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Abstract

In this study, we tested the hypothesis that rectal immunization with a VCG-based chlamydial

vaccine would cross-protect mice against heterologous genital Chlamydia trachomatis infec-

tion and Chlamydia-induced upper genital tract pathologies in mice. Female mice were immu-

nized with a C. trachomatis serovar D-derived subunit vaccine or control or live serovar D

elementary bodies (EBs) and the antigen-specific mucosal and systemic immune responses

were characterized. Vaccine efficacy was determined by evaluating the intensity and duration

of genital chlamydial shedding following intravaginal challenge with live serovar E chlamydiae.

Protection against upper genital tract pathology was determined by assessing infertility and

tubal inflammation. Rectal immunization elicited high levels of chlamydial-specific IFN-gamma-

producing CD4 T cells and humoral immune responses in mucosal and systemic tissues. The

elicited immune effectors cross-reacted with the serovar E chlamydial antigen and reduced the

length and intensity of genital chlamydial shedding. Furthermore, immunization with the VCG-

vaccine but not the rVCG-gD2 control reduced the incidence of tubal inflammation and pro-

tected mice against Chlamydia-induced infertility. These results highlight the potential of rectal

immunization as a viable mucosal route for inducing protective immunity in the female genital

tract.

Introduction

The majority of C. trachomatis genital infections worldwide are caused by serovars D, E, and F

[1–3] and most infections are asymptomatic. If untreated, Chlamydia can ascend to and infect

the upper genital tract leading to upper genital tract pathology [4]. Genital C. trachomatis has

been recognized as the most common cause of pelvic inflammatory disease (PID) leading to

severe tubal damage, salpingitis, hydrosalpinx and tubal factor infertility (TFI) [5–7]. There is
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currently no licensed chlamydial vaccine. An effective vaccine should protect against the pre-

dominant serovars and prevent development of upper reproductive tract pathology. The severe

sequelae associated with chlamydial infection are the consequence of repeated infections

caused by poor immunological memory to previous infection. Thus, a vaccine capable of pro-

tecting against infection and inducing long lasting immunity is desirable.

We previously showed that intramuscular immunization with a VCG-based chlamydial

vaccine expressing the evolutionarily conserved polymorphic outer membrane protein D

(PmpD) and porin B (PorB) proteins [8–10] induced long-term, cross protective immune

responses in mice [11, 12]. However, the ability of this vaccine to protect against upper genital

tract pathology was not evaluated. Mucosal immunization that exploits the tenets of the com-

mon mucosal immune system to target immune effectors from one mucosal inductive site to

other mucosal effector sites is a practical approach to vaccination against mucosal pathogens

like C. trachomatis. For example, intranasal immunization has been established to provide an

effective mucosal route of vaccine delivery against genitally acquired microbial pathogens [13].

However, subunit vaccines often require adjuvants and there are unmitigated concerns about

the reactivity of some nasally administered adjuvants that may potentially cause neurological

side effects in humans [14]. To overcome this challenge, the rectal route has been proposed as

an alternative mucosal route for immunization against diverse microbial pathogens, including

Human papilloma virus (HPV) [15], Hepatitis A virus [16], and human immunodeficiency

virus (HIV) [17–19]. Moreover, rectal immunization with a Chlamydial ghost-based vaccine

was very effective in inducing immunity against enterohaemorrhagic Escherichia coli (EHEC)

O157:H7 following heterologous challenge [20].

In this study, we tested the hypothesis that rectal (IR) immunization with a subunit chla-

mydial vaccine would cross-protect mice against heterologous Chlamydia genital infection

and prevent Chlamydia-induced infertility. The results show IR immunization induced cross-

reactive immune responses in mucosal and systemic tissues that reduced the length and inten-

sity of genital chlamydial shedding and prevented Chlamydia-induced infertility. These results

highlight the potential of rectal immunization as a viable route for inducing protective immu-

nity in the female genital tract.

Materials and methods

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health. The Institutional

Animal Care and Use Committee (IACUC) of Morehouse School of Medicine approved the

study protocol (Protocol Number: 16–15). All immunizations, challenge and surgery were per-

formed under ketamine/xylazine anesthesia, and all efforts were made to minimize suffering.

Five-week-old female C57BL/6 mice obtained from The Jackson Laboratory (Bar Harbor, ME)

were used in this study and were allowed to acclimate for 10 days in the animal facility of

Morehouse School of Medicine prior to experimentation.

