation

pattern. Nevertheless, strongly stereotypical patterns are observed

in the activity patterns of neurons in the primary motor cortex

(M1) [2–6] as well as those of the muscles [7–11]. How, then, does

the motor system select such stereotypical behavior from an

infinite number of possible solutions?

The hypothesis that the brain selects a solution that minimizes

the cost of movement has long been proposed [12,13]. Recent

studies have indicated that various aspects of motor control, such

as trajectory formation and the selection of a muscle activation

pattern, can be reproduced when the motor command is

constructed to minimize the cost J [10,14,15], as expressed by:

J~cost of movement accuracy e:g:, errorð Þz

cost of motor effort
ð1Þ

With regard to the movement accuracy, it is widely accepted that

information on movement error is available to the brain [16–21].

In contrast, there is no evidence indicating that the brain explicitly

computes the cost of motor effort across a vast number of neurons

and muscles (i.e., the sum of the squared activity) [22]. Some

theoretical studies have proposed that the brain can implicitly

minimize the motor effort cost by minimizing the variance of

motor performance in the presence of signal-dependent noise

(SDN) [23,24]. This theory has attracted widespread interest

because the minimization of variance is more biologically plausible

than the explicit minimization of the motor effort cost. However,

there is still no evidence indicating that a statistical quantity such

as variance is represented in the brain [25,26]. Thus, it is unknown

how the optimization process that minimizes the cost function J is

implemented in the brain.

It should be noted that these conventional optimization studies

tacitly assume that the brain somehow constructs a motor

command that theoretically minimizes the cost function, and

largely ignored the underlying trial-by-trial learning process [8–

13,23,24,27,28]. In contrast, recent studies that focused on the

trial-by-trial modification of motor commands suggested that

forgetting (i.e., synaptic weight decay) is helpful for minimizing the
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motor effort cost without an explicit calculation of a complex

quantity (i.e., sum of squares) [29–35]. Although the ‘‘weight

decay method’’ has been used as a technical method in the

machine-learning community since the 1980s to suppress irrele-

vant connections in a neural network and to improve the network’s

generalization ability [36–39], it is only recently that its potential

for solving the redundancy problem in the context of motor

control began to be investigated. Importantly, Emken et al. [32]

demonstrated that trial-by-trial error-feedback learning with

forgetting minimizes a cost function that is the weighted sum of

motor error and motor effort. However, since the authors

formulated their motor learning scheme with only a single lumped

muscle (i.e., a non-redundant actuator), their model cannot predict

the activation patterns of individual muscles. Burdet et al. and

Franklin et al. also proposed a similar but more elaborate

algorithm (the V-shaped learning function) and showed that it

could predict the evolution of the activity of individual muscles

that was actually observed when human subjects learn to perform

movements in novel dynamic environments [29,34,35]. This

algorithm has been also used to realize human-like adaptive

behavior in robots [40,41].

However, it is unknown whether the decay algorithm could

minimize the cost (J) in a highly redundant neural network that

includes M1 neurons and whether it can predict the activation

patterns of M1 neurons. Neurophysiological studies reported that

the preferred direction (PD; the direction in which the neuron is

maximally active) of M1 neurons was stereotypically biased toward

a specific direction [2–6]. Although a conventional optimization

study suggested that the bias is a result of the minimization of the

cost (J) [27], it is unclear how the two terms of the cost function (i.e.,

error and effort) are minimized on a trial-by-trial basis and how the

PD bias of M1 neurons is formed during the optimization process.

To gain insight into these mechanisms, we conducted computer

simulations of motor learning by applying the ‘‘feedback-with-

decay’’ algorithm to a redundant neural network model for

sensorimotor transformation. First, we used a simple linear model

to gain a firm theoretical understanding of the effect of the decay on

the minimization of the cost (J) and the formation of the PD bias.

Then, using a non-linear network model with realistic musculo-

skeletal data, we examined numerically whether this algorithm

could predict the PD bias reported in various motor tasks. Our

simulations revealed that the ‘‘feedback-with-decay’’ algorithm

could consistently reproduce the PD distribution observed during

various motor tasks, including a 2D isometric torque production

task and a reaching task, and even a 3D reaching task.

Results

Linear neural network model
As a simple example of a redundant motor task, we considered a

task that requires the production of torque in a two-joint system

with redundant actuators (Figure 1A, B). To demonstrate clearly

the effect of weight decay, we initially used a simple linear feed-

forward neural network that transforms the desired torque (input

layer) into actual torque (output layer) through an intermediate

layer that consisted of 1000 neurons (Figure 1B). Each neuron in

the intermediate layer received a desired torque vector (t) from the

input layer with a synaptic weight (W) that could be modified with

learning. The activation level (r) was linearly dependent on the

input torque vector (i.e., r = Wt), indicating that it obeys cosine

tuning. Each neuron generated its own 2D torque vector

(mechanical torque direction vector: MDV) that was predeter-

mined by its connection strength (M) with the output layer. The

total output of the network (T) was the vector sum of the output

from all neurons. The MDVs were biased toward the first and

third quadrants in the torque space (dots for M in Figure 1C). The

network was trained to produce appropriate output torque by

randomly presenting 8 target torques (Figure 1A) over 40,000

trials. An error back-propagation algorithm [42] was successively

used to modify the synaptic weight (W), while the MDV matrix

(M) was held constant.

First, we considered the case where the synaptic weights are

solely modified to reduce the error, according to the following

equation:

DWij~{a
LJe

LWij

ð2Þ

where a is the learning rate and Je is the error cost, as calculated by

the error vector (e = T2t) between the output and the desired

torque: Je = 1/2eTe. The error gradually decreased and ap-

proached zero at around the 500th trial (Figure 2A). Once the

error converged to zero, further synaptic modifications did not

occur in this model (i.e., the PDs did not change after the 500th

trial, Figure 2E), as schematized in Figure S1A. Thus, the cost of

the motor effort (the sum of the squared neural activity) did not

achieve an optimal level, and the converged states depended on

the initial settings for the synaptic weight (Figure 2C; the different

colors represent the different initial states). The distribution of the

PDs in the converged state also depended on the initial synaptic

weight (see polar histograms in Figure 2C). When uncertainty was

introduced into the system (i.e., the existence of noise in execution

and synaptic modification), the results were almost identical

(Figure S2A–C). The synaptic weights randomly moved back and

forth along a null trajectory satisfying zero movement error (Figure

S2D), which is the natural consequence of redundancy in the

motor system [43].

