
Attenuated Inflammatory Response in Aged Mice Brains
following Stroke
Matthias W. Sieber1,2, Ralf A. Claus2, Otto W. Witte1*, Christiane Frahm1

1 Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany, 2 Centre for Sepsis Control and Care, Jena University Hospital, Jena,

Thuringia, Germany

Abstract

Background: Increased age is a major risk factor for stroke incidence, post-ischemic mortality, and severe and long-term
disability. Stroke outcome is considerably influenced by post-ischemic mechanisms. We hypothesized that the inflammatory
response following an ischemic injury is altered in aged organisms.

Methods and Results: To that end, we analyzed the expression pattern of pro-inflammatory cytokines (TNF, IL-1a, IL-1b, IL-
6), anti-inflammatory cytokines (IL-10, TGFb1), and chemokines (Mip-1a, MCP-1, RANTES) of adult (2 months) and aged (24
months) mice brains at different reperfusion times (6 h, 12 h, 24 h, 2 d, 7 d) following transient occlusion of the middle
cerebral artery. The infarct size was assessed to monitor possible consequences of an altered inflammatory response in aged
mice. Our data revealed an increased neuro-inflammation with age. Above all, we found profound age-related alterations in
the reaction to stroke. The response of pro-inflammatory cytokines (TNF, and IL-1b) and the level of chemokines (Mip-1a,
and MCP-1) were strongly diminished in the aged post-ischemic brain tissue. IL-6 showed the strongest age-dependent
decrease in its post-ischemic expression profile. Anti-inflammatory cytokines (TGFb1, and IL-10) revealed no significant age
dependency after ischemia. Aged mice brains tend to develop smaller infarcts.

Conclusion: The attenuated inflammatory response to stroke in aged animals may contribute to their smaller infarcts. The
results presented here highlight the importance of using aged animals to investigate age-associated diseases like stroke,
and should be considered as a major prerequisite in the development of age-adjusted therapeutic interventions.
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Introduction

In general, the interplay between the peripheral immune system and

the brain is well balanced in young organisms but becomes unfavorable

with ageing [1]. Impaired immune homeostasis in aged organisms is

associated with a decline in the ability to adapt to environmental stress.

The consequence of this is a significant higher vulnerability for diseases

and their impacts in the elderly. Stroke is the most common and most

important vascular disease of the cerebral nervous system. Cerebral

infarcts are the second leading cause of death worldwide and the

leading cause of adult disability. Increased age is a major risk factor for

stroke incidence, post-ischemic mortality, and severe and long-term

disability [2,3,4]. Although stroke is an extremely important health

issue, most pharmaceutical companies have terminated their research

programs due to the failure of previous studies [5]. One explanation for

the inability to transfer experimental results to the clinic may be the

predominant incorporation of young rodents in basic research. Several

initial indications that the response of the central nervous system to an

ischemic event is age dependent have been reported [6,7,8,9].

However, post-ischemic mechanisms are complex and more funda-

mental studies are required to understand the impact of age on these

processes.

Following cerebral ischemia, a cascade of inflammatory

mediators including cytokines (TNF, IL-1a, IL-1b, IL-6, IL-10,

TGFb1) and chemokines (MCP-1 [CCL2], Mip-1a [CCL3],

RANTES [CCL5]) is initiated. Cytokines and chemokines have

complex, overlapping and pleiotropic functions that may be both

beneficial and deleterious. The temporal expression profile of each

inflammatory mediator, its specific cell source and target, and their

coordinated interaction are important for stroke recovery. The

complex as well as dual role (beneficial versus deleterious) of the

inflammatory response to stroke has been extensively discussed

[10,11,12,13]. Ageing is associated with alterations of the cerebral

inflammatory system [14,15,16,17]. In particular, TNF, IL-1, and

IL-6 have been found to be increased with age [7,18]. The

inflammatory reaction of aged brains to cerebral injuries has

received little attention to date [19,20,21,22]. Indeed, the response

to stroke is currently unknown. It is assumed that the inflammatory

reaction influences the dimension of the injury [20]. Previous

studies investigating the infarct size in old mice have revealed

conflicting results; there are reports of increased, decreased or

similar infarct sizes in aged brains [8].

