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Simple Summary: Pulmonary hypertension (PH) is a condition characterized by increased arterial
pressure in the pulmonary vasculature. PH strains the right heart, which compensates for the
increased afterload by hypertrophy. This eventually leads to heart failure, which represents the
leading cause of death in PH patients. Surgeries normalize pulmonary arterial pressures and cause
the regeneration of hypertrophic right hearts. Nonetheless, the events involved in cardiac recovery
are largely unknown. We therefore investigated the gene expression profiles of hypertrophic and
regenerated right hearts of two different types of PH patients. Intriguingly, the PH subtypes displayed
a rather unique gene alteration signature, before as well as after surgery. While genes associated
with muscle cell development were upregulated in one group, genes involved in the same molecular
process were downregulated in a different PH group following surgery. However, we were able
to identify a profibrotic factor, namely early growth response 1, in both PH groups. A role for
this molecule in hypertrophic right hearts was further confirmed by immunohistochemistry. In
conclusion, our study described the gene expression signatures of failing and recovered right hearts
of PH patients. The findings presented here might help to identify attractive therapeutic candidates
for PH patients considered inoperable.

Abstract: Background: Pulmonary hypertension (PH) is a vasoconstrictive disease characterized by
elevated mean pulmonary arterial pressure (mPAP) at rest. Idiopathic pulmonary arterial hyperten-
sion (iPAH) and chronic thromboembolic pulmonary hypertension (CTEPH) represent two distinct
subtypes of PH. Persisting PH leads to right ventricular (RV) hypertrophy, heart failure, and death.
RV performance predicts survival and surgical interventions re-establishing physiological mPAP
reverse cardiac remodeling. Nonetheless, a considerable number of PH patients are deemed inopera-
ble. The underlying mechanism(s) governing cardiac regeneration, however, remain largely elusive.
Methods: In a longitudinal approach, we profiled the transcriptional landscapes of hypertrophic RVs
and recovered hearts 3 months after surgery of iPAH and CTEPH patients. Results: Genes associated
with cellular responses to inflammatory stimuli and metal ions were downregulated, and cardiac
muscle tissue development was induced in iPAH after recovery. In CTEPH patients, genes related to
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muscle cell development were decreased, and genes governing cardiac conduction were upregulated
in RVs following regeneration. Intriguingly, early growth response 1 (EGR1), a profibrotic regulator,
was identified as a major transcription factor of hypertrophic RVs in iPAH and CTEPH. A histological
assessment confirmed our biocomputational results, and suggested a pivotal role for EGR1 in RV
vasculopathy. Conclusion: Our findings improved our understanding of the molecular events driving
reverse cardiac remodeling following surgery. EGR1 might represent a promising candidate for
targeted therapy of PH patients not eligible for surgical treatment.

Keywords: pulmonary hypertension; chronic thromboembolic pulmonary hypertension; idiopathic
pulmonary arterial hypertension; right ventricular hypertrophy; reverse right ventricular remodeling;
lung transplantation; pulmonary endarterectomy; EGR1

1. Introduction

Pulmonary hypertension (PH) is a vasoconstrictive, fibrotic disease characterized by
vascular remodeling. Reduced vessel diameter leads to increased resistance and pressure
in the pulmonary vasculature [1,2]. In 2015, the consensus guidelines of the European
Society of Cardiology (ESC) and the European Respiratory Society (ERS) defined PH as an
increased mean pulmonary arterial pressure (mPAP) ≥25 mmHg at rest [3,4]. Currently,
the definition of PH is being updated to an mPAP threshold >20 mmHg [5,6]. Various
underlying causes that can lead to PH have been identified, such as certain cardiac and
pulmonary conditions, systemic diseases, infections, hereditary diseases, and cancer [7].
The World Health Organization (WHO) recognizes five distinct classes of PH, including
pulmonary arterial hypertension (PAH, group 1) and chronic thromboembolic PH (CTEPH,
group 4) [8].