However, the situation was considerably different when

modification of the synaptic weights based on error feedback

was not perfect, but incorporated weight decay, as follows:

DWij~{a
LJe

LWij

{bWij ð3Þ

where b indicates the decay in motor learning and has a small

positive value (b = 1.061024). In this model, the sum of the

Author Summary

It is thought that the brain can optimize motor commands
to produce efficient movements; however, it is unknown
how this optimization process is implemented in the brain.
Here we examine a biologically plausible hypothesis in
which slight forgetting in the motor learning process plays
an important role in the optimization process. Using a
neural network model for motor learning, we initially
theoretically demonstrated that motor learning with a
slight forgetting factor consistently led the network to
converge at an optimal state. In addition, by applying the
forgetting scheme to a more sophisticated neural network
model with realistic musculoskeletal data, we showed that
the model could account for the reported stereotypical
activity patterns of muscles and motor cortex neurons in
various motor tasks. Our results support the hypothesis
that slight forgetting, which is conventionally considered
to diminish motor learning performance, plays a crucial
role in the optimization process of the redundant motor
system.

Forgetting Optimizes Sensorimotor Learning
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squared neural activity converged at an optimal value regardless of

the initial synaptic weight (Figure 2D). Importantly, the distribu-

tion of the PDs also converged on the same distribution (Figure 2D,

* indicates a significant bimodal distribution revealed by the

Rayleigh test, P,0.05). Why did such a convergence occur?

Intuitively, but not mathematically rigorous, this was because,

even after error convergence, the synaptic decay term (-bWij)

continued to induce a very small error. To reduce this small error,

the error-feedback term continuously and gradually modified the

synaptic weight; as a result, the neuron PDs (Figure 2F) and the

distribution of the PDs (polar histogram in Figure 2D) continued to

change, until the synaptic weight converged on the optimal state.

In mathematical terms, the modification of the synaptic weights

based on the feedback-with-decay rule (Eq. (3)) is similar to the

gradient descent rule for minimizing the cost function J, which is

the weighted sum of the error cost (Je) and the motor effort cost

(Jm):

J~aJezbJm

~a
1

2
eT e

� �
zb

1

2
rT r

� � ð4Þ

as the gradient descent rule for minimizing J is expressed by:

DW~{a
LJe

LW
{bWttT ð5Þ

However, it should be noted that Eqs. (3) and (5) do not necessarily

minimize the expected value of the cost J (i.e., E[J]). The reason

why we should consider E[J] rather than J itself is that the optimal

solution for the biological system should globally minimize the cost

J for whole movement directions (see Supporting Text S1).

Hereafter, the optimal solution means that it minimizes E[J]. In

this study, we theoretically proved that the modification rule [Eq.

(3)] leads to optimal synaptic weight among many solutions that

satisfy zero error under several necessary conditions (see Support-

ing Text S1): first, the decay rate (b) must be much smaller (i.e.,

slower) than the learning rate (a) (condition #1); second, there

must be a large number of neurons, each of which generates a

quite small output relative to the desired torque magnitude

(condition #2); and third, more than two different and indepen-

dent targets must be practiced (condition #3).

Furthermore, we have also proven that the synaptic weight

matrix (W) converges to a unique pseudo-inverse of the matrix M
that consists of the MDVs from all of the actuators (see Supporting

Text S1).

W(t)?MT (MMT ){1 (t??)

As the synaptic weight matrix determines the PDs of the neurons,

the inverse relationship between W and M indicates that the

distribution of the PD vectors (PDVs) was orthogonal to that of the

MDVs. Therefore, when the distribution of the MDVs is biased

toward the 1st and 3rd quadrants, the distribution of the converged

PDVs should be biased toward the 2nd and 4th quadrants

(Figure 1C).

The above results indicate three important points regarding the

‘‘feedback-with-decay’’ rule. First, the optimal solution can be

obtained using only trial-based error information, without the

explicit calculation of the sum of the squared neural activity.

Second, the biomechanical properties of the actuators (i.e., MDVs)

necessarily determine the neuronal recruitment pattern (i.e.,

PDVs). Third, the optimal PD bias is steadily formed during the

minimization of the motor effort.

Another interesting observation regarding the formation of the

bias of the PDs is that when the initial synaptic weight is relatively

small (see cyan trace in Figure 2C), even the ‘‘feedback-only’’ rule

predicted a PD bias that is similar to the optimal PD bias predicted

by the ‘‘feedback-with-decay’’ rule (Figure 2D). By assessing the

underlying mechanism mathematically, we found that if a large

number of neurons participate in the task (condition #2), the

‘‘feedback-only’’ rule leads the synaptic weight W to converge on:

W(t)?AW(0)zMT (MMT ){1 (t??)

where A (?0) is a matrix that never increases |W(0)| and always

satisfies MAW(0) = 0 (see Supporting Text S1). This result indicates

that if the initial synaptic weight matrix (W(0)) is considerably

smaller than the pseudo-inverse matrix (MT(MMT)21) (condition

#4), the converged PD bias is dominated by the PD bias of the

pseudo-inverse. Thus, if conditions #2 and #4 are satisfied, even

the ‘‘feedback-only’’ rule can predict the approximate direction of

the optimal PD bias, even though the converged synaptic weight

matrix is not optimal.

Figure 1. Motor task and redundant neural network. (A) Eight
targets that were uniformly distributed in the 2D torque plane were
used to train the network. (B) A linear neural network model that
transforms the desired torque (input layer) into actual torque (output
layer) through 1000 neurons (intermediate layer). (C) The dots for M
indicate the distribution of the mechanical direction vectors (MDVs) for
the 1000 neurons. The dots for W indicate the distribution of the
synaptic weight for the 1000 neurons after learning through error
feedback with weight decay. When the distribution of the MDVs is
biased toward the 1st and 3rd quadrants, W converges so that the PD
distribution is biased toward the 2nd and 4th quadrants, which is
orthogonal to the distribution of the MDVs.
doi:10.1371/journal.pcbi.1002590.g001

Forgetting Optimizes Sensorimotor Learning
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In summary, in the linear neural network model, the ‘‘feedback-

with-decay’’ rule consistently leads to the optimal synaptic weight

and the optimal PD bias, whereas the ‘‘feedback-only’’ rule only

predicts the approximate direction of the optimal PD bias in

limited conditions.

Non-linear neural network model with a muscle layer
Next, we examined whether these aspects hold true in non-

linear neural network models that additionally include a muscle

layer whose activity (a) was constrained as positive (i.e., muscles do

not push) (Figure 3A). Here, it is assumed that the 2nd neural layer

consists of corticospinal neurons in M1; however, since M1

actually includes inhibitory interneurons, the layer cannot be

regarded as a real M1. Nevertheless, we modeled the neural

network incorporating the properties of actual M1 neurons to gain

an insight into how the corticospinal neurons are recruited under

the feedback-with-decay rule.

Firstly, each corticospinal neuron receives the desired move-

ment parameters from the input layer and their firing rate obeys

cosine tuning [44]. Secondly, each corticospinal neuron innervates

multiple muscles [45–48]. Considering that there are two types of

corticospinal neurons [49], one type has direct connections with

motoneurons (i.e., cortico-motoneuronal neurons) while the other

type indirectly influences motoneurons through spinal interneu-

rons, the innervation weight from the neurons to the muscles (Z) is

allowed to take positive and negative values. At present, it is

assumed that innervation is random and does not have any bias to

specific muscles. It is also assumed that the innervation weight (Z)

is constant through time [50], although this is controversial [51].