Vaccines, Chlamydia stocks and antigens

The vaccine candidate used in this study consisted of recombinant VCG expressing the porin

B (PorB) and N-terminal portion of polymorphic membrane protein D (PmpD) proteins

(rVCG-PmpD/PorB) from C. trachomatis serovar D. An rVCG construct expressing glycopro-

tein D from HSV-2, representing a chlamydial irrelevant antigen (rVCG-gD2) was used as

antigen control. The rVCG vaccines were produced by protein E-mediated lysis essentially as

described previously [21], lyophilized and stored at room temperature until use. In stock
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preparations of C. trachomatis serovars D and E used in this study were previously titrated on

HeLa cell monolayers followed by purification of elementary bodies (EBs) over renografin gra-

dients and stored at -70˚C. Chlamydial antigens were prepared by UV-inactivation of EBs for

3 h and stored at -70˚C until used.

Experimental design for vaccination and challenge

Groups of mice (10/group) were IR immunized with 50 microliter PBS containing 2 mg of

lyophilized rVCG-PmpD/PorB vaccine or rVCG-gD2 control on weeks 0, 2 and 4 as previ-

ously described [22] or a single intravaginal inoculation with live C. trachomatis serovar D EBs

(live EB) (1 x 106 IFU/mouse) on week 4. All immunizations were administered while under

ketamine (75 mg/kg Ketaset, Zoetis, Florham Park, NJ)/xylazine (15 mg/kg Anased, Lloyd,

Shenandoah, IA) anesthesia. One week prior to challenge infection, each mouse was injected

with 2.5 mg medroxyprogesterone (Depo Provera; Pharmacia UpJohn Co., Kalamazoo, MI)

subcutaneously to synchronize the estrous cycle and increase mouse susceptibility to infection.

This treatment is key to a successful mouse model of chlamydial genital infection using human

chlamydial strains [23–26]. Mice were then challenged intravaginally with 1.0 x 107 inclusion

forming units (IFUs) of C. trachomatis serovar E to assess cross protection. To evaluate long-

term protection, mice were rechallenged intravaginally 10 weeks after the primary challenge

infection. Serovar E was chosen for these studies because like serovar D, it is one of the most

predominant serovars in human cervical isolates [27]. Mice were observed daily to monitor

health status and the level of infection was assessed by enumerating the number of chlamydial

inclusion forming units (IFU) from cervicovaginal swabs by indirect immunofluorescence

[28] and the mean number of IFU at each time point was calculated.

Assessment of antigen-specific cellular immune responses

Two weeks after the last immunization, T cells were purified from spleens (SPL) of immunized

mice using the gentleMACS Dissociator in combination with the Midi magnetic bead-acti-

vated cell sorting (MidiMACS) purification system and CD4-specific MACS microbeads (Mil-

tenyi Biotech, Auburn, CA). Chlamydia-specific Th1/Th2 and IL-17 cytokine production by

splenic T cells was assessed as described previously [11] using the Bio-Plex cytokine assay kit

in combination with the Bio-Plex Manager software (Bio-Rad, Hercules, CA). The concentra-

tion of the cytokines in each sample was obtained by extrapolation from a standard calibration

curve generated simultaneously. Data were calculated as the mean values (± S.D.) for triplicate

cultures for each experiment. The ability of immune CD4 T cells to proliferate in response to

in vitro restimulation in culture with and without (internal control) chlamydial antigen was

assessed using the 5-Bromo-2’-deoxy-uridine (BrdU) T cell proliferation assay and the stimu-

lation index (SI) calculated as described previously [11].

Assessment of antigen-specific humoral immune responses

The amount of chlamydial PmpD-specific antibodies (IgG2c and IgA) in pooled serum and

vaginal wash samples collected 2 weeks postimmunization was measured by a standard ELISA

procedure described previously [29]. Briefly, Maxisorb 96-well plates (Costar) were coated

overnight with 10 microgram/ml of a synthesized 15-amino acid conserved PmpD peptide

(Syd Labs, Malden, MA) in PBS. For generating a standard calibration curve, wells were simi-

larly coated in triplicate with IgA or IgG2c standards (0.0, 12.5, 25, 50. 100, 250, 500 and 1,000

ng/ml). Plates were blocked with 1% bovine serum albumin containing 5% goat serum in PBS

and then incubated with 100 microliter of serum or 50 microliter of vaginal wash in twofold

serial dilutions. This was followed by incubation with 100 microliter of horseradish
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peroxidase-conjugated goat anti-mouse IgA or IgG2c (Southern Biotechnology Associates,

Birmingham, AL) for 1 h and developed with 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic

acid) (ABTS). The optical density was measured at 490 nm on a Spectra Max 250 Microplate

Autoreader (Molecular Devices Corp., Sunnyvale, CA). Results, generated simultaneously with

the standard curve, display data sets corresponding to absorbance values as mean concentra-

tions (ng/ml) ± standard deviations and represent the mean values from triplicate

experiments.