Based on disease etiology, PAH can be further divided into different subgroups.
Pleiotropic conditions can lead to PAH, such as mutations of specific loci, certain drug treat-
ments, congenital heart disease, liver disease, human immunodeficiency virus infection,
or autoimmune diseases. However, the exact underlying cause remains unknown in the
majority of PAH cases, which are collectively referred to as idiopathic PAH (iPAH). The
incidence of PAH was determined as six cases per million [9]. Even with clinical manage-
ment, five-year survival rates of patients suffering from PAH do not exceed 60% [10]. PAH
is characterized by a distinct sequence of pathologic events. PAH manifests with lesions of
small pulmonary arteries (<500 µm in diameter) [11], where hypertrophic, proliferative,
and fibrotic alterations occur. In addition, inflammatory infiltrates and thrombofibrotic
depositions contribute to PAH pathology. The obstructive remodeling of pulmonary vas-
culature, together with vasoconstriction, inflammation, and thrombosis, lead to increased
pulmonary vascular resistance (PVR) and PAP. The elevated pressure is propagated to
the heart, where it leads to right ventricular pressure overload. The right ventricle (RV)
compensates for chronic hemodynamic overload by hypertrophy and fibrotic remodel-
ing to preserve physiological cardiac output. Proinflammatory milieus, oxidative stress,
and humoral responses are contributing second hits for RV overload. RV insufficiency
and, eventually, heart failure are the leading causes of death, and importantly, patient
prognosis is associated with RV performance [12]. Pharmacological strategies usually in-
volve administration of prostacyclin analogs and inhibitors of the endothelin-1 receptor or
phosphodiesterase-5. Isolated, bilateral lung transplantation (LuTX) re-establishes normal
PVR and PAP and, hence, reduces RV overload. Though most fibrotic conversions are
considered irreversible [13], geometric remodeling was assessed by echocardiography and
cardiac morphology reverted to the predisease state three months after LuTX [14,15].

Patients suffering from CTEPH present with dyspnea, exercise intolerance, chest pain,
recurrent syncope, and edemas of the lower extremities [16,17]. In Germany, the incidence
of CTEPH was reported to be 5.7 cases per million [18]. A CTEPH incidence of up to
9.1% was reported after pulmonary embolism (PE) [19], although 25% of cases of CTEPH
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had no previous history of PE [20]. CTEPH results from unresolved, vascular obstruction
caused by depositions of fibrotic thrombi in the pulmonary arteries. These depositions,
in turn, lead to increased resistance and arterial pressure. In most CTEPH patients, the
proximal pulmonary arteries are predominantly affected by obstructive alterations. PAH
and CTEPH share a similar arteriopathy, which includes fibrosis, blood vessel thickening,
and hyperproliferation [21]. The exact underlying etiology for CTEPH remains widely
unclear. Dysfunctions in the blood coagulation cascade [22] and impaired angiogene-
sis [23] have been identified to predispose to CTEPH. Furthermore, inflammatory processes
promote CTEPH [24] and various proinflammatory cytokines were elevated in CTEPH
patients [21]. Similar to PAH, advanced CTEPH causes myocardial remodeling, including
RV dilation and hypertrophy. RV failure is the leading cause of death for patients suffering
from CTEPH. Pulmonary endarterectomy (PEA) and balloon pulmonary angioplasty (BPA)
represent the gold standard surgical techniques, and up to 90% of surgically treated patients
are considered cured. Improved cardiac outcomes have been observed after successful
PEA [25,26] and BPA [27]. However, up to 32% of all CTEPH cases are judged inoperable.
If left untreated, 76% of patients succumb to CTEPH and sequelae within three years after
diagnosis [28].

Early growth response 1 (EGR1) is a key regulator of tendon, cartilage, bone, and
adipose tissue formation, homeostasis, and healing. Hence, EGR1 target genes encode
for components of the extracellular matrix (ECM). Furthermore, EGR1 was implicated in
regulation of fibrotic processes observed in systemic sclerosis, rheumatoid arthritis, and
type 2 diabetes mellitus (reviewed in [29]). In addition to these functions, EGR1 governed
vascular remodeling in experimental PAH [30], and high EGR1 levels were detected in
advanced vascular lesions of patients suffering from advanced-stage congenital heart
disease-associated PAH [31]. Though EGR1 has already been implicated in pathological
remodeling of the pulmonary vasculature, a potential role of EGR1 in PH-induced RV
remodeling has not been investigated to date.

The pathological alterations associated with PH contribute to increased PVR, which is
propagated to the heart, where it manifests as pressure overload to the right ventricle [32].
Sustained RV pressure results in RV dilation and compromised contractile forces. Heart fi-
brosis predominantly accounts for decreased myocardial function following RV remodeling.
As RV performance is associated with patient prognosis [12], and heart failure represents the
leading cause of death in PH patients [33], deepening our understanding of RV remodeling
is of great importance to improve clinical outcome. Therefore, we compared the diseased
myocardium with regenerated RV after (semi)elective surgery to identify key events or-
chestrating myocardial recovery (Figure 1). These insights might help to unravel hitherto
unknown therapeutic targets to promote reversal of pathological cardiac alterations.
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Lastly, results were validated using immunocytochemistry. CTEPH, chronic thromboembolic pul-
monary hypertension; DEGs, differentially expressed genes; GO, gene ontology; iPAH, idiopathic
pulmonary arterial hypertension; LuTX, lung transplantation; PEA, pulmonary endarterectomy;
RVH, right ventricular hypertrophy; TFBS, transcription factor binding site.