These assumptions considerably simplified the model and allowed

us to gain a clear insight into the formation of neuronal PDVs

relative to the MDVs. Thirdly, the mechanical pulling direction

vectors of muscles (M) were determined by the muscle parameters

(e.g., moment arm) derived from a realistic musculoskeletal model

[52,53]. M was also kept constant because we only examined the

static aspect of movement, e.g., isometric force production or the

initial ballistic phase of reaching movements. By simulating these

tasks with this network model, we examined whether the feedback-

with-decay rule accounts for the reported activation patterns of

muscles and M1 neurons.

Isometric torque production task. First, we simulated the

isometric torque production task with a two-joint system (shoulder

and elbow) conducted by Herter et al. [2]. The simulation was

conducted with 1000 neurons and 8 muscles. Figure 3B shows the

MDVs of the muscles in the shoulder-elbow torque plane. Due to

the presence of biarticular muscles, the distribution of the MDVs

was biased toward the 1st and 3rd quadrants (Figure 3B). The

assumption that neurons in the 2nd layer randomly innervate these

muscles led to a biased distribution of the neuronal MDVs toward

the same quadrants (Figure 3C). We trained the network using the

Figure 2. Comparison between the feedback-only and feedback-with-decay rules. Trial-dependent changes in the magnitude of error (A,
B), the sum of the squared neural activity (C, D) averaged across the 8 target conditions, and the PDs of 10 randomly selected neurons (E, F), when
the synaptic weight was modified with feedback-only (A, C, E) or feedback-with-decay rules (B, D, F). (C, D) The 4 colored lines indicate the changes
when various initial synaptic weight conditions were used (see Methods). The distributions of the neuronal PDs at 500th and 40,000th trial for each
simulation are shown as polar histograms. The horizontal black line indicates the optimal value calculated analytically as the pseudo-inverse matrix of
M.
doi:10.1371/journal.pcbi.1002590.g002

Forgetting Optimizes Sensorimotor Learning
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‘‘feedback-only’’ rule and the ‘‘feedback-with-decay’’ rule, and

found that the results were similar to those observed in the linear

model. When the decay was incorporated, we found that the

motor effort converged on a similar value, irrespective of the initial

synaptic weights after the error converged to almost zero

(Figure 4B, 4D). In addition, the synaptic weights converged so

that the PDs of the neurons in the 2nd layer were bimodally

distributed toward the 2nd and 4th quadrants (Figure 3F, 3G, 4D),

which was orthogonal to the distribution of the MDs (Figure 3C).

In contrast, when the decay was not incorporated, the PD

distribution in the converged state depended on the initial synaptic

weights (Figure 4C). Thus, our numerical simulation demonstrated

that the important points obtained in the linear model were also

qualitatively true in the non-linear model. The difference from the

linear model was that some neurons change their PDs after the

error converged to almost zero under the ‘‘feedback-only’’ rule

(Figure 4E), which would be because there was no synaptic weight

matrix that strictly satisfies zero error in the case of the non-linear

model. The ever-changing PDs somehow contributed to increas-

ing the sum of the squared muscle activity (Figure 4G). The

‘‘feedback-with-decay’’ rule was also advantageous for the

suppression of muscle activity (Figure 4H), but the effect was

not intense; indeed, even the ‘‘feedback-only’’ rule predicted

roughly similar muscle PDs (Figure 4G) as the ‘‘feedback-with-

decay’’ rule (Figure 4H). It is also notable that the formation of

the PDs of muscles (Figure 4H) was achieved relatively earlier

than that of the PD bias of the neurons (Figure 4D) and that the

sum of the squared muscle activities were almost the same among

all 4 simulations (Figure 4H), irrespective of the large differences

in the norm of neural activities (Figure 4D). This may indicate

that most of the neural activities cancel each other out at the

muscle level to produce similar muscle activation patterns, which

is possible because the dimension of neural activity far exceeds

that of muscle activity. This may suggest that in such a redundant

situation, minimization of neural effort and formation of the

optimal PD bias may not be accomplished only by minimizing

muscle effort via monitoring the metabolic energy consumed by

the muscles.

Figure 3. Simulation results for the shoulder and elbow torque exertion task. (A) Neural network model with a muscle layer. The model
consists of an input layer, a 2nd layer of 1000 neurons, a 3rd layer of 8 muscle groups at the shoulder and elbow joints, and an output layer. (B) The
mechanical direction vectors (MDVs) for the 8 muscle groups. SFi, inner shoulder flexor (blue); SFo, outer shoulder flexor (light blue); SEi, inner
shoulder extensor (orange); SEo, outer shoulder extensor (yellow); EF, elbow flexor (green); EE, elbow extensor (magenta); BiF, biarticular flexor (cyan);
and BiE, biarticular extensor (red). (C) Distribution of the MDVs for the 1000 neurons in the 2nd layer. (D) PDs plotted against MDs. (E) PDs for the 8
muscles after learning. (F) Distribution of the synaptic weight (i.e., PDVs) for the 1000 neurons after learning. (G) Polar histogram of the neuron PDs
after learning.
doi:10.1371/journal.pcbi.1002590.g003
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Interestingly, the predicted PD distribution (Figure 3G) was in

agreement with that for M1 neurons in monkeys [2], irrespective

of the fact that the corticospinal neurons in our model were only a

subset of M1. The bimodal axis of the predicted PD distribution

(h= 121.1u) was within the 99.99% confidence interval of the axis

(118.9–158.11u) estimated from the monkeys data [2]. In addition,

the resultant vector length (R = 0.162), which represents the

strength of the bias, was also within the 99% confidence interval

(0.147–0.40). Furthermore, our simulation also predicted the

misalignment of muscle MD and PD, which is a key feature of the

muscle recruitment pattern [7–10], i.e., muscle PDs are located so

that they compensate for the sparse part of the MD distribution in

the torque space. Thus, even a mono-articular muscle’s activation

level depends not only on the joint torque but also on the torque of

the joint that it does not span (Figure 3E) [8,9,54]. Although this

misalignment has been considered as a consequence of the

minimization of the sum of the squared muscle activity [8–11], the

feedback-with-decay rule could predict it without an explicit

calculation of the sum of the squared muscle activity.