Fertility assessment

For fertility studies, a separate experiment was performed in which 10 mice/group were simi-

larly immunized with rVCG-PmpD/PorB or rVCG-gD2 control on weeks 0, 2 and 4 and chal-

lenged as described above. Ten weeks after the initial primary challenge (12 weeks

postimmunization), a time when mice vaginally infected with live chlamydiae are usually sus-

ceptible to reinfection, mice were rechallenged with 1.0 x 107 IFU of serovar E per mouse. One

week prior to rechallenge, mice received subcutaneous injection of 2.5 mg Depo Provera to

synchronize the estrous cycle and increase mouse susceptibility to infection. Four weeks after

reinfection, a group of naive uninfected age-matched control and rechallenged mice were

mated with proven-fertile males. The mice were visually checked, palpated and weighed daily

by the attending veterinary technician to determine pregnancy. Pregnant mice (determined by

3 days of consistent weight gain after caging with males) were sacrificed to evaluate number of

embryos. Non-pregnant mice were reintroduced to a different first round proven-breeder

male and monitored further and were deemed infertile if this second round mating was unpro-

ductive. Subsequently, the total number of pregnant mice and mean number of embryos per

group was evaluated.

Histopathology

Non-pregnant mice from each experimental group above were euthanized and in situ gross

examination of the genital tract was performed by visual inspection for evidence of upper geni-

tal tract pathology. The entire genital tract from the vagina to the ovary was harvested for

acquisition of digitized images as described previously [30]. This was fixed in 10% neutral for-

malin, embedded in paraffin, and serially sectioned longitudinally (5 microns/section) to

include the cervix, uterine horns, oviducts and ovaries as well as the lumenal structures. Sec-

tions were stained with hematoxylin and eosin (H&E) and scored for severity and distribution

of pathologies as well as inflammation, edema, fibrosis, and luminal distension. Pathology

severity scores were based on the following scoring system: 0, no significant tissue alterations;

1, minimal; 2, mild; 3, moderate; and 4, severe tissue alterations and distribution scores were

based on the following scoring system: 1, focal; 2, multifocal; and 3, diffuse. Sectioning, stain-

ing and pathology assessment was performed by a licensed anatomic pathologist (UGA, Ath-

ens) who was initially blinded to the identity of the different groups.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 5.0 software (GraphPad Software,

Inc., La Jolla, CA) on a MAC computer. Analysis of variance (ANOVA) was used for all group

comparisons. Differences between 2 groups were compared by an unpaired Student t test and

Fisher’s exact test was used to compare percentages of fertile mice. Differences between groups

were considered statistically significant if P-values were� 0.05.
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Results

IR immunization induces cross protection against challenge with live

serovar E chlamydiae

Vaccine efficacy was evaluated by challenging rectally immunized animals intravaginally with

live chlamydiae two weeks after the last immunization according to the experimental protocol

shown in Fig 1A. Infections were monitored by weekly cervicovaginal swabbing of individual

animals and numbers of inclusions were visualized and enumerated in HeLa cell monolayers

Fig 1. Rectal immunization with rVCG-PmpD/PorB vaccine protects against heterologous challenge with live serovar E chlamydiae. (A) Schematic

diagram of the experimental protocol outlining the immunization, challenge and mating schedules. PI, post-immunization; PC, post-challenge; PM, post-

mating. (B) Protection against heterologous challenge with live serovar E chlamydiae was evaluated 2 weeks after the last immunization and chlamydial

clearance was monitored by enumeration of chlamydiae from cervico-vaginal swabs. The data show the mean recoverable IFUs expressed as log10 IFU/

ml ± S.D. The experiment was repeated to contain 10 mice per group. Numbers in parentheses are percentages of animals with positive cultures at each time

point.

https://doi.org/10.1371/journal.pone.0178537.g001
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by indirect immunofluorescence. Fig 1B shows that IR immunization with rVCG-PmpD/PorB

or live chlamydial EBs resulted in significant reduction in the number of mice shedding chla-

mydiae and a lower intensity and duration of chlamydial shedding compared to controls. By

day 14 postchallenge, all the live EB-immunized mice and all but one rVCG-PmpD/PorB-

immunized mouse had resolved the infection whereas 80% of the controls still shed large num-

bers of chlamydiae at this time point (Fig 1B).