2. Materials and Methods
2.1. Study Population

This study was designed as a prospective, longitudinal, cross-sectional cohort study
in 2013. All patients were diagnosed as recommended by applicable guidelines [4,34].
PEA and LuTX surgery were carried out at a single European thoracic surgery center
(Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria). The
diagnosis of CTEPH and indication for PEA surgery were performed by teams of specialists.
All patients with CTEPH were classified according to the intraoperative classification
system [35]. Preoperative assessments included computed tomography of the chest, right
heart catheterization with hemodynamic measurements and conventional pulmonary
angiography, transthoracic echocardiography, and pulmonary function studies in each
patient. Evaluation and listing of iPAH patients for lung transplantation was performed by
a multidisciplinary lung transplant team of the Medical University of Vienna according to
applicable guidelines [4,34].

2.2. Ethics Statement

Ethical approval was granted by the Institutional Ethics Committee of the Medical
University of Vienna, Vienna, Austria (1805/2013). This study was performed in accordance
with the Declaration of Helsinki and applicable local regulations. All donors provided
written informed consent.

2.3. Sample Acquisition

For transcriptional analyses, 4 patients with iPAH undergoing bilateral LuTX on
central extracorporeal membrane oxygenation (ECMO) support (Table 1) and 4 patients
with CTEPH undergoing PEA on cardiopulmonary bypass in deep hypothermia and
circulatory arrest (Table 2) were enrolled (Figure 1). Endomyocardial biopsies (EMB) were
obtained intraoperatively and 3 months after surgery. Intraoperative myocardial biopsies
(1 mm in diameter) were obtained by transmural biopsy of the right ventricular wall. Three
months after surgery, the EMB technique was performed by right heart catheterization
based on the AHA/ACCF/ESC scientific statement [36].

Table 1. Basic demographic and hemodynamic data of iPAH patients.

Patient ID 1 2 3 4

Gender F F F M
Age at BLTX (years) 27 38 39 40

Type of LuTX BLTX size reduced: resection
of ML and lingula

Lobar TX:
RLL and LUL

Lobar TX:
RLL and LUL

Size-reduced BLTX: ML
resection

Preop WHO-FC 3 3 3 3
Postop WHO-FC 1 1 0.5 2

Preop 6-MWD (m) 300 160 - -
Preop PH-specific treatments Double-therapy Triple-therapy Double-therapy Double-therapy

Postop cardiological medication (s) Bisoprolol Bisoprolol Ramipril Nitrendipin, ivabradin,
molsidomin

Pre- and Postoperative Hemodynamics
Preop PAPsys (mmHg) 103 180 168 168
Postop PAPsys (mmHg) No TR signal * No TR signal * No TR signal * 46

* No tricuspid regurgitation (TR) signal measurable, indicative of a healthy RV. BLTX, bilateral lung transplantation;
F, female; LUL, left upper lobe; LuTX, lung transplantation; M, male; ML, middle lobe; PAPsys, systolic pulmonary
arterial pressure; postop, postoperative; preop, preoperative; RLL, right lower lobe; TX, transplantation; TR,
tricuspid regurgitation; WHO-FC, World Health Organization functional class; 6-MWD, six-minute walk distance.
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Table 2. Basic demographic and hemodynamic data of CTEPH patients.

Patient ID 5 6 7 8

Gender M F F M
Age at PEA (years) 54 61 66 50

PA:AA ratio 1.06 1.33 1.46 0.97

History of VTE PE 9 months prior to PEA PE 3 months prior to PEA DVT and PE 3 years prior
to PEA

DVT and PE 1 year prior
to PEA

Preop PH-specific
medications None None LTOT Riociguat

Postop PH-specific
medications None None None None

CAD or stenosis Yes No LAD stenosis type B1: 70–90%
* No

Concomitant surgery CABG 2-vessel surgery No No No

Comorbidities Chronic bronchitis History of ileus, hysterectomy
Heterozygote prothrombin

SNP G20210A,
psoriasis arthritis

Arterial hypertension, asthma

UCSD classification of
surgical specimens 2 3 3 3

Preop WHO-FC 3 3 3 3
Postop WHO-FC 1 2 1 1

Pre- and Postoperative Hemodynamics
Preop PAP (s/d/m) (mmHg) 75/24/40 64/24/40 PAPm 26 55/22/36
Postop PAP (s/d/m) (mmHg) 22/11/16 62/23/33 32/13/20 38/17/25

Preop PVR (WU) 4.19 9.61 6.95 5.95
Postop PVR (WU) 1.24 4.31 1.76 2.82

Preop CI (L/min/m2) 2.9 3.1 2.8 2.1
Postop CI (L/min/m2) 3.1 2.2 3.8 3.2

* LAD stenosis resulted from compression of the dilated pulmonary trunk. CABG, coronary artery bypass graft;
CAD, coronary artery disease; CI, cardiac index; DVT, deep vein thrombosis; F, female; LAD, left anterior de-
scending artery; LTOT, long-term oxygen therapy; M, male; PA:AA ratio, pulmonary artery diameter to ascending
aorta diameter; PAP (s/d/m), pulmonary artery pressure (systolic/diastolic/mean); PE, pulmonary embolism;
PEA, pulmonary endarterectomy; PH, pulmonary hypertension; postop, postoperative; preop, preoperative;
PVR, pulmonary vascular resistance (in Wood units); SNP, single-nucleotide polymorphism; UCSD, University of
California-San Diego; VTE, venous thromboembolism; WHO-FC, World Health Organization functional class.