We hypothesized that the extent and the progression of the

immune response following an ischemic injury are altered in the
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elderly and that this age-dependent inflammatory reaction is a

determinant of the outcome following stroke. The aim of the present

study was to systematically characterize the age-dependent changes

of the infarct size and the inflammatory response in an experimental

stroke model of mice. Transient occlusion of the middle cerebral

artery (MCAO) – a model that closely resembles human stroke [23]

– was used to induce cerebral infarction. The infarct size was

analyzed at three different reperfusion times up to 7 days. The

expression patterns of pro-inflammatory cytokines (TNF, IL-1a,

IL-1b, IL-6), anti-inflammatory cytokines (IL-10, TGFb1), and

chemokines (Mip-1a, MCP-1, RANTES) were investigated at

different reperfusion times (6 h, 12 h, 24 h, 2 d, 7 d).

Materials and Methods

All investigated mice were taken from a C57/BL6 inbred mice

strain, originally obtained from Jackson Laboratory, and randomly

assigned to the groups (described in more detail in Supplement

S1). Adult (2 months), middle-aged (9 months), and aged (15

months and 24 months) male native mice were used to investigate

age-related neuro-inflammation (n = 4, each). The age-dependent

inflammatory response following induction of a cerebral infarct

(6 h, 12 h, 24 h, 2 d, and 7 d) was studied using adult (2 months)

and aged (24 months) mice that had undergone MCAO (n = 4,

each). Infarct volumes were analyzed 2 h, 2 d, and 7 d after

MCAO (n = 4, each). MCAO was performed as described

previously [24]. Briefly, a monofilament was introduced into the

internal carotid artery through an incision of the left common

carotid artery. In this position, the middle cerebral artery was

occluded for 30 min. Up to 7 d after reperfusion, the mortality

rates were 7% and 39% in adult and aged mice, respectively. The

effect of the surgical procedure was controlled using sham-

operated mice (n = 4, each). These animals underwent anesthesia

and surgical procedures similar to the MCAO group but without

occlusion of the middle cerebral artery. In a pre-study, the cerebral

blood flow (CBF) was measured by laser Doppler flowmetry (LDF)

(Peri Flux System 5000, Perimed, Sweden) in adult (n = 10) and

aged (n = 9) mice. Rectal temperature was measured using the DC

Temperature Control System (FHC Inc., USA) in adult (n = 6) and

aged (n = 8) mice. Animals were maintained with access to water

and food ad libitum. All animal procedures were approved by the

local government (Thueringer Landesamt für Lebensmittelsicher-

heit und Verbraucherschutz [TLLV], Dep.2, Gesundheitlicher

Verbraucherschutz, Veterinärwesen, Pharmazie, Germany, Ap-

proval ID’s 02-20/05 and 02-028/10) and conformed to

international guidelines on the ethical use of animals. All surgeries

were performed under deep anesthesia (isoflurane).

Sample preparation
Infarct volumes were analyzed on Map2 immunostained slices

[2 h, 2 d, and 7 d after reperfusion, as described in detail by us

previously [25]]. Deeply anesthetized mice were fixed by perfusion

through the ascending aorta with 4% paraformaldehyde. Brains

were removed, cryoprotected in 0.2 M phosphate-buffered saline

containing 30% sucrose, and stored at 280uC. Coronal sections

(40-mm thick) were cut with a freezing microtome (MH400,

Microm International GmbH).

For mRNA and protein quantification, a separate group of mice

underwent MCAO. Animals were decapitated under deep

anesthesia and brains were removed at 6 h, 12 h, 24 h, 2 d, and

7 d. Using a Precision Brain Slicer (BS-2000C Adult Mouse,

Braintree Scientific Inc.), three coronal sections were dissected

cutting +2.8 and +0.8 mm to bregma (rostral slice), +0.8 and

21.2 mm to bregma (middle slice), and 21.2 and 23.2 mm to

bregma (caudal slice). The ipsilateral (ischemic tissue) and

contralateral (non-ischemic tissue) hemispheres of the middle

brain slice were separated and snap-frozen (for details see

Supplement S1). Adjacent slices were used for infarct validation

(Map2 immunohistochemistry), to select mice with similar lesion

size for mRNA and protein quantification.

Tissue samples of native mice (right hemisphere, +0.8 and

21.2 mm to bregma) were used to study the age-related cerebral

inflammation.