Induction of antigen-specific Th1/Th2 cytokine responses induced by

rVCG-PmpD/PorB

To assess specific Th1/Th2 cell responses induced by the vaccine candidates, CD4+ T cells

were purified from the spleens of immunized mice 2 weeks postimmunization and analyzed

for Th1/Th2 cytokine secretion upon restimulation with C. trachomatis serovar E antigen

(UV-irradiated serovar E EBs). Significantly higher (p< 0.05) amounts of the Th1 cytokines,

IFN-gamma, TNF-α and IL-2, and IL-17 were produced by immune CD4 T cells from live EB-

and rVCG-PmpD/PorB-immunized mice compared to those from gD2 control mice (Fig 2A).

Although significantly higher (p< 0.05) amounts of the Th2 cytokine, IL-10 were secreted by

vaccine-induced immune T cells, there was no difference in the levels of IL-5 (Th2 cytokine)

produced by T cells from vaccine and control immunized mice. Taken together, the results

specify a cross-reactive antigen-specific Th1-type immune response. Immune CD4 T cells

Fig 2. Antigen-specific T cell-mediated immune responses. Pooled CD4+ T cells purified from the spleens of immunized mice and controls were restimulated

in vitro with C. trachomatis serovar E antigen (UV-irradiated EBs; 10 microgram/ml). The amount of cross-reactive chlamydial-specific Th1 (IFN-gamma, TNF-

alpha, IL-2) and Th2 (IL-5, IL-10) as well as IL-17 cytokines contained in supernatants of culture-stimulated CD4+ T cells was measured using Bio-Plex cytokine

assay kit. The concentration of the cytokines in each sample was obtained by extrapolation from a standard calibration curve generated simultaneously. Data were

calculated as the mean values (±S.D.) for triplicate cultures for each experiment. The controls (cultures without antigen) did not contain detectable levels of cytokine

and so the data were excluded from the results. The results are from two independent experiments and are shown as mean cytokine concentrations (pg/ml) ±SD

(A). Significant differences between Th1 and Th2 cytokines (IFN-gamma and IL-5) are indicated by asterisk (P <0.05). Antigen-specific CD4+T cell proliferative

responses were assessed for their ability to proliferate in response to in vitro restimulation in culture with chlamydial serovar E antigen. Results are expressed as

stimulation index (SI) values (B), the ratio between absorbance values of stimulated and non-stimulated cells and the bars represent the mean and S.D. of three

independent experiments. *p<0.05 (rVCG-PmpD/PorB vaccine versus rVCG-gD2 control and rVCG-PmpD/PorB vaccine versus live EBs).

https://doi.org/10.1371/journal.pone.0178537.g002
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were also assessed for their ability to proliferate in response to in vitro restimulation in culture

with serovar E chlamydial antigen. As expected, immune CD4 T cells from live Chlamydia-

and rVCG-PmpD/PorB-immunized mice proliferated in response to serovar E EBs. Fig 2B

shows the SI value of T cells from live EB-immunized mice was significantly higher (p< 0.05)

than that of T cells from rVCG-PmpD/PorB-immunized mice. However, immune CD4 T cells

from gD2-immunized mice did not proliferate in response to serovar E EBs. The results sug-

gest IR immunization activated T cells to proliferate in response to restimulation with serovar

E chlamydial antigen with the live chlamydial EBs showing an immunogenic advantage.

Induction of cross-reactive PmpD-specific antibody responses

PmpD-specific antibody responses elicited 2 weeks after immunization were measured by

antibody ELISA assay. IR immunization with rVCG-PmpD/PorB and live Chlamydia EBs

induced significant (P< 0.05) PmpD-specific IgG2c and IgA antibodies in both serum (Fig

3A) and vaginal secretions (Fig 3B) compared to controls, with Chlamydia EB-elicited levels

being significantly higher (p< 0.05). In both serum and genital secretions, IgG2c levels were

significantly higher (p< 0.05) compared to IgA levels. The results indicate that IR immuniza-

tion induces anti-chlamydial antibodies in both systemic and mucosal tissues, with IgG2c

being consistently higher compared to IgA in both compartments.