For histological assessments, posthumous RVs of PH patients were obtained from the
Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.

None of the CTEPH patients undergoing PEA required postoperative extracorporeal
membrane oxygenation (ECMO) support. There were no perioperative cardiovascular
adverse events for patients undergoing PEA, except for temporary supraventricular tachy-
cardia in patient #2. None of the CTEPH patients suffered from valvular heart disease,
chronic obstructive pulmonary disease (COPD), or chronic renal insufficiency. None of the
CTEPH patients had undergone any sort of cardiothoracic surgery prior to PEA.

2.4. Microarray

For transcriptomics analyses, the total RNA of cardiac biopsies was isolated using pe-
qGOLD TriFast (Peqlab, Erlangen, Germany) according to the manufacturer’s instructions.
RNA concentrations were determined using a NanoDrop1000 spectrophotometer (Peglab),
and RNA quality was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). Transcriptome profiling was carried out by the Genomics Core Fa-
cility at the Medical University of Vienna (Vienna, Austria) using a Human Clariom S Array
(Thermo Fisher Scientific, Waltham, MA, USA) as recommended by the manufacturer.

2.5. Biocomputational Analyses

Transcriptome Analysis Console software (TAC, version 4.0, Thermo Fisher Scientific,
Waltham, MA, USA) was used for data analysis, for principal component analysis, to
determine differentially expressed genes (DEGs), for volcano plots, and for hierarchical
clustering. DEGs were defined as a ≤−2 or ≥2 average fold change with a p-value < 0.05.
Uncharacterized loci, small nucleolar RNAs, microRNAs, duplicates, and noncoding tran-
scripts were excluded. DEGs were further analyzed with Cytoscape (v3.8.0) [37] using
the ClueGO (v2.5.7) plug-in [38]. Biological process, immune system process, molecular
function, and KEGG were used to identify the pathways and ontologies. The network
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specificity and pathway network connectivity (kappa score) were set to medium. The GO
terms were visualized using REVIGO software [39].

2.6. Identification of Transcription Factor Binding Sites (TFBS)

To determine transcription factors, genes differentially expressed between presurgery
and 3-month follow-up were analyzed using the oPOSSUM online tool (v3.0) with the
default analysis settings [40]. Only genes displaying a log2-transformed expression ≥5.6
before and after surgery were included in downstream analyses.

2.7. Immunohistochemistry

Immunohistochemistry was performed according to routine laboratory protocols.
The EGR1 was stained using polyclonal rabbit antihuman EGR1 IgG (1 µg/mL, Abcam,
Cambridge, UK).

2.8. Statistical Analyses

DEGs were compared pre- and postoperatively and statistically evaluated with the
TAC software using an empirical Bayes method. The DEGs were defined as a ≤−2 or ≥2
average fold change with a p-value < 0.05. The GO term p-values were determined using
ClueGO, and a Bonferroni step-down correction was used to correct for multiple compar-
isons [38]. The GO terms displaying p-values < 0.05 were considered statistically significant.

3. Results
3.1. Recovered Hearts of Lung-Transplanted iPAH Patients Displayed Decreased Inflammatory
Processes and Increased Cardiac Muscle Development

In this study, four patients diagnosed with iPAH undergoing LuTX were included
(three females and one male, mean age of 36 years at time of surgery). The average
WHO functional class (WHO-FC) was reduced from 3 before surgery to 1.12 post surgery
(Table 1). Additionally, the average preoperative systolic PAP decreased from 155 mmHg to
physiological levels (Table 1). These data showed that surgical treatment led to improved
hemodynamics and clinical status of our patient cohort.