Thus, error-based learning with slight forgetting seems to

predict the non-uniform PD distribution of M1 neurons; however,

what happens if forgetting is not slight? Theoretical considerations

suggest that a relatively larger decay rate led to the system

assigning much more weight to minimize the motor effort cost (Jm)

than the error cost (Je). Figure S3 shows the results of simulations

conducted with relatively large decay rates that were 5, 10, and 20

times larger than the original b. As expected, as the decay rate

increased, the motor effort decreased (Figure S3B, S3C) more than

Figure 4. Changes in the error and neural activity for the shoulder and elbow torque exertion task. Trial-dependent changes in the
magnitude of error (A, B), the norm of the neural activity averaged across the 8 target conditions (C, D), the PDs of 10 randomly selected neurons (E,
F), and the sum of the squared muscle activity averaged across the 8 target conditions (G, H), when the synaptic weight was modified with the
‘‘feedback-only’’ (A, C, E, G) or ‘‘feedback-with-decay’’ rules (B, D, F, H). (C, D) The distributions of the neuronal PDs at the 3000th and 40,000th trials
for each simulation are shown as polar histograms. (G, H) The distributions of the muscle PDs at the 3000th and 40,000th trials for simulations
represented by the cyan and red traces in C and D, respectively, are shown.
doi:10.1371/journal.pcbi.1002590.g004

Forgetting Optimizes Sensorimotor Learning
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necessary to keep the error almost zero, leading to a gradual

increase of the converged error level (Figure S3A). Notably, the

biased PD distribution gradually disappeared (Figure S3D), clearly

indicating that the biased PD distribution emerges as a

consequence of effective error-feedback with ‘‘slight’’ forgetting.

Initial phase of a reaching movement. Next, we examined

whether the weight decay rule can predict the characteristic bias of

the PD distribution of M1 neurons observed during the reaction

time period before reaching movements. Since the activity of M1

neurons just before reach initiation would reflect the activity

necessary to produce the initial acceleration, we focused on the

initial ballistic phase of a reaching movement. To mimic the initial

phase, we modified the network by replacing the ‘‘desired torque’’

in Figure 3A with a ‘‘desired linear acceleration’’ of the fingertip in

extrinsic space. In this case, the input layer can be considered as

the premotor cortex, which represents the desired movement

direction in extrinsic space [55], and the muscles can be viewed as

linear accelerators of the fingertip (Figure 5A and 6A).

First, we simulated the reaching task with a two-joint system in a

horizontal plane described by Scott et al. [3]. The muscle MDVs

in a linear acceleration space (i.e., extrinsic space; Figure 5A) was

calculated on the basis of the initial limb configuration used in the

previous study [27] and the muscle MDVs in the joint torque

space (Figure 3B). The MDVs of the muscles and neurons were

much more skewed toward the 1st and 3rd quadrants than the

torque space (Figure 5A, 5B). We trained the network using the

‘‘feedback-only’’ rule and the ‘‘feedback-with-decay’’ rule, and

found that the results were similar to those observed in the linear

model. When the decay was incorporated, we found that the

distribution of the PDs of the muscles and neurons converged to a

much more skewed distribution toward the 2nd and 4th quadrants

in linear acceleration space (Figure 5D–F) than that observed in

the torque space (Figure 3E–G). These features were in agreement

with data from monkeys that were recorded during the reaction

time period before reaching [2]. The bimodal axis of the predicted

PD distribution (h= 125.0u) was within the 95% confidence

interval of the axis (109.6–127.4u) estimated from the monkeys’

data [3]. The resultant vector length (R = 0.507) was within the

99.5% confidence interval (0.19–0.51).

The model was further extended to 3D reaching movements.

Figures 6A and 6B show the MDVs for these muscles in linear

acceleration space. Although there are strong muscles that

accelerate the fingertip toward the right (+z) and left (2z),

backward and upward (2x and +y), and forward and downward

(+x and 2y) directions, there are a few weak muscles that

accelerate the fingertip toward the forward and upward (+x and

+y) or backward and downward (2x and 2y) directions. If

neurons randomly innervate these muscles, the neuronal MDVs

will have a similar distribution as the muscle MDVs. The network

trained with the ‘‘feedback-with-decay’’ rule demonstrated that the

distribution of PDVs was enriched in the forward and upward

directions (Figure 6A) and in the backward and downward

directions (Figure 6C). This is in qualitative agreement with the

PDV distribution of M1 neurons recorded in monkeys during the

reaction-time period of 3D reaching movements [4]. Although this

previous study suggested that the PD distribution of the M1

neurons was supposedly associated with feeding behavior (i.e., the

monkeys tended to reach in the forward and upward directions

more frequently) [4], our scheme suggests that the PD distribution

reflects the biomechanical properties of the musculoskeletal

system. To examine whether the PD distribution is influenced

by a spatial bias of the reaching direction during learning, we

conducted simulations with four different probability conditions

for target appearance. In all simulations, the PDs converged to the

same distribution that was predicted by the biomechanical

properties.

Figure 5. Simulation results for the 2D reaching movements. (A) MDVs for the 8 muscle groups. SFi, inner shoulder flexor (blue); SFo, outer
shoulder flexor (light blue); SEi, inner shoulder extensor (orange); SEo, outer shoulder extensor (yellow); EF, elbow flexor (green); EE, elbow extensor
(magenta); BiF, biarticular flexor (cyan); and BiE, biarticular extensor (red). (B) Distribution of the MDVs for 1000 neurons. (C) PDs plotted against MDs.
(D) PDs of the 8 muscles after learning. (E) Distribution of the PDVs for 1000 neurons after learning. (F) Polar histogram of the neuronal PDs after
learning.
doi:10.1371/journal.pcbi.1002590.g005
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Discussion

Trial-by-trial learning with slight forgetting
It has long been hypothesized that well-organized stereotypical

movements are achieved by minimizing the cost (J), which

includes the motor error and the variables related to the motor

effort (e.g., jerk, torque change, sum of squared muscle activity,

and variance of error) [12–15,23]. It has also been shown that such

an optimization model can predict the bias of the PDs of muscles

and M1 neurons observed in primate and human experiments [8–

10,24,27]. However, most of the previous optimization studies

have examined only the resultant state obtained by the optimi-

zation process and largely ignored the underlying trial-by-trial

learning process. Therefore, it is unclear how the cost function (J)

is minimized on a trial-by-trial basis and how the PD biases are

formed during optimization.

A small number of previous studies have proposed a mechanism

for how the cost of the motor effort is minimized in the brain on a

trial-by-trial basis. Kitazawa [26] proposed the ‘‘random work

hypothesis’’ in which, in the presence of SDN, the system

gradually approaches the optimal state only by successively

feeding back trial-based error information. However, there is no

guarantee of convergence with the optimal state, especially for

highly redundant systems. Indeed, in our highly redundant neural

network (n = 1000) with SDN, but without synaptic decay, the

synaptic weights were captured at a suboptimal level (Figure S2B).

Even when the system was small (n = 2), consistent convergence

did not occur (Figure S2D).

In contrast, recent studies have suggested that forgetting might

be useful to minimize the motor effort [29–35]. Emken et al. [32]

demonstrated that trial-by-trial error-feedback learning with

forgetting is mathematically equivalent to the minimization of

error and effort by formulating the force adaptation task during

gait, although their formulation was limited to the case of a single

lumped muscle system (i.e., a non-redundant actuator system). An

important prediction from this scheme is that the motor system

continuously attempts to decrease the level of muscle activation

when the movement error is small [30–33]. Such a decrease in

muscle activity was actually observed when human subjects

learned to perform movements in a novel force field environment;

initially, muscle activity was increased to reduce the movement

error produced by the force perturbation, but once the error

decreased to a small value, the muscle activity was gradually

decreased [56,57]. Burdet et al. and Franklin et al. [29,34,35]

showed that a simple learning rule that incorporates the decay of

muscle activity can precisely predict such a specific pattern of

change in individual muscle activity during adaptation to various

force fields.