IR immunization confers long lasting cross protection against reinfection

with live serovar E chlamydiae

Following resolution of the primary genital tract infection, vaccine- and control-immunized mice

were rechallenged intravaginally 10 weeks after the primary challenge infection. Chlamydial

Fig 3. Rectal immunization with rVCG-PmpD/PorB vaccine elicits chlamydial PmpD-specific IgA and IgG2c antibody responses 2 weeks

postimmunization. The concentration of elicited antibodies in each immunized group was assessed from pooled serum and vaginal lavage samples

obtained 2 weeks postimmunization by antibody ELISA. Results generated simultaneously with a standard curve, display data sets corresponding to

absorbance values as mean concentrations (ng/ml) ± SD of triplicate cultures for each experiment. The results are from two independent experiments and

show chlamydial PmpD-specific IgA and IgG2c antibody responses from serum (A) and vaginal wash samples (B). *Statistically significant (p< 0.05)

differences between vaccinated groups.

https://doi.org/10.1371/journal.pone.0178537.g003
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clearance was monitored by enumeration of chlamydiae from cervico-vaginal swabs. The result

showed a significant (p< 0.05) reduction in the number of mice shedding chlamydiae as well as

in the intensity (numbers of IFUs shed) and duration of chlamydial shedding in both immunized

and control groups following rechallenge (Fig 4). By day 9 after rechallenge, all rVCG-PmpD/

PorB- and live EB (serovar D)-immunized mice had completely cleared the infection. By day 15

post rechallenge, even the gD2-immunized mice had completely cleared the challenge infection.

Fig 4. Rectal immunization with rVCG-PmpD/PorB vaccine protects against reinfection with live serovar E chlamydiae. Protection against

heterologous reinfection with live serovar E chlamydiae was evaluated 10 weeks after primary challenge. Chlamydial burden was monitored by

enumeration of chlamydiae from cervico-vaginal swabs every three days and the number of IFUs/ml recovered from genital swabs of mice was

calculated. Each data point represents the mean ± SD of the individual number of recoverable IFUs from each mouse/group of 10 animals

collected at the indicated time points expressed as log10 IFU/ml ± S.D. Numbers in parentheses are percentages of animals with positive cultures

at each time point.

https://doi.org/10.1371/journal.pone.0178537.g004
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These results indicate that IR immunization with rVCG-PmpD/PorB induces immune memory

that results in faster clearance of infection following rechallenge.

IR immunization with rVCG-PmpD/PorB protects mice against

Chlamydia-induced infertility

To assess Chlamydia-induced infertility in immunized and challenged mice, the number of

mice pregnant and the mean number of embryos per group (fertility rate) were compared with

those of uninfected age-matched control mice. The results revealed that the rVCG-PmpD/

PorB-immunized mice retained significant fertility; six (60%) of the mice were pregnant with a

fertility rate of 8 compared to nine (90%) of age-matched uninfected mice with a fertility rate

of 10 (Fig 5). In contrast, the rVCG-gD2 control group showed significant loss of fertility, with

two (20%) of mice pregnant and a fertility rate of 4. Representative reproductive tracts of preg-

nant mice from the rVCG-PmpD/PorB and uninfected control groups, shows multiple

embryos (S1 Fig).

IR immunization with rVCG-PmpD/PorB protects against Chlamydia-

induced tubal pathology

All non-pregnant mice from vaccinated and control groups were evaluated for the develop-

ment of tubal pathologies. Microscopically, lesions were recorded as either absent or present.

If absent (i.e., histologically normal), a score of 0 was assigned. If present, the severity of the

lesions was recorded as minimal, mild, moderate, or severe, with pathology lesion severity

scores of 1 through 4 for all animals (S1 Table). The group pathological lesion distribution was

recorded as focal, multifocal, or diffuse, with distribution scores of 1, 2, or 3, respectively (S2

Table). The calculated total group severity and distribution scores were 40 for rVCG-PmpD/

PorB and 151 for rVCG-gD2 while the mean group severity and distribution scores were 20

for rVCG-PmpD/PorB and 37.8 for rVCG-gD2 groups (S2 Fig). Severe uterine horn lumenal

distension and glandular duct dilation were observed in the rVCG-gD2 infected group com-

pared to none of the age-matched uninfected and rVCG-PmpD/PorB groups (Fig 6A–6C).

However, none of the non-pregnant mice from both vaccinated and control groups of mice

examined showed oviduct dilation or swelling (hydrosalpinx).

Microscopic evaluation of H&E-stained uterine tissue from the rVCG-gD2-immunized

mice confirmed the uterine horn lumenal distension and glandular duct dilation observed by

visual examination. Sections showed multiple dilated glandular ducts of varying severity that

have pushed into the uterine horn lumen resulting in uterine horn lumenal blockades at multi-

ple sites (Fig 6C).