First, the global disease signature of dysfunctional RVs of patients suffering from
iPAH was profiled. Then, the molecular profile to RVs after reverse remodeling of the same
patients 3 months after LuTX was determined and compared to the preoperative status.
A principal component analysis (PCA) revealed a distinct subclustering of all samples
according to pre- and postsurgery, indicating that LuTX induced remarkable transcriptional
changes in RVs (Figure 2A). Genes differentially expressed before and after surgery were
determined, and a total of 157 genes were found to be upregulated, while 207 were down-
regulated (Figure 2B, Supplemental File S1). An analysis of individual donors uncovered a
highly similar regulation of DEGs throughout all patients, indicating negligible individual
differences (Figure 2C). Pyruvate dehydrogenase kinase 4 (PDK4, p-value = 2 × 10−6),
natriuretic peptide B (NPPB, p-value = 0.0026), several genes encoding for metallothioneins,
serpin family E member 1 (SERPINE1, p-value = 5 × 10−6), JunB proto-oncogene (JUNB,
p-value = 2 × 10−5), EGR1 (p value = 0.0046), and interleukin-1 receptor-like 1 (IL1RL1,
p-value = 0.0001) were strongly expressed in hypertrophic ventricles, but displayed low
expression in recovered hearts (Figure 2D). Leucine rich repeat containing 10 (LRRC10,
p-value = 2 × 10−5), beta-1,3-galactosyltransferase 2 (B3GALT2, p-value = 0.037), nuclear
receptor subfamily 1 group D member 1 (NR1D1, p-value = 0.0001), fibrillin 2 (FBN2,
p-value = 0.0044), and tumor necrosis factor superfamily 10 (TNFSF10, p-value = 0.0017)
were among the top upregulated genes in reverse remodeled RVs compared to presurgery
hearts (Figure 2D). To determine the biological processes associated with DEGs, we per-
formed a gene ontology (GO) enrichment analysis. As several metallothionein genes were
downregulated, cellular responses to metal ions were found (Figure 2E). In addition, inflam-
matory processes, such as responses to interleukin 1 and corticosteroids, were identified
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in hypertrophic RVs. Upregulated genes were mostly associated with cardiac muscle
development (Figure 2F).

3.2. PEA of CTEPH Patients Promotes Cardiac Conduction in Regenerated RVs

To study the processes involved in the reverse remodeling of hypertrophic RVs, the
hearts of four patients diagnosed with CTEPH undergoing PEA were analyzed (two
females and two males, average age of 58 years at time of PEA). The mPAP declined from
an average of 34 before surgery to 25 after surgery (Table 2). Moreover, the PVR decreased
from 6.7 to 2.5 after surgery. The average cardiac index improved from 2.7 to 3.1 after PEA.
While patients displayed a WHO-FC of 3 before surgery, the average functional class was
reduced to 1.3 following surgery. These data demonstrated a functional and hemodynamic
improvement of CTEPH patients after PEA.

Biology 2022, 11, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 2. Cont.



Biology 2022, 11, 677 8 of 18

Biology 2022, 11, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 2. Gene expression signatures of hypertrophic myocardium of iPAH patients before LuTX
and reverse remodeled hearts 3 months after surgery. (A) PCA of samples before PEA and 3 months
after PEA. Each dot represents one donor; colors indicate time points. (B) Volcano plot depicting
DEGs as a function of fold change and statistical significance. Each dot represents one gene. Red
and green indicate up- and downregulated genes, respectively. Insert shows absolute numbers of
DEGs when comparing before surgery and after recovery. Red and green bars indicate up- and
downregulated genes, respectively. (C) Heatmap of DEGs. Each row represents one donor at a
certain time point; each line indicates one gene. Red and blue indicate up- and downregulation,
respectively. (D) Heatmaps of down- (green) and upregulated genes (red) are shown. Colors indicate
absolute, average log2-transformed expression values. Gene ontologies associated with (E) down-
and (F) upregulated DEGs. Each circle represents one ontology. Colors indicate p-values.

Next, we analyzed the transcriptional changes occurring in the myocardia of CTEPH
patients before PEA and after recovery. PCA revealed high interdonor transcriptional
similarity before surgery, while patients showed a higher diversity in response to PEA
(Figure 3A). In total, 16 genes were found upregulated after recovery, while 60 genes
were highly expressed before surgery but downregulated after PEA (Figure 3B, Supple-
mental File S2). Individual assessment of DEGs uncovered that interdonor differences
mostly occurred in the downregulated genes (Figure 3C). EGR1 (p-value = 0.0024), trans-
membrane protein 71 (TMEM71, p-value = 0.0045), muscle-restricted coiled-coil protein
(MURC, p-value = 0.0029), cytoplasmic polyadenylation element binding protein 4 (CPEB4,
p-value = 0.0011), janus kinase 2 (JAK2, p-value = 0.0004), and kelch-like family member
31 (KLHL31, p-value = 0.0138) were detected among the downregulated genes (Figure 3D).
Natriuretic peptide A (NPPA, p-value = 0.037), nebulin (NEB, p-value = 0.0042), testican
1 (SPOCK1, p-value = 0.0113), myoferlin (MYOF, p-value = 0.0265), and frizzled-related
protein (FRZB, p-value = 0.0043) were found to be upregulated after recovery (Figure 3D).
In contrast to the results obtained in iPAH patients, the molecular function muscle cell
development was associated with downregulated genes in CTEPH after PEA (Figure 3E).
Interestingly, upregulated genes were involved in cardiac conduction and cardiac mus-
cle cell membrane repolarization (Figure 3F). These data indicated a PH class-specific
transcriptional regulation that contributed to improved cardiac performance after surgery.
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Figure 3. Gene expression profiles of hypertrophic myocardium of CTEPH patients before PEA and
reverse remodeled hearts 3 months after surgery. (A) PCA of samples before PEA and 3 months after
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PEA. Each dot represents one donor; colors indicate time points. (B) Volcano plot depicting DEGs as
a function of fold change and statistical significance. Each dot represents one gene. Red and green
indicate up- and downregulated genes, respectively. Insert shows absolute numbers of DEGs before
surgery and after recovery. Red and green bars indicate up- and downregulated genes, respectively.
(C) Heatmap of DEGs. Each row represents one donor at a certain time point; each line indicates
one gene. Red and blue indicate up- and downregulation, respectively. (D) Heatmaps of down-
(green) and upregulated genes (red) are shown. Colors indicate absolute, average log2-transformed
expression values. Gene ontologies associated with (E) down- and (F) upregulated DEGs. Each circle
represents one ontology; colors indicate p-values.