For quantitative PCR (qPCR), tissue samples were homoge-

nized in 1 ml QIAzol Lysis Reagent and total RNA was isolated

using the RNeasy Lipid Tissue Mini Kit (Qiagen GmbH). For

cytokine bead assay (CBA), tissue samples were homogenized in

400 ml ice-cold lysis buffer (0.32 M sucrose; 4 mM Tris-HCl,

pH 7.4; 1 mM EDTA; and 0.25 mM dithiothreitol) containing

protease inhibitors Complete Mini (Roche) and proteins were

isolated as previously described [26].

Immunohistochemistry (Map2)
Free-floating sections (cerebrum, 40 mm thick) were incubated

at 4uC overnight with antibody against Map2 (monoclonal mouse

anti-MAP2 (2a+2b), clone AP-20, Sigma-Aldrich, 1:1,000), then

further processed by the Vectastain Elite ABC Kit (Vector

Laboratories) using a biotinylated secondary antibody (donkey

anti-mouse, Dianova, 1:500). Immunoreactivity was developed in

3,39-diaminobenzidine tetrahydrochloride (DAB; Sigma).

qPCR
For qPCR, equal amounts of total RNA (1 mg) were transcribed

in cDNA with RevertAid First Strand cDNA synthesis kit

(Fermentas [27]). Amplification products were analyzed using gel

electrophoresis, melting curve analysis, and sequencing to confirm

the PCR product specificity. PCR was performed in a volume of

20 ml containing BrilliantH II SYBR GreenH qPCR Master Mix

(Stratagene), cDNA (equivalent to 25 ng reverse transcribed

RNA), and specific primers (Table 1) each at a final concentration

of 500 nM. Amplification was performed using the Rotor-Gene

6000 (Corbett Life Science) applying the following cycle

conditions: 10 min polymerase activation, 40 amplification cycles

(95uC for 30 s, 60uC for 30 s, 72uC for 30 s), and melting curve.

Cytokine bead assay (CBA)
The protein expression pattern was measured by a CBA with

TNF, IL-1a, IL-1b, IL-6, IL-10, Mip-1a, MCP-1, and RANTES

mouse Flex Sets (BD Bioscience). No antibody was available for

TGFb1. The procedure was performed according to the

manufacturer’s instructions with the following modifications. To

ensure a valid analysis of proteins below 10 pg/ml (the default

outlined limit for quantification), (i) 300 mg whole protein was

dissolved in 50 ml lysis buffer, (ii) the standard curve was

constructed from 1.25–156 pg/ml (dissolved in lysis buffer), and

(iii) samples as well as standards were washed twice at the end of

the procedure to reduce background signals. Standards and test

samples were analyzed using the Cytomics FC500 Flow Cytom-

etry System (Beckman Coulter) with its settings optimized to

ensure valid quantifications even for proteins present in very low

amounts.

Data analysis
qPCR. External standard curves of purified PCR products

(five 10-fold dilution series) were applied for absolute

quantification, as described previously [27]. The numbers of

transcripts were calculated per 1,000 transcripts of Gapdh by
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including the criterion of the length of each specific amplicon.

Hmbs was used as a second internal standard. Both Gapdh and

Hmbs were stably expressed under the conditions of investigation.

CBA. The raw data from the Cytomics FC500 Flow Cytometry

System were analyzed using FCAP ArrayTM software (SoftFlow).

Protein concentrations of the test samples were calculated using a

corresponding standard curve (supplied recombinant protein with

known concentration).

Statistical analysis
Differences between the infarct volumes of adult (2 months) and

aged (24 months) mice at different time points (2 h, 2 d, and 7 d)

were analyzed with ANOVA and post-hoc Tukey test. Significant

differences of mRNA and protein expression values dependent on

ageing per se (versus 2-month-old controls) were calculated with

ANOVA and post-hoc Tukey test (& p#0.05, && p#0.01, &&&

p#0.001). Correlation of the expression level with age (R, Pearson

correlation) is indicated by + p#0.05, ++ p#0.01, and +++
p#0.001. Significant post-ischemic differences of the expressions

levels (ipsi versus contra) at several time points (6 h, 12 h, 24 h,

2 d and 7 d) were calculated with paired two-way ANOVA and

post-hoc Tukey test. Analyses were done separately for adult

(* p#0.05, ** p#0.01, *** p#0.001) and aged (# p#0.05, ##
p#0.01, ### p#0.001) mice. Significant age-dependent differ-

ences of absolute expression within the ipsilateral hemisphere were

calculated within a further two-way ANOVA and are displayed by

{ p#0.05, {{ p#0.01, {{{ p#0.001. All tests were performed with

SigmaStat (software version 3.5).