Histopathology of reproductive tissues

The H&E-stained sections of excised reproductive tract tissues were evaluated microscopically

for distribution of inflammation and pathologic lesions. The H&E-stained sections of ovarian

tissues of vaccinated and control mice reinfected with live serovar E chlamydiae are shown in

Fig 7. The ovarian tissues of rVCG-PmpD/PorB-immunized mice appeared normal with mul-

tiple follicles comparable with those of age-matched uninfected control mice (Fig 7A and 7B).

No inflammatory infiltrates were found in the oviduct tissues of these mice. In contrast, non-

pregnant rVCG-gD2 control-immunized mice showed chronic inflammation in the periovar-

ian region characterized by a densely cellular collection of lymphocytes within the mesovarium

(Fig 7C). The micrographs in Fig 8A–8C) show representative examples of the oviduct tissues

of infected and age-matched uninfected control mice. The oviduct tissues of rVCG-PmpD/
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PorB-immunized and age-matched uninfected control mice had normal villi with abundant

cilia (Fig 8A and 8B). In contrast, there was moderate multifocal atrophy of villi, with segmen-

tal loss of apical cilia and vacuolar (fatty) degeneration in all the non-pregnant rVCG-gD2-im-

munized mice (Fig 8C). Except for the presence of minimal to mild acute uterine

inflammation, the uteri in rVCG-PmpD/PorB-immunized mice were comparable to that of

age-matched uninfected mice (Fig 9A and 9B). In contrast, the endometrium in rVCG-

Fig 5. Protection against Chlamydia-induced infertility in immunized mice reinfected with live serovar E chlamydiae. Immunized mice were

mated with proven fertile males four weeks after reinfection with live serovar E chlamydiae. The number of mice pregnant and the number of embryos

recovered from each mouse/group was recorded, and the fertility rates were calculated. The data shows the percentage number of mice pregnant and

the fertility rate, the mean number of embryos recovered from pregnant mice in each vaccinated group. Statistical significance was assessed by the

Fisher exact test (in GraphPad Prism 5) in comparison with controls.

https://doi.org/10.1371/journal.pone.0178537.g005
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gD2-immunized mice was diffusely hypercellular, with foci of lymphocytic exocytosis and

increased numbers of lymphocytes and apoptotic cells in the lamina propria (Fig 9C). Taken

together, these results show that in addition to inducing protection against Chlamydia-induced

infertility, rectal immunization could also significantly reduce the induction of tubal pathology

in mice.

Discussion

The route of vaccine administration plays an important role in the induction of immune effec-

tors and their homing to the site of infection. Chlamydia immunity is dependent upon both T

Fig 6. Protection against uterine inflammation in mice reinfected with live serovar E chlamydiae. Excised genital tracts of the non-pregnant mice from

vaccinated and control groups were evaluated for the development of tubal pathologies and histological sections were stained with hematoxylin and eosin

(H&E) and evaluated microscopically for tubal inflammation. Representative uterine horns of (A) Uninfected control or rVCG-PmpD/PorB vaccine-immunized

mice with no visible pathology and (B) rVCG-gD2 control-immunized mice showing evidence of bilateral uterine horn lumenal dilation (white arrow). H&E-

stained uterine tissue with multiple dilated glandular ducts of varying severity (C). Red arrows indicate the cross sections of dilated glandular ducts, which

have pushed into the uterine horn lumen resulting in uterine horn lumenal blockades at multiple sites (arrowheads) and green arrows indicate dilated uterine

lumen.

https://doi.org/10.1371/journal.pone.0178537.g006

Fig 7. Histopathology of ovarian tissues from vaccinated and control mice reinfected with live serovar E chlamydiae. The H&E-stained sections of

excised ovarian tissues were evaluated microscopically for distribution of inflammation and pathologic lesions. Representative images of ovarian tissues with

normal multiple follicles (arrows) from (a) Uninfected control, (b) PmpD/PorB vaccine-immunized, and (c) rVCG-gD2-immunized mice (also showing

periovarian inflammation). Arrowhead depicts a densely cellular collection of lymphocytes within the mesovarium. Scale bar, 200 microns.

https://doi.org/10.1371/journal.pone.0178537.g007
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cell-mediated and humoral immune effectors. Therefore, a potentially effective route of vac-

cine administration will result in the induction of immune responses in both mucosal and sys-

temic tissues. We tested the hypothesis that rectal mucosal immunization with a subunit

vaccine delivered on the VCG platform would cross-protect mice against heterologous genital

Chlamydia infection and upper genital tract pathologies. The rectal route of vaccine adminis-

tration is attractive for vaccinating against genital chlamydial infection because it offers muco-

sal immunization that may exploit the common mucosal immune system to target immune