Figure 6. Simulation results for 3D reaching movements. (A) The arrows indicate the muscle MDVs in linear acceleration space. DP, posterior
part of deltoid; DM, middle part of deltoid; DA, anterior part of deltoid; PM, pectoralis major; Cb, coracobrachialis; LD, latissimus dorsi; TMa, teres
major; TMi, teres minor; Is, infraspinatus; Sb, subscapularis; Sp, supraspinatus; BS, short head of the biceps; BL, long head of the biceps; B, brachialis;
Br, brachioradialis; TLa, lateral head of the triceps; TMe, medial head of the triceps; and TLo, long head of the triceps. The color gradations indicate the
PD density at each point or the number of PDVs within the cone whose semi-angle is 20u. (B) Muscle MDVs viewed in the sagittal (x-y) plane. (C) PD
density viewed from behind the body.
doi:10.1371/journal.pcbi.1002590.g006
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The present study further applied the ‘‘feedback-with-decay’’

algorithm to the sensorimotor transformation network, which

includes M1 neurons. We initially used a linear neural network

and theoretically derived the necessary conditions for convergence

on the optimal state. Importantly, these conditions seem to be

satisfied in the actual brain. First, the decay rate is known to be

much smaller than the learning rate [58]; second, a very large

number of M1 neurons actually participate in a single motor task;

and third, multiple targets are practiced in real life. Furthermore,

using a more realistic non-linear network model, we also

confirmed consistent convergence that was irrespective of the

initial synaptic weight and spatial bias of the movement directions

during practice. These results indicate that weight decay is a more

promising process than SDN for a motor system to resolve the

redundant actuator problem.

The ‘‘feedback-with-decay’’ rule can be considered as biolog-

ically plausible in that it does not need to explicitly calculate the

sum of the squared neural activity (total effort cost) by gathering

activity information from a vast number of neurons. Since weight

decay in each synapse could occur independently of other

synapses, a global summation across all neurons would not be

needed. Using a framework of weight decay, it would be possible

for the CNS to minimize even the motor effort cost during

movement of the whole body. One may argue that since we

perceive tiredness, the brain must compute the total energetic cost

(or motor effort cost); however, to the best of our knowledge,

individual neurons that encode the total energetic cost have not

been discovered. It is rather likely that such a physical quantity is

represented by a large number of distributed neurons in the brain

and this distributed information may be perceived as tiredness.

Since it is unclear whether the total energetic cost could be readout

from such distributed information, decay would be a more

promising mechanism for minimizing motor efforts. Furthermore,

our simulation results indicate that the formation of an optimal PD

distribution pattern for M1 neurons was not necessarily accom-

panied with the realization of a nearly optimal muscle activation

pattern (compare Figure 4D with Figure 4H), suggesting that

optimization of motor effort at the neural level could not be

accomplished by minimization of muscle effort by monitoring the

metabolic energy consumption in the muscles.

Although we referred to the ‘‘feedback-with-decay’’ algorithm

as biologically plausible, it should be noted that our simulation

algorithm is not fully biologically plausible because it still depends

on an artificial calculation (i.e., error back-propagation). Although

it is well established that error information is available to the

cerebellum [16–21], it is unclear how such information is used to

modify the activity of individual M1 neurons in the next trial; that

is, it is unclear how gradients of error are calculated. Determining

a biologically plausible model that does not depend on an artificial

calculation remains a major challenge in the field of motor control

and learning.

Stereotypical activity patterns of muscles and M1
neurons

The important point of the present study is that we theoretically

proved that the ‘‘feedback-with-decay’’ rule consistently leads the

PDs of M1 neurons to converge at a distribution that is orthogonal

to the MD distribution. Although Guigon et al. [27] reproduced

the skewed PD distribution of M1 neurons for 2D movements,

they did not theoretically describe the inverse relationship between

the PD and MD distributions, which is probably because they

adopted only complex non-linear models and needed to rely only

on numerical simulations for solving the optimization problem. In

contrast, the present study, which is based on the theoretical

background of the linear model, further numerically showed that

the inverse relationship also persisted in the non-linear models too.

Importantly, the non-linear model combined with the realistic

musculoskeletal parameters can reproduce the non-uniform PD

distribution of M1 neurons observed during various motor tasks.

The origin of the PD bias has been a hotly debated topic in

neurophysiology [59,60]. Although it has been pointed out that

the PD bias observed in 2D postural and reaching tasks emerges as

a consequence of the neural compensation of the biomechanical

properties [2,3], the PD bias observed in 3D reaching has been

considered to be derived from use-dependent plasticity (i.e., the

frequent reaching toward the biased directions accompanying

feeding behavior) [4,5]. One of the reasons for this conflict

between the two groups is that they adopted different movement

tasks, i.e., one group insisted that 2D tasks with a robotic

exoskeleton are advantageous for the comparison of neural activity

with accurately measured mechanical variables such as joint

motion and joint torque [59], while the other group insisted that

unconstraint 3D movements are necessary to reveal the nature of

neural activity [60]. The present study is the first to try to resolve

this issue. By using a realistic 3D biomechanical model, we found

that the PD bias observed in 3D reaching movements by monkeys

[4,5] corresponds to the direction toward which few muscles

contribute to the acceleration of the fingertip; the PDs tend to be

biased toward the direction according to the weight decay

hypothesis. It was also demonstrated that the feedback-with-decay

rule always leads the PDs to be biased toward the same direction,

irrespective of the spatial bias of the reaching directions during

practice. Thus, the weight decay hypothesis suggests that the PD

distribution reflects the inverse of the biomechanical properties of

the musculoskeletal system (i.e., muscle anatomy and limb

configuration). Although it remains to be clarified whether weight

decay is actually used for optimization in the brain, the present

study provides a unifying framework to understand stereotypical

activation patterns of muscles and M1 neurons during 2D and 3D

reaching movements.

Another interesting finding is that even the ‘‘feedback-only’’ rule

predicts the skewed PD distribution of M1 neurons approximately

if the two following conditions are satisfied: a large number of

neurons participate in the task (condition #2) and the initial

synaptic weight is considerably smaller than the pseudo-inverse

matrix (MT(MMT)21) (condition #4). This finding indicates that

the PD bias itself is not direct evidence of the minimization of

effort, as has been thought previously [2,61]. Nevertheless, we

believe that the fact that the optimal PD bias was consistently

observed in various motor tasks may reflect the consequence of the

minimization of effort because there is no assurance that condition

#4 is always satisfied. Thus, theoretically assessing the effects of

the error feedback and decay separately, the present study

convincingly showed that the decay is essential to reproduce

consistently the PD bias observed in the experiments. To verify

whether the motor effort is actually minimized and whether weight

decay is used during minimization, future studies need to examine

the changes in the activity of a large number of neurons for a long

period of time.