Results

Almost all the tested inflammatory mediators showed increased

expression values during ageing per se. The pro-inflammatory

cytokines, particularly TNF, as well as the chemokines Mip-1a and

MCP-1 showed a distinct up-regulation with age. Following stroke,

the expression of almost all the tested inflammatory mediators was

significantly up-regulated in ischemic tissues. However, a clearly

attenuated inflammatory response was apparent in aged brains

following the ischemic insult. TNF, IL-1a, IL-1b, IL-6, Mip-1a,

and MCP-1 displayed an age-related decreased post-ischemic

expression, with IL-6 exhibiting the strongest decrease. Aged mice

brains also exhibited smaller infarcts. The sham procedure had no

substantial effect on the expression of all the tested cytokines and

chemokines. No significant differences of the cerebral blood flow

and the body temperature were observed between adult and aged

mice during or after MCAO (data not shown).

Infarct volume
Occlusion of the middle cerebral artery for 30 min led to an

ischemic injury mainly restricted to striatal regions of the mice

brains. At different reperfusion times (2 h, 2 d, and 7 d) the infarct

size tend to be smaller in aged mice. Taking all time points

together, the mean infarct volume of aged mice was significantly

smaller (Figure 1, Map2 immunohistochemistry, ANOVA with

post-hoc Tukey test, p#0.05).

Pro-inflammatory cytokines TNF, IL-1a, and IL-1b
All the tested major pro-inflammatory cytokines were signifi-

cantly elevated with ageing per se regarding their mRNA level

(TNF 5-fold, p#0.01; IL-1a ,1.9-fold, p#0.05; IL-1b ,2.4-fold,

p#0.01; Figure 2). This up-regulation was reflected in the level of

protein, though it was not as pronounced (TNF 1.1-fold, n.s.; IL-

1a 1.1-fold, n.s.; Figure 2).

Following ischemia in adult mice brains, the transcript

expression of all the tested pro-inflammatory cytokines was clearly

elevated (TNF up to 61-fold, p#0.001; IL-1a up to 13-fold,

p#0.01; IL-1b up to 37-fold, p#0.001; Figure 2). This massive

inflammatory response in adult ischemic brains was markedly

attenuated in aged brains (by 41% for TNF; by 68% for IL-1a; by

79% for IL-1b).

The up-regulation of TNF mRNA and protein peaked at 12 h

after reperfusion in adult mice (mRNA 56-fold, protein 2.3-fold;

p#0.001). The TNF protein level in aged mice brains following

stroke showed an elevated expression but was not significantly

affected. The extent of the post-ischemic response was approxi-

mately the same for IL-1a mRNA and protein, but a delayed peak

expression of IL-1a protein was observed (mRNA peak at 6 h,

protein peak at 12 h after reperfusion). The protein level of IL-1b
could not be reliably quantified (data not shown).

Cytokine IL-6
The increased IL-6 mRNA level significantly correlated with

age (Pearson, p#0.05), though this was not reflected in its protein

level (Figure 3). The post-ischemic IL-6 expression of adult mice

was up-regulated by up to 69-fold for its mRNA level (peak at 12 h

after reperfusion, p#0.001) and by up to 11-fold for its protein

level (peak at 24 h after reperfusion, p#0.001; Figure 3). The

ischemic response in aged brains was attenuated by 82% at the

transcript level (at 12 h) and by 85% at the protein level (at 24 h).

In adult mice, the mRNA expression of IL-6 increased from 6 h to

12 h when it reached its peak expression. In aged mice, IL-6

mRNA expression peaked at 6 h and then displayed a rapid decay.

Table 1. Primer sequences.