Fig 8. Histopathology of oviduct tissues from vaccinated and control mice reinfected with live serovar E chlamydiae. The H&E-stained sections of

excised oviduct tissues were evaluated microscopically for distribution of inflammation and pathologic lesions. Representative images of oviducts from (a)

Uninfected control mice with normal oviducts (arrows); insert shows enlarged section of villi with abundant cilia (thin arrows), (b) rVCG-PmpD/PorB vaccine-

immunized mice showing intact normal villi with abundant cilia (arrows) but with numerous vacuoles (arrowhead), and (c) rVCG-gD2-immunized mice

showing diffusely attenuated villi (arrow); there is villus atrophy and most of the cilia from the apical surfaces of the lining epithelia are absent (arrowhead).

Scale bar, 50 microns.

https://doi.org/10.1371/journal.pone.0178537.g008

Fig 9. Histopathology of uterine tissues from vaccinated and control mice reinfected with live serovar E chlamydiae. The H&E-stained sections of

excised uterine tissues were evaluated microscopically for distribution of inflammation and pathologic lesions. Representative images of uteri from (a)

Uninfected control mice showing normal tissues, including an intact uterine lumen (arrow), (b) rVCG-PmpD/PorB vaccine-immunized mice showing mild

inflammation characterized by a collection of lymphocytes which obscure the endometrium focally (arrow) and in the lumenal surface (arrowhead), and (c)

rVCG-gD2 control-immunized mice showing diffusely hypercellular endometrium and lymphocytes in the lamina propria (arrow); arrowhead depicts an

apoptotic cell within the thickened lamina epithelialis mucosa. Scale bar, 50 microns.

https://doi.org/10.1371/journal.pone.0178537.g009
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effectors to mucosal pathogens like C. trachomatis. In addition, the rectal route obviates the

concerns about the reactivity of some nasally administered adjuvants that may potentially

cause neurological side effects in humans [14]. Thus, the rectal route has been proposed as an

alternative mucosal route for immunization against diverse microbial pathogens [15–19].

Moreover, rectal immunization with a Chlamydial ghost-based vaccine was very effective in

inducing immunity against enterohaemorrhagic Escherichia coli (EHEC) O157:H7 following

heterologous challenge [20].

In the present study, immunologic evaluation revealed that rectal immunization of mice

with rVCG-PmpD/PorB induced a cellular immune response characterized by high levels of

chlamydial-specific CD4+ T cells that secreted IFN-gamma, TNF-alpha, IL-2 and IL-10 as well

as IL-17. Also, the immune T cells proliferated significantly in response to in vitro restimula-

tion with the heterologous C. trachomatis serovar E antigen. CD4+ T cells have been demon-

strated in both human clinical and experimental animal model studies to play a key role in C.

trachomatis immunity [31, 32]. IL-17 secreting Th17 cells have previously been shown to play

a role in protection against C. muridarum respiratory infections [33] and other intracellular

pathogens [34]. A recent study showed that although IL-17 promotes vaginal chlamydial clear-

ance, it also promotes immunopathological tissue damage [35, 36]. However, other studies

strongly suggest that IL-17 impairs chlamydial clearance and plays a role in the induction of

upper genital tract pathology [35, 36]. In another study [37], IL17a knockout mice were shown

to have significantly less chlamydial burden and less pathology compared to wild type mice.

Our results also show that IR immunization elicited significant cross-reactive local mucosal

and systemic IgA and IgG2c antibody responses that were detectable in serum and vaginal

secretions. Although the precise role of antibodies in the resolution of primary Chlamydia
infection remains incompletely understood [38, 39], the induction of the Th1-associated

IgG2a (the BALB/c homolog of IgG2c) isotype has previously been shown to be associated

with protection against Chlamydia [40]. The higher magnitude of specific Th1-associated

IgG2c antibodies in genital secretions compared to IgA is consistent with findings in humans

showing that the dominant immunoglobulin isotype found in the cervico-vaginal fluid of the

female genital tract is IgG rather than secretory IgA [41, 42]. Thus, the humoral immune effec-

tors that mediate chlamydial clearance in the genital tract likely originate from immune induc-

tive sites in the systemic circulation rather than the genital tract.