3.3. EGR1 Is Implicated in Reverse Remodeling of RVH

Next, we sought to determine the transcription factors (TFs) that potentially acted
as master transcriptional regulators of RV reverse remodeling. To this end, we used a
web-based platform to identify the TF binding sites (TFBS) present in the promoter regions
of DEGs. As we aimed to investigate factors highly prevalent in the diseased myocardium,
we focused our analysis on downregulated genes. We were able to identify 62 potential TFs
in the downregulated genes of iPAH patients, such as Krüppel-like factor 4 (KLF4), signal
transducer and activator of transcription 1 and 2 (STAT1 and STAT3), SRY-box transcription
factor 9 (SOX9), and EGR1 (Figure 4A, Supplemental File S3). We then screened the list
of TFs for the presence of downregulated genes, and detected EGR1 and STAT3 in both
datasets (Figure 4B).

We performed the same analysis for CTEPH, and found forkhead box A2 (FOXA2),
ETS transcription factor ELK1 (ELK1), STAT1, and EGR1 among the identified 66 TFs
(Figure 4C, Supplemental File S4). When comparing the lists of TF with DEGs, we found
the common factors EGR1 and hepatic leukemia factor (HLF) (Figure 4D).

As the analyses of the iPAH and CTEPH data sets both identified EGR1 as a transcrip-
tional regulator of reverse remodeling, we focused our further analyses on EGR1. Several
EGR1 downstream genes, such as periostin (POSTN), tenascin C (TNC), fibronectin (FN1),
and transforming growth factor beta 2 (TGFB2), were highly expressed in the diseased
hearts of iPAH and CTEPH patients (Figure 4E). Lastly, immunohistochemistry of EGR1
in the hypertrophic RV of PH patients corroborated our bioinformatics results (Figure 4F).
Intriguingly, EGR1 tissue expression was predominantly detected in the tunica media of
blood vessels, while tunica intima and tunica adventitia were devoid of EGR1 staining.
Together, these data suggested a role of EGR1 in RV remodeling.
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Figure 4. Identification of TFs governing postoperative reverse cardiac remodeling. (A) Genes highly
expressed preoperatively and downregulated 3 months after surgery were screened for TFBS. Factors
identified in (A) iPAH and (C) CTEPH are depicted as a function of z- and Fisher scores. An area-
proportional Venn diagram of overlapping DEGs and TFs identified by TFBS analysis in (B) iPAH
and (D) CTEPH patients. Numbers indicate absolute number of genes. (E) Average expression
values of EGR1 downstream genes of iPAH and CTEPH patients. Fold-change expression was
determined by comparing pre- and postsurgery values. (F) Histocytochemistry of EGR1 in the
hypertrophic right ventricle of a PH patient. One representative micrograph of n = 3 donors is shown.
Scale bar = 100 µm.