Primer Sequence (59R39)
GenBank
accession number

Gapdh forward CAACAGCAACTCCCACTCTTC NM_008084.2

Gapdh reverse GGTCCAGGGTTTCTTACTCCTT

Hmbs forward GAAATCATTGCTATGTCCACCA NM_013551.2

Hmbs reverse GCGTTTTCTAGCTCCTTGGTAA

TNFa forward GTCTACTGAACTTCGGGGTGAT NM_013693.2

TNFa reverse ATGATCTGAGTGTGAGGGTCTG

IL-1a forward GCCTTATTTCGGGAGTCTAT NM_010554.4

IL-1a reverse TAGGGTTTGCTCTTCTCTTACA

IL-1b forward GAAGAGCCCATCCTCTGTGA NM_008361.3

IL-1b reverse TTCATCTCGGAGCCTGTAGTG

IL-6 forward ACAAAGCCAGAGTCCTTCAGAG NM_031168.1

IL-6 reverse CATTGGAAATTGGGGTAGGA

IL-10 forward ATGGTGTCCTTTCAATTGCTCT NM_010548.1

IL-10 reverse AGGATCTCCCTGGTTTCTCTTC

TGFb1 forward TGCTTCAGCTCCACAGAGAA NM_011577.1

TGFb1 reverse TACTGTGTGTCCAGGCTCCA

Mip-1a forward TGGAACTGAATGCCTGAGAGT NM_011337.2

Mip-1a reverse TAGGAGATGGAGCTATGCAGGT

MCP-1 forward AGGTGTCCCAAAGAAGCTGTAG NM_011333.3

MCP-1 reverse AATGTATGTCTGGACCCATTCC

RANTES forward CCAGAGAAGAAGTGGGTTCAAG NM_013653.2

RANTES reverse AAGCTGGCTAGGACTAGAGCAA

The GenBank accession numbers were obtained from the NCBI (March 2010).
doi:10.1371/journal.pone.0026288.t001
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Anti-inflammatory cytokines IL-10 and TGFb1
TGFb1 transcript levels correlated significantly with age

(Pearson, p#0.05; Figure 3). In contrast to all the other tested

cytokines, the post-ischemic TGFb1, expression increased contin-

uously with time (up to 7 d) in adult and aged brains (4.5-fold and

2.5-fold, respectively; p#0.001). However, the up-regulation of

TGFb1 was attenuated in aged mice by 33% (7 d after

reperfusion; Figure 3).

The expression of IL-10 mRNA tended to be elevated during

ageing per se, but it was not significantly up-regulated (1.5-fold,

n.s.; Figure 3). Following stroke, the IL-10 transcript expression

peaked at 6 h after reperfusion for both ages of mice (2.1-fold,

adult p#0.05, aged p#0.01). The post-ischemic IL-10 mRNA

response was not found to be significantly altered in aged brains

(Figure 3).

The protein expression of IL-10 and TGFb1 could not be

validated. The IL-10 protein levels in the test samples have been

found below the sensitivity of the BD Bioscience Flex Set. In the

case of TGFb1, an appropriate antibody was not provided by the

BD Bioscience Flex Set.

Chemokines Mip-1a, MCP-1, and RANTES
The transcript levels of all the tested chemokines increased with

ageing per se. The strongest increase was observed for Mip-1a
mRNA (3.5-fold, p#0.001; Figure 4) and MCP-1 mRNA (3.6-

fold, p#0.001; Figure 4). The protein levels of Mip-1a and

RANTES correlated significantly with age (Pearson, p#0.01 and

p#0.05, respectively; Figures 4 and 5). The protein level of MCP-

1 tended to be increased; however, it failed to reach significance

(Figure 4).

Mip-1a mRNA expression peaked 12 h after ischemia in adult

mice (Figure 4). Aged mice displayed a significant attenuated

response of Mip-1a transcript expression at 12 h after reperfusion

(by 55%) and over all time points (by 33%). This post-ischemic

diminished Mip-1a response was observed to be less pronounced

at the protein level (by 25%, n.s.).

The transcript expression of MCP-1 peaked at 12 h after

ischemia in adult mice brains (up to 102-fold, p#0.001; Figure 4).

However, this strong response was significantly attenuated in aged

mice brains (up to 57%). The post-ischemic protein expression

peaked at 12 h and 24 h in aged and adult mice brains,

respectively (up to 9-fold, adults, p#0.001). MCP-1 mRNA

response seems also be attenuated, in aged mice brains (by 48%,

24 h after reperfusion).