Decay must be slight
According to our mathematical consideration, the weight decay

rate must be substantially lower than the learning rate (see

Supporting Text S1). This necessary condition is biologically very

plausible because the strength modulation of the synaptic

connections, which is mediated by long-term potentiation and/

or long-term depression, is known to decay slowly [58]. It was also

demonstrated that, when the decay rate was relatively large, the
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bias in the PD distribution was not formed and considerable error

remained (Figure S3). This clearly indicates that the slightness of

the decay is necessary for the formation of the non-uniform PD

distribution of M1 neurons.

The present scheme also implies that motor learning has two

different time scales: a fast process associated with error correction

and a slow process associated with optimizing efficiency through

weight decay (Figure 2B, 2D). Due to the coexistence of both time

scales, the neural network can assume various unstable states even

after motor performance appears to have been achieved [43];

however, after adequate training is conducted to completely learn

the task by the slow process, the network should converge to a

more stable unique state [62]. The two time scales can be also

observed in muscle activity during motor adaptation. While

muscle activity rapidly increased in response to the initial large

errors caused by a novel perturbation, it was slowly reduced once

the error fell below a threshold [34,56,57,63]. The present study

suggests that the slow reduction of muscle activity is the result of

the optimization process with weight decay. This slow optimiza-

tion may explain why prolonged training, even after the

performance level appears to have reached a plateau, is important

[64].

Limitation of the models and future direction
Due to its simplicity, our model provided clear insights into the

role of weight decay on optimization; however, of course, it has

several limitations. First, the model considered only corticospinal

neurons, although M1 also includes inhibitory interneurons.

However, it is noteworthy that our model could predict the PD

distribution of M1 neurons recorded from non-human primates,

suggesting that most of the neurons recorded in previous

experiments were corticospinal neurons. Indeed, considering the

large size of corticospinal pyramidal neurons, it is likely that the

chance of recording these neurons is relatively high because stable

isolation over an extended period of time is required in such

experiments [65]. To confirm this possibility, future studies need

to examine the PD distribution while distinguishing between

interneurons and pyramidal neurons using recently described

techniques [66,67].

Second, a uniform distribution was assumed for the neuron-

muscle connectivity (Z). As there are no available data for Z,

assuming a uniform distribution is reasonable as a first attempt.

This assumption results in the distribution of neuron MDs having

the same bias as that of muscle MDs. Interestingly, irrespective of

such a simple assumption, the model accounted for the PD

distribution in various tasks. Since this connectivity depends on the

recording site, to resolve this issue, it is necessary to examine the

innervation weights of each neuron to the muscles by using a spike

triggered average technique as well as the PD of each neuron.

Thirdly, the model only considered static tasks (i.e., isometric

force production) and an instantaneous ballistic task (i.e., the initial

phase of the reaching movement). Such a single time point model

is unrealistic for reaching movements in that it ignores the change

of limb posture, posture-dependent changes in the muscle moment

arms, multi-joint dynamics during motion, and the deceleration

phase. This limitation prevents us from predicting the essential

features of movement such as trajectory formation and online

trajectory correction [12,13,15,23] that arise from the optimiza-

tion of a series of motor commands by taking into account the

multi-joint dynamics that change according to the limb configu-

ration [68,69]. However, it is not that our model completely

ignores multi-joint dynamics; indeed, we incorporated instanta-

neous multi-joint dynamics at the initial limb configuration by

dealing with the linear acceleration of the fingertip rather than the

muscle torque (see Methods). In addition, considering that the

CNS does not plan an entire trajectory of movement at the time of

movement onset [15,70,71], it is likely that the activity of

corticospinal neurons just before reach initiation would be largely

for the production of the initial acceleration. Thus, the comparison

between the neural activity in our model and that recorded during

the reaction time period is justified to some extent. However, of

course, the present model ignores the effect of events occurring

after the initial ballistic phase on the modification of the synaptic

weight for the next movement. Finally, the single time point model

cannot predict the change of the movement representation in the

motor areas that was observed during the course of sensorimotor

transformations [72–74]. In the future, we need to extend the

decay theory to the more dynamic problem of controlling eye or

limb movements, including temporal trajectories through motor

planning and execution phases [23,27,75–78]. This dynamic task

presents the next major challenge for understanding the neural

control of movement.

Methods

Linear neural network model
First, we used a linear neural network to transform the desired

torque (input layer) into the actual torque (output layer) through

an intermediate layer that consisted of 1000 neurons (n = 1000)

(Figure 1B). Each neuron in the intermediate layer received a

desired torque vector (t M R2) from the input layer with a synaptic

weight (Wi M R2) that could be modified with learning. The

activation level (ri) was linearly dependent on the input torque

vector (i.e., ri = Wi
Tt), indicating that it obeys cosine tuning [44].

The activation vector for all of the neurons (r M Rn) is expressed as

r = Wt, where W M Rn62 is the synaptic weight matrix for all

neurons, expressed as:

W~

WT
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The output vector for each neuron (Ti M R2) is determined by its

activation level (ri) multiplied by its mechanical pulling direction

vector (MDV) (Mi M R2): Ti = Mi ri. The total output of the

network (T M R2) is expressed as the vector sum of the output of all

neurons: T = Mr, where M M R26n is the matrix of MDVs for all

neurons, expressed as:

M~ M1 M2 � � � Mnð Þ~
M11 M12 � � � M1n

M21 M22 � � � M2n

� �

The distribution of the directions of the MDVs was biased toward

the first and third quadrants (dots for M in Figure 1C). M for the

linear model was calculated as RMUniform8Z, where R = [cos20u
sin20u; sin20u cos20u], MUniform8 consists of 8 unit vectors that are

uniformly distributed in the torque space (e.g., [1 0],

[
ffiffiffi
2
p �

2
ffiffiffi
2
p �

2], [0 1], etc.), and Z was the same as the one defined

in the non-linear model (see below).

Learning procedure
The network was trained to produce the appropriate output

torque by randomly presenting 8 target torques (Figure 1A) over

40,000 trials. An error back-propagation algorithm [42] was used
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to successively modify the synaptic weight (W), while the MDV

matrix (M) was kept constant. In order to examine the effect of

weight decay, we used 3 learning procedures: 1) feedback-only, 2)

feedback-with-noise, and 3) feedback-with-decay rules.

1) Feedback-only rule. In the feedback-only rule, the

synaptic weight Wij was modified by:

DWij~{a
LJe

LWij

ð6Þ

where a is the learning rate (a = 20) and Je is the error cost, as

calculated by the error vector (e = T2t) between the output

torque and desired torque: Je = 1/2eTe.