4. Discussion

Numerous studies have investigated the underlying and perpetuating causes of PH,
and over the past decades, our understanding of the pathomechanistic events governing dis-
ease onset and progression has improved profoundly. Vascular remodeling [41], endothelial-
to-mesenchymal transition [42], sRAGE signaling [43], and EGFR signaling [44–46] are
among the cellular and molecular processes known to be implicated in PH disease onset
and/or progression. However, the majority of studies investigating pulmonary hyperten-
sion focused on the pulmonary vasculature [47–49]. While pulmonary processes represent
a central aspect of PH, the relevance of cardiac performance is often neglected in PH basic
research and clinical management. Most therapeutic strategies for PAH directly aim at
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lowering the mPAP, though reduced pulmonary pressure does not necessarily lead to
improved patient conditions unless RV hemodynamics and RV functions recover [50]. Elu-
cidating the molecular mechanisms governing PH-associated RVH and subsequent reverse
remodeling is therefore of utmost interest, and promoting reverse RV remodeling might
represent a major advancement in the therapy of PH. In our current study, we therefore
investigated the transcriptional signatures of diseased and regenerated right ventricles of
PH patients before surgery and after recovery. By longitudinal comparison, we were able to
detect a vast array of DEGs, including several genes associated with muscle development.
When screening for transcriptional regulators, we identified EGR1 as an instigator of right
ventricular remodeling in iPAH and CTEPH patients. Histological investigations suggested
a potential role for EGR1 in PH-related vasculopathy of the right ventricle.

The results reported in our study allowed a detailed view of the transcriptional land-
scape of PH-associated hypertrophic RVs, and provided insights into the transcriptional
changes occurring after surgery and after RV performance recovery. We identified several
differentially regulated factors that have already been implicated in various cardiopatho-
logical events, such as PDK4 [51–53], metallothioneins [54–56], XIRP [57], SERPINE1 [58],
LRRC10 [59–61], NR1D1 [62], fibrillin-1 [63], MURC [64,65], CPEB4 [66], JAK2 [67], mem-
bers of the KLHL [68], NEB [69], and MYOF [70]. As these genes displayed a distinct
regulation in iPAH and CTEPH patients, PH subgroup-specific mechanisms seemed to
orchestrate reverse remodeling of hypertrophic RVs. Our data suggested several potential
factors and pathways that conceivably contributed, in a synergistic and/or in a paral-
lel manner, to RV recovery. Future mechanistic and functional studies are warranted to
determine the role of the identified factors in heart regeneration.

No single event driving RV maladaptation has been found so far. Rather, multifactorial
concomitants have been identified to play crucial roles in the conversion of compensatory
RV hypertrophy to RV dilation and failure. Neurohormones are considered key players
in PH-related RV dysfunction. Angiotensin II, angiotensin-converting enzymes (ACEs),
prostaglandins, and natriuretic peptides are reportedly involved in RV remodeling [33].
While angiotensin (AGT) was not differentially expressed in hearts of iPAH and CTEPH
patients, we observed a trend toward decreased angiotensin I converting enzyme 2 (ACE2)
in CTEPH and increased angiotensin I converting enzyme (ACE) in iPAH after surgery.
ACEs displayed a highly PH group-specific regulation, and investigating larger patient
cohorts will be required to determine the specific roles of ACEs in different classes of
PH. Among all prostaglandin genes, we detected diminished prostaglandin D2 synthase
(PTGDS) expression in both iPAH and CTEPH hearts following surgery, although with a
less pronounced decrease in CTEPH. These data were in line with a previous study that re-
ported the overexpression of prostaglandin D synthases in hypertrophic hearts [71], further
underlining the importance of prostaglandin-synthesizing enzymes in cardiac hypertrophy.

Interestingly, we observed a remarkable upregulation of NPPA and, to a lesser extent,
NPPB after PEA. In contrast to these findings, NPPB was strongly downregulated in hearts
of iPAH patients after LuTX, and NPPA also displayed a tendency toward decrease. These
data indicated an intricate regulation of natriuretic peptides in PH-associated right heart
pathology. Mice lacking Nppa developed cardiomyocyte hypertrophy [72,73], hence the
decreased expression of NPPA we detected in diseased hearts of CTEPH patients might
represent a potential mechanism for hypertrophy. Since Nppb is considered a marker for
cardiac hypertrophy [74,75], the high NPPB expression detected in hypertrophic hearts of
iPAH patients might serve as an indicator of cardiac hypertrophy in PH patients as well.

Several pathways guiding heart development have also been implicated in maladap-
tive cardiac hypertrophy. As such, WNT signaling is crucial for cardiogenesis, but also
mediated adult heart remodeling [76]. However, FRZB inhibited Wnt-mediated cell prolif-
eration in cardiac cushions [77]. Our analyses unveiled low FRZB expression before PEA,
and it is tempting to speculate that a lack of FRZB might lead to elevated WNT signaling
and cardiac remodeling. However, further studies will be required to fully elucidate the
exact role of the WNT–FRZB axis in cardiac hypertrophy resulting from CTEPH.
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In our study, we identified EGR1 as a major instigator of RVH in both iPAH and
CTEPH patients. EGR1 was strongly expressed in diseased, hypertrophic hearts, and
was remarkably downregulated following surgical intervention and reverse RV remod-
eling. Furthermore, EGR1 was found to act as a transcriptional regulator of a number
of DEGs. Finally, we were able to confirm our findings in a histological assessment of
hypertrophic RVs.