The expression of RANTES mRNA increased continuously up

to 7 d following ischemia in adult brains (3.5-fold, p#0.001;

Figure 5). Aged brains showed no obvious post-ischemic increase

in RANTES transcript expression in the ipsilateral hemisphere;

however, the contralateral hemisphere displayed a decrease

(Figure 5). Therefore, the ratio of ipsilateral versus contralateral

RANTES mRNA resulted in a significant ischemic effect

(Figure 5). The level of RANTES protein peaked at 24 h after

reperfusion. RANTES did not display a significant age-dependent

post-ischemic response (Figure 5).

Discussion

We found profound age-related alterations in the reaction to

stroke. The response of pro-inflammatory cytokines and the level

of chemokines were strongly diminished in the aged post-ischemic

brain tissue (summarized in Figure 6). Anti-inflammatory cytokines

(TGFb1, and IL-10) revealed no significant age dependency after

ischemia. In concordance, the mean infarct volume of aged mice

brains was found to be smaller.

Age dependence of infarct size
Previous studies reported contradictory results on the age

dependence of stroke size. Most studies found no age dependence

or rather smaller infarct sizes, in experimental [28,29,30] as well as

in clinical [31,32] observations. Larger stroke sizes in aged animals

were reported after permanent MCAO at early times (6 h [33],

24 h [34], and 3 d [35]) while this was not observed at later times

(7 d [35]), indicating that the dynamics of stroke development

following permanent MCAO might be different in aged animals.

Stroke size might also depend on the gender of aged animals

and the hormone level. Female aged rodents had larger infarcts

whereas ovariectomized rats had smaller infarcts [36,37]. Alto-

gether, our result of a tendency to smaller infarcts in aged mice

following transient MCAO is in agreement with most of the

previous experimental studies [28,29,30] and in line with clinical

observations [31,32].

Elevated cerebral inflammation with age
The expression levels of inflammatory mediators in the brain

are low due to the immune privilege of the central nervous system

Figure 1. Infarct volumes at different ages. The mean infarct volume
(6SEM) was significantly smaller in aged mice brains (Map2 immunohisto-
chemistry, ANOVA with post-hoc Tukey test, * p#0.05).
doi:10.1371/journal.pone.0026288.g001
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[38]. We therefore carefully established our qPCR settings to

guarantee high sensitivity [27]. Protein expression was determined

by flow cytometry with a bead-based immunoassay to minimize

technical variations and to guarantee a high performance of each

antibody in a multiplex scenario.

With the systematic approach used in this study, we showed that

baseline expression levels of all the tested inflammatory mediators

increased with age. Transcripts of the pro-inflammatory cytokines

IL-1a, IL-1b, IL-6, and notably TNF as well as transcripts of the

chemokines Mip-1a, MCP-1, and RANTES were up-regulated.

Moreover, we found increased levels of the anti-inflammatory

cytokines IL-10 and TGFb1, with the transcript of TGFb1

exhibiting the more prominent increase with age. These data are

in agreement with the findings of previous studies, which reported

similar tendencies for selected inflammatory mediators using

different techniques [7,9,17,18,39]. With the exception of IL-6

and MCP-1, the protein expression of the inflammatory mediators

increased with age, similar to their mRNA profiles. Although

several methodological precautions were applied, the physiological

protein levels were at (IL-6 and MCP-1) or below (IL-1b and

IL-10) the limit of quantification. As mentioned above, an

appropriate TGFb1 antibody was not available.

Attenuated inflammatory response after ischemic injury
in aged brains

The post-ischemic response of the pro-inflammatory cytokines

TNF, IL-1b, and particularly IL-6 as well as of the chemokines

Mip-1a and MCP-1 was significantly attenuated in aged brains.

The anti-inflammatory capacity (TGFb1, and IL-10) revealed no

significant age related differences after ischemia.