2) Feedback-with-noise rule. The procedures in the feed-

back-with-noise rule were the same as in the feedback-only rule,

except that SDN was added to the actuator activity and synaptic

modification. The activation of each actuator was determined by:

ri~WT
i tznri

ð7Þ

where nri
represents white noise with a zero mean and a standard

deviation of sri
, which increased with the magnitude of WT

i t as

follows:

sri
~kWT

i t ð8Þ

The coefficient of variation k was set at 0.25 in the simulation shown

in Figure S2. Similarly, the synaptic weight was modified to:

DWij~{a
LJe

LWij

znWij

� �
ð9Þ

where nWij
represents white noise with a zero mean and standard

deviation sWij
~k

LJe

LWij

, (k~0:25). When k = 0.1, the result was

the same as that shown in Figure S2, i.e., the synaptic weight

converged to a suboptimal solution.

3) Feedback-with-decay rule. In the feedback-with-decay

rule, the synaptic weight Wij was modified by:

DWij~{a
LJe

LWij

{bWij ð10Þ

The second term indicates that the change in synaptic weight due

to synaptic memory decay in each step is proportional to the

current synaptic weight Wij. This rule is one of the simplest

regularization techniques used in machine learning. The decay

rate b was set to 1.061024, much smaller than the learning rate

(a = 20). We intended to simulate the formation of the PDs of

neurons and muscles, which are possibly related to the construc-

tion of the synergies and may take a long period of time.

Therefore, we used the slowest type of decay time constant (20

days) observed in neurophysiological studies [58], which corre-

sponds to the time constant (tb = 1/b = 10000 trials), assuming

that approximately 500 trials are performed in a day. Thus, the

current value of b (1.061024) is much smaller than that of the slow

process (4.061023) estimated by Smith et al. [79], which is, at

most, in the order of hours.

Initial synaptic weights
The initial synaptic weights were set to random values as

follows:

Wij~nij(s) ð11Þ

where nij(s) represents white noise with a zero mean and standard

deviation s. Five different matrices (W1
init, W2

init,…, W5
init) were

generated using the following 4 standard deviations: s = 0.5 (cyan),

1.5 (green), 2.0 (orange), or 2.5 (red), respectively. These 4

matrices were used for the simulation of the 2 learning rules

described above (Figure 2C, 2D) and the feedback-with-noise rule

(see Supporting Figure S2B). The MDV matrix M was also the

same for all of the simulations shown in those figures. Therefore,

the 3 simulations represented by the same color in those figures

were in exactly the same condition at the start of the simulation.

Non-linear neural network model with a muscle layer
Intrinsic torque space model (2D). To confirm the

effectiveness of weight decay in a more realistic model, we also

considered a neural network model with a muscle layer whose

activity (a) was constrained to be positive (i.e., the muscles did not

push) (Figure 3A); the muscle layer consisted of the 8 muscles at the

shoulder and elbow joints (Figure 3B). We assumed that the neurons

in the model directly activate the muscles, i.e., we assumed that the

neural layer consisted of only corticospinal neurons. The neurons

received the desired movement parameters from the input layer and

their firing rate obeyed cosine tuning [44]. On the basis of

anatomical and electrophysiological findings, we assumed that each

neuron innervates multiple muscles [45–48]. The innervation

weights for each neuron to the 8 muscles [Zi = (Z1i Z2i… Z8i)
T]

were established so that Zis (i = 1–1000) were uniformly distributed

on the surface of a sphere in 8-dimensional space, the radius of

which was 0.002 (2/n). The activation of each muscle (ai) was

expressed as the sum of the effects from all of the neurons:

ai~tXn

j~1

Zijrjs ð12Þ

where the operator v w indicates that vxw= x for x.0 and

vxw= 0 for x#0. The total output of the network (T) is expressed

as the vector sum of the output from all of the muscles: T = MIna,

where a = (a1 a2…a8)T is the activation vector for all of the muscles

and MIn = (M1
In M2

In…M8
In) M R268 is a matrix that consists of the

MDVs for all of the muscles.

Using realistic muscle data, we modeled a 2D upper limb that

had 2 degrees of freedom (DOF; shoulder and elbow joints) with

26 muscle elements (Table S2). For the physiological cross-

sectional areas (PCSA) and pennation angles (Table S2), we used

published data from Macaca mulatta [52]. For the moment arms of

the muscles, we extracted data from a human musculoskeletal

model [53] in which the shoulder was abducted at 90u and

horizontally flexed at 30u, and the elbow was flexed at 90u. The

MDV for each muscle in intrinsic space was calculated as:

MDVi~Si|cos(ai)|
di,1

di,2

� �
ð13Þ

where Si is the PCSA, ai is the pennation angle, and (di,1di,2)T are

the moment arms for the shoulder and elbow joints. Assuming that

muscles with similar mechanical properties should behave in a

similar fashion, we grouped the 26 muscle elements into 8 groups.

Thus, the MDV matrix for the 8 muscle groups in intrinsic space is

obtained as MIn M R268. We defined the effect of the activation of

each neuron on the output torque (MInZi) as the ‘‘MDV of neuron i.’’
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The matrix of MDVs for all of the neurons was defined as MInZ,

where Z = (Z1Z2…Zn) M R86n. To examine the effects of the initial

conditions, the simulation was conducted 4 times with different

sets of initial synaptic weights [s = 0.5 (cyan), 2.0 (green), 4.0

(orange), or 8.0 (red) in Eq. (11)].

Extrinsic space model (2D). The network model can also

be applied to the task of producing the linear acceleration of the

fingertip (i.e., the initial phase of the reaching movement) by

replacing the torque in Figure 3A with a linear acceleration of the

fingertip in extrinsic space. In this case, the input layer can be

considered as the premotor cortex that represents the desired

movement direction in extrinsic space [55] and the muscles can be

viewed as linear accelerators of the fingertip (see Figure 5A and

6A). The MDV for each muscle in linear acceleration space

(MEx
i [<2) was calculated as:

MEx
i ~J(h) I(h){1M In

i ð14Þ

where J(h) M R262 is the Jacobian matrix, I(h) M R262 is the system

inertia matrix of the two-joint system, and h M R2 is a joint angle

vector that consists of the shoulder and elbow angles. To calculate

the Jacobian and inertia matrices, we used morphological data

from M. mulatta (Table S1). We used the MDV matrix for 8

muscles in extrinsic space expressed by:

MEx~ MEx
1 MEx

2 � � � � � � MEx
8

� �
[<2|8 ð15Þ

as M in Figure 3A for the simulation of 2D reaching movements

(Figure 5). To examine the effects of the initial conditions, the

simulation was conducted 4 times with different sets of initial

synaptic weights [s = 0.5 (cyan), 2.0 (green), 4.0 (orange), or 8.0

(red) in Eq. (11)].