Egr1 was induced in the early response to myocardial infarction (MI) [78], and Egr1
governed expression of several downstream targets implicated in inflammation, thrombo-
sis, and apoptosis following MI [79]. Inhibiting EGR1 by DNAzymes improved cardiac
performance after MI [80]. Furthermore, Egr1 played an important role in the early stages
of cardiac hypertrophy via transcriptional regulation of T-type calcium channels [81], and
Egr1 was reported as an endogenous regulator of pathologic cardiac hypertrophy [82].
These previous reports underpinned a crucial role for EGR1 in cardiac hypertrophy, and
the results obtained in the current study further expanded the field of action of EGR1 to
cardiac hypertrophy resulting from PH.

Our immunohistochemical staining suggested a role for EGR1 in RVH vasculopathy.
It is known that EGR1 is poorly expressed in healthy blood vessel walls [83], and we
observed elevated EGR1 in the tunica media of vessels of the RV. Previously, it was shown
that endothelial cells rapidly upregulated Egr1 expression following vascular injury [84].
Furthermore, migrating smooth muscle cells were found to be Egr1-positive [85]. Egr1 thus
plays an important role in the vascular response to injury and targeting Egr1 by DNAzyme-
prevented intimal thickening [86,87]. Similarly, DNAzyme-mediated downregulation of
Egr1 attenuated neointimal formation and improved RVH in a rodent experimental model
of PAH [30]. In iPAH patients, van der Feen and colleagues reported EGR1 expression in the
intima layer, and more than half of the cells of the media layer of pre- and intra-acinar pul-
monary vessels [31]. In contrast to this finding, we exclusively observed EGR1 expression
in the tunica media of hypertrophic RVs from PH patients. Thus, the molecular processes
and contributing cell types that drove remodeling of the pulmonary vasculature and of
the RV might be organ-specific. Our immunohistochemical results were further in line
with a previous study on the role of Egr1 in coronary allograft vasculopathy [88]. In their
work, Okada et al. reported a major role for Egr1 in the parenchymal rejection of cardiac
allografts and blocking Egr1 by antisense-DNA-delayed consequences of cardiac rejection.
As cardiomyocytes of hypertrophic RVs were largely devoid of EGR1 staining, the potential
crosstalk between EGR1-positive blood vessel cells with the adjacent cardiomyocytes and
immune cells, either via direct cell–cell interactions or via paracrine signaling, remains to
be determined.

Interestingly, AGE/RAGE is an upstream positive regulator of EGR1, and the RAGE
axis was locally and systemically upregulated in iPAH and CTEPH [43]. Therefore, a RAGE-
dependent induction of EGR1 is conceivable, and investigating the upstream regulatory
mechanisms driving EGR1 activation will be the subject of future studies.

Pharmacological targeting of EGR1 remains challenging, as small molecules targeting
EGR1 have not been identified to date [89]. However, the growing body of previous
reports together with our findings strongly encourage the development of EGR1 inhibitors.
Whether modulating EGR1 signaling prevents RV deterioration in PH patients merits
future investigations.

As a result of different etiologies, iPAH displayed an earlier disease onset compared to
CTEPH. Hence, it is tempting to speculate that younger iPAH patients might have a better
recovery after surgery. Future studies are warranted to determine whether improvement of
postoperative hemodynamic parameters is related to patient age.

Limitations

In spite of our best efforts, we must recognize some limitations of our study. We ana-
lyzed a limited number of patient samples, and investigating larger patient cohorts might
reveal further differences and alterations in reverse RV remodeling that were not captured
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here. For example, stratification of hemodynamic and transcriptional data according to
patient age might unveil valuable new insights. Due to the study design, only patients
undergoing surgery were included. PH patients deemed inoperable but receiving medical
therapy or rehabilitation might display a distinct disease signature compared to operable
PH patients in the presurgery state. Uncovering the differences between operable and
inoperable PH patients remains to be determined. Due to ethical and medical reasons,
tissue samples were acquired from different anatomical locations of the heart. Though we
were able to confirm our bioinformatics data in the RVs of PH patients, EGR1 staining of
recovered RVs will be necessary to further corroborate our findings. Furthermore, different
medical therapies were prescribed for iPAH and CTEPH patients, before surgery as well as
after surgery. Elucidating the potential effect of different medications of RV remodeling
will be the subject of future investigations.

5. Conclusions

Our findings hold great promise for identifying disease biomarkers and for discovering
diagnostic options. Promoting reverse ventricular remodeling using targeted therapy might
help reducing postoperative mortality. The results presented here might further allow
identification of molecular candidates to treat PH patients not eligible for surgical treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology11050677/s1, File S1: Differentially expressed genes for
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for iPAH, File S4: Transcription factor binding sites for CTEPH.
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