In line with our findings, an attenuated inflammatory response

in aged brains was also observed following NMDA-induced brain

injury (striatal TNF and cortical IL-1b [7]) or after whole brain

irradiation (hippocampal TNF, IL-1b, IL-6, and MCP-1 [40]). In

contrast, elevated pro-inflammatory reactions were observed in

aged brains after mechanical injuries [9,41], intracerebral

hemorrhage [42], or ischemia [43]. Therefore, post-injury infla-

mmatory mechanisms do not follow a general pattern, but appear

to depend on the type and extent of stimulation.

Potential reasons for the age-related attenuated post-
ischemic inflammatory response

Elevated pro-inflammatory cytokine levels in aged brains may

mediate a kind of preconditioning similar to the situation where

administration of low levels of TNF and IL-1 leads to ischemic

tolerance [44,45]. In such a scenario, greater levels of stimulation

would be required to induce a comparable inflammatory response.

However, if and to what extent the attenuated post-ischemic

immune response is due to elevated baseline levels of pro-

inflammatory cytokines in aged brains cannot be determined from

our results.

IL-6 exhibited the strongest decrease in its expression profile

following stroke in aged mice brains. IL-6 is a pleiotropic cytokine

that coordinates inflammatory processes between the periphery

and the central nervous system, and can be released by various cell

types in response to injuries. Moreover, IL-6 influences the

expression and function of several other inflammatory mediators.

Therefore, IL-6 may be a key mediator of the reduced infla-

mmatory reaction following stroke in aged mice.

Similar to IL-6, all the other tested inflammatory mediators

interact with each other. TNFa, for instance, influences several

other inflammatory mediators, e.g. IL-6 and IL-1b [46,47]. Also,

IL-1b can stimulate cells to express MCP-1 [48]. Conversely,

MCP-1-deficient mice express less IL-1b after permanent MCAO,

indicating a signaling in both directions [49]. Therefore, a down-

regulation of some of the key players of the post-stroke immune

response may subsequently lead to a general reduction of the

involved inflammatory mediators.

Potential functional consequences of an attenuated
inflammatory response

Pro-inflammatory cytokines are generally considered to mediate

detrimental effects following ischemia. Administration of TNF or

IL-1 exacerbates damage [19,50], and inhibition of TNF or IL-1

as well as IL-1 deficiency lead to reduced ischemic injuries [19].

IL-6 as a pleiotropic mediator can potentially exert detrimental

(early phase) or beneficial effects (late phase) following ischemia.

Post-ischemic injection of recombinant IL-6 mediates neuropro-

tection and reduces the injury, whereas administration of anti-

mouse IL-6 receptor monoclonal antibody or the use of IL-6-

knockout mice increases infarct size [51].

Anti-inflammatory cytokines such as TGFb1 and IL-10 have a

beneficial function after ischemia. IL-10 deficiency exacerbates

damage, whereas its over-expression reduces infarct volumes after

ischemic brain injury [52]. Both of these anti-inflammatory

cytokines are able to block NF-kappa B activation and thereby

the expression of transcripts involved in immune and inflamma-

tory responses [53,54].

CC chemokines or b-chemokines recruit immune competent

cells to injured tissue [55]. Studies which inhibited MCP-1 in the

rat brain or used MCP-1-deficient mice reported smaller ischemic

lesions, whereas over-expression exacerbated damage [19]. Inhi-

bition of MCP-1 and Mip-1a signaling leads to reduced infarct

volumes following MCAO [56]. In concordance, the administra-

tion of Mip-1a has been found to increase the infarct volume [56].

RANTES-deficient mice exhibited decreased leukocyte adhesion,

diminished blood-brain barrier permeability, and less tissue

infarction [57].

The present study has revealed an attenuated response of

inflammatory mediators in aged brains following stroke. More-

over, we observed smaller infarcts in aged brains. Most studies in

rodents as well as in humans have reported that cerebral infarcts

in aged organisms are not different from those in adults [8].