Extrinsic space model (3D). We further extended the

model to 3D reaching movements. We modeled a 3D upper limb

with 4 DOF; (3 DOF for the shoulder and 1 DOF for the elbow)

with 26 muscle elements (Table S3). In order to match the initial

limb posture in our simulation with that of the 3D reaching

movements used in previous primate studies [4,5], we set the

shoulder flexion angle at 30u, the internally rotated shoulder angle

at 12u, and the elbow flexion angle at 80u. In this posture, the

fingertip position was at shoulder level in the midsagittal plane

(Figure 6). Moment arms in this posture were extracted from a

human musculoskeletal model [53] and are listed in Table S3. The

MDV for each muscle in intrinsic space was calculated as:

MDVi~Si|cos(ai)|

di,1

di,2

di,3

di,4

0
BBB@

1
CCCA ð16Þ

where Si is the PCSA, ai is the pennation angle, and (di,1 di,2 di,3

di,4)T are the moment arms for the 3 DOF at the shoulder (xU, yU,

and zU in Figure S4A) and 1 DOF at the elbow (zF). Assuming that

muscles with similar mechanical properties should behave in a

similar fashion, we grouped the 26 muscle elements into 16

groups. Therefore, the muscle MDV matrix in intrinsic space is a

4616 matrix, as follows:

MIn~ MIn
1 MIn

2 � � � � � � M In
16

� �
[<4|16 ð17Þ

The Jacobian matrix J(h) M R364 and the system inertia matrix

I(h)MR464 for the 3D limb model were calculated using previously

described methods [80]. Note that, in the present study, we used a

segment-fixed coordinate (Figure 2B in [80]) as the generalized

coordinate, although the joint coordinate (Figure 2C in [80]) was

used in the previous study. The linear acceleration of the fingertip

produced by each muscle (MEx
i [<3) was calculated as:

MEx
i ~J(h) I(h){1M In

i ð18Þ

We used the matrix of MDVs for 16 muscles in extrinsic space

expressed by:

MEx~ MEx
1 MEx

2 � � � � � � MEx
16

� �
[<3|16 ð19Þ

as M for the simulation of 3D reaching movements.

For the 3D simulation, 14 equally spaced targets (Figure S4B)

were randomly presented over 100,000 trials. The learning rate (a)

and forgetting rate (b) were set to 500 and 1.061024, respectively.

To examine the effects of the initial conditions, the simulation was

conducted 5 times with different sets of initial synaptic weights

[s = 0.9, 1.8, 2.7, 3.6, or 4.5 in Eq. (11)]. We also examined the

effect of the spatial bias of reaching movements during learning

(i.e., non-uniform probability of target appearance) using the

following 4 conditions:

1) the probability of appearance was equal for all 14 targets;

2) the probability for targets #1 and #3 was 8/28 (1/28 for

the other targets);

3) the probability for targets #2 and #4 was 8/28 (1/28 for

the other targets);

4) the probability for targets #5 and #6 was 8/28 (1/28 for

the other targets).

In total, we conducted 20 (5 initial weights64 probability

conditions) simulations.

Analysis of the PD distribution
To examine the significance of the bimodal distribution

obtained from the simulation, we performed the Rayleigh test

for uniformity against a bimodal alternative (P,0.05) using a

circular statistics toolbox [81]. To quantify the characteristics of

the PD distribution, 2 parameters were calculated for each PD

distribution. We multiplied the PDs by 2, transformed them to

unit vectors in the 2D plane using (cos wi sin wi), and took a

vector summation across all PDs to obtain the resultant vector.

The direction (h) and length (R) of the resultant vector represents

the direction and strength of the PD bias, respectively. To

compare them with experimental data, we extracted the raw PD

data from the literature (178 neurons for a 2D isometric task from

Figure 9A in [2] and 141 neurons for a 2D reaching task from

Figure 3B in [3]) and estimated the confidence intervals for both

parameters using a bootstrapping procedure with 10000 times

resampling.

Supporting Information

Figure S1 Comparison between the feedback-only and
feedback-with-decay rules using a simple redundant
problem. To graphically illustrate the behavior of synaptic

weight in the two modification rules, we simulated a simple

redundant problem to find the set of w1 and w2 that fulfills the

equation: w22w1 = 1. The color gradations indicate the error cost

as a function of the synaptic weights w1 and w2. The white dashed

line indicates the minimum at which the error is zero. The circles
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indicate the contours of the sum of the squared values (i.e.,

w1
2+w2

2). Simulations were conducted with w1 = 0 and w2 = 22 as

the initial values. In the feedback-only rule (A), modification

ceased after the error reached zero, whereas in the feedback-with-

decay rule (B), modification continued after the error reached zero

and the sum of the squared values had converged with the

minimum value.

(TIF)

Figure S2 Simulation results by the feedback-with-noise
rule. (A–C) Simulation results for the neural network model

shown in Figure 1, using the feedback-with-noise rule. Trial-

dependent changes in the magnitude of error (A), the sum of the

squared neural activity (B) averaged across the 8 target

conditions, and the PDs of 10 randomly selected neurons (C).

(D) Simulations of a simple redundant system to find the set of w1

and w2 that fulfills the equation: w22w1 = 1 using the feedback-

with-noise rule.

(TIF)

Figure S3 Simulation results for the torque exertion
task with relatively large weight decay rates. (A–C) Trial-

dependent changes in the magnitude of the error (A), the norm of

the neural activity averaged across the 8 target conditions (B), and

the sum of the squared muscle activity averaged across the 8 target

conditions (C), when the synaptic weight was modified by error

feedback with relatively large decay rates that were 5, 10, and 20

times larger than the original b (Figure 4). The 4 colored lines

indicate the changes when various initial synaptic weight conditions

were used. (D) Distribution of the synaptic weight (i.e., PDVs) for

the 1000 neurons after learning.

(TIF)

Figure S4 Model and motor task for 3D reaching
movements. (A) Segment-fixed coordinate systems for the upper

arm segment (xU, yU, zU) and forearm-and-hand segment (xF, yF,

zF). (B) The 14 equally spaced targets used for the simulation of

3D reaching movements.

(TIF)

Table S1 Parameters for the segments. p is the position of

the center of mass measured from the proximal joint, represented

as a % of the segment length. kx, ky, and kz are the radii of

gyration about the x, y, and z axes of the segment, respectively,

represented as a % of the segment length. These data are for the

Macaca Mulatta (6 kg) [52], except that ky was taken from human

male data [82].

(DOC)

Table S2 Parameters for the muscles in the horizontal
plane in the 2-DOF upper extremity model. S is the

physiological cross-sectional area. a is the pennation angle. ds and

de are the moment arms for shoulder flexion(+)/extension(2) and

elbow flexion(+)/extension(2), respectively.

(DOC)

Table S3 Moment arms for the muscles in the 4-DOF
model in 3D space. d1, d2, and d3 are the shoulder joint moment

arms for the xU, yU, and zU axes, respectively. d4 is the elbow joint

moment arm for the zF axis.

(DOC)

Text S1 Mathematical derivations. This document pro-

vides 1) mathematical derivation of the optimal synaptic weights

and 2) mathematical proof of convergence for the linear neural

network model of sensorimotor transformation.

(PDF)
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