The smaller infarcts in aged brains observed here could be a

consequence of the diminished pro-inflammatory response. This

hypothesis is in line with the literature which reports a detrimental

effect of pro-inflammatory cytokines and chemokines on the extent

of injuries (as outlined above). The attenuated expression of IL-6

Figure 2. Age- and stroke-dependent expression of TNF, IL-1a, and IL-1b. TNF, IL-1a, and IL-1b displayed significantly elevated expression
levels with age. All these pro-inflammatory cytokines showed a distinct response following stroke, which was attenuated in aged brains. Expression
values are shown as mean 6 SEM and ratios as geometric mean 6 SEM. Significant age-related differences (versus 2-month-old native mice) are
indicated by & p#0.05, && p#0.01, and &&& p#0.001 (ANOVA and post-hoc Tukey test). Correlation of the cytokine expression level with age is
indicated by + p#0.05, ++ p#0.01, and +++ p#0.001 (R, Pearson correlation). Significant post-stroke differences (ipsi versus contra) are indicated by
adult: * p#0.05, ** p#0.01, and *** p#0.001; and aged: # p#0.05, ## p#0.01, and ### p#0.001 (paired two-way ANOVA and post-hoc Tukey
test). Significant age-dependent differences after stroke (ipsi aged versus ipsi adult) are displayed by { p#0.05, {{ p#0.01, and {{{ p#0.001 (two-
way ANOVA).
doi:10.1371/journal.pone.0026288.g002
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Figure 3. Age- and stroke-dependent expression of IL-6, TGFb1 and IL-10. IL-6 transcript expression significantly correlated with age;
however, this correlation was not reflected in the expression of its protein. The post-ischemic IL-6 response was attenuated in aged brains (mRNA and
protein). TGFb1 mRNA significantly correlated with age. IL-10 mRNA tended to be elevated in aged brains. TGFb1 transcript expression in the
ischemic tissue increased continuously with reperfusion time at both ages. The up-regulation of TGFb1 and IL-10 following ischemia tended to be
attenuated in aged brains. Expression values are shown as mean 6 SEM and ratios as geometric mean 6 SEM. For details of the statistical analysis,
see Figure 2’s legend or the Materials and Methods section.
doi:10.1371/journal.pone.0026288.g003
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Figure 4. Age- and stroke-dependent expression of Mip-1a and MCP-1. Mip-1a and MCP-1 displayed significantly elevated expression levels
with age. Mip-1a and MCP-1 transcript and protein expression increased significantly following stroke. This up-regulation was attenuated in aged
brains. Expression values are shown as mean 6 SEM and ratios as geometric mean 6 SEM. For details of the statistical analysis, see Figure 2’s legend
or the Materials and Methods section.
doi:10.1371/journal.pone.0026288.g004
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Figure 6. Schematic diagram summarizing the post-ischemic expression profiles of all the tested inflammatory mediators. The
relative expression profiles (%) of all the tested inflammatory mediators in adult (continuous line, colored area) and aged brains (dotted line, light
colored area) are shown (mRNA, left panel; protein, right panel). The post-ischemic response of TNF, IL-1a, IL-1b, IL-6, Mip-1a, MCP-1, and TGFb1 was
considerably attenuated with age, with IL-6 exhibiting the strongest age-dependent effect.
doi:10.1371/journal.pone.0026288.g006

Figure 5. Age- and stroke-dependent expression of RANTES. The expression of RANTES significantly correlated with age. After ischemia, the
level of RANTES mRNA continuously increased up to 7 d in adult brains, whereas no up-regulation was observed in aged brains. Protein levels of
RANTES were up-regulated in adult and aged brains. Expression values are shown as mean 6 SEM and ratios as geometric mean 6 SEM. For details of
the statistical analysis, see Figure 2’s legend or the Materials and Methods section.
doi:10.1371/journal.pone.0026288.g005

Age-Dependent Post-Ischemic Inflammation

PLoS ONE | www.plosone.org 9 October 2011 | Volume 6 | Issue 10 | e26288



in aged post-ischemic brains may be harmful in the late ischemic

phase.

Conclusions and future perspectives
From a theoretical point of view, attenuated post-lesional levels

of pro-inflammatory cytokines and chemokines may be considered

as a neuroprotective mechanism in aged brains. The smaller

infarcts in aged brains could potentially be a consequence of this

neuroprotection. However, reasons for the attenuated age-related

stroke response cannot yet be specified. Increased baseline

inflammation in aged brains may influence post-ischemic

inflammatory processes. Modulation of the age-related neuro-

inflammation (e.g. by pharmacological intervention or physical

activity) with subsequent stroke induction would provide an

opportunity to clarify this issue. Furthermore, investigations

involving aged transgenic mice with altered inflammatory brain

responses are necessary to unravel the functional relevance of our

findings.
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