Vaccine efficacy analysis showed that IR immunization with rVCG-PmpD/PorB vaccine

resulted in a significant reduction in the number of mice shedding chlamydiae that was com-

parable to mice previously infected with live chlamydiae. In addition, rVCG-PmpD/PorB vac-

cine recipient mice exhibited a lower intensity and duration of chlamydial shedding compared

to rVCG-gD2 controls. We previously showed intramuscular (systemic) immunization with a

VCG-based chlamydial vaccine induced protective immunity in mice against genital challenge

with C. muridarum and C. trachomatis serovar D [11, 12]. The significant reduction in the

intensity and duration of infection in rVCG-PmpD/PorB vaccine-immunized mice observed

in the current study highlights the potential of rectal mucosal immunization in the induction

of protective immunity in the female genital tract.

In addition to inducing broad-based protective immunity against multiple serovars, an

efficacious chlamydial vaccine should also protect against development of upper genital tract

pathology, particularly infertility. Infertility is the most significant outcome of Chlamydia
genital infection in humans and is one of the quantitative measures used to assess protection

against upper genital tract disease. A previous study demonstrated that a single intravaginal

inoculation with 107 IFU of C. trachomatis serovar E induced upper genital tract pathology

in C57BL/6 mice [24] although the authors did not investigate infertility. In another study,

Ramsey, KH and colleagues reported that repeat infection of mice with 1 x 107 IFUs of C.
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trachomatis serovar E resulted in an increased pathological outcome, with 60% of the mice

becoming infertile [26]. Since recurrent chlamydial infections have been reported to increase

the risks for upper genital tract pathology, such as ectopic pregnancy and pelvic inflammatory

disease [43–45], we used repeat intravaginal inoculation with a high dose of C. trachomatis ser-

ovar E to stimulate upper genital tract pathology. Our study showed Chlamydia-specific

immune effectors elicited by either a previous infection or vaccination induced a significant

degree of protective immunity marked by a lower intensity and shortened duration of infec-

tion. It is noteworthy, however that vaccinated mice were protected from infertility (fertility

rate, 8) whereas control-immunized mice were not (fertility rate, 2). These results confirm our

previous findings indicating that vaccine- but not infection-induced immunity protects

against Chlamydia-induced upper tract pathology [46, 47]. The implication of all these results

is that although a live Chlamydia infection results in significant clearance of chlamydiae in the

lower genital tract, this does not lead to protection against upper genital tract disease.

Another significant finding in the current study is the occurrence of uterine horn lumenal

dilation or distension and mucosal edema that were commonly observed in the rVCG-gD2

control mice, which were immunized with a chlamydial irrelevant antigen and reinfected with

C. trachomatis serovar E. Our results confirm the findings of a previous study that reported

destruction of the uterine horn epithelium with marked mucosal edema and distinct distention

of the uterine horns following intravaginal infection of BL6 mice with C. trachomatis serovar E

[24]. The uterine horn lumenal dilation correlated with the glandular duct dilation detected

microscopically. The uterine horn dilation was chronic and therefore likely caused by glandu-

lar duct dilation, which may occur first, pushing into the uterine horn lumen causing uterine

horn lumenal blockades at multiple sites and leading to extensive uterine horn lumenal dila-

tion as previously reported following C. muridarum infection [48]. Although hydrosalpinx is

an important pathologic marker of Chlamydia-induced infertility in mice [6, 48–50], none of

the immunized and control mice in the studies reported here developed any overt hydrosal-

pinx as assessed by visual examination. It must be noted however, that directly comparing the

incidence of Chlamydia-induced upper genital tract pathology in mouse models to that of nat-

ural infection of women is potentially problematic. This is because a number of confounding

variables, including host genetic factors, hormonal secretions and antibiotic treatment at the

early stages of infection greatly influence the progression of chlamydial disease in both humans

and animal models. Although C. trachomatis genital tract infection of mice, like C. muridarum,

is not a perfect model of human chlamydial genital infection, it is a reasonable model for the

study of Chlamydia-host interactions and together with the C. muridarum model has contrib-

uted to our expanding knowledge of chlamydial disease in humans.

Interestingly, while rVCG-PmpD/PorB vaccine-derived immune effectors prevented ovi-

duct and uterine inflammation, rVCG-gD2 control-immunized mice were not protected. This

clearly indicates that chlamydial burdens in the lower genital tract do not correlate with upper

genital tract disease status in mice infected with live Chlamydia. In general, tissue alterations in

in rVCG-PmpD/PorB vaccine-immunized mice where present, were minimal and of lower

incidence and severity with an average severity-and-distribution score of 20, which is almost

50% lower than that of rVCG-gD2 control-immunized mice (37.5). Oviduct and uterine horn

pathology involving acute inflammatory response, induced by primary infection with C. tracho-
matis serovar E have previously been reported [24]. That study suggested a role for the acute

inflammatory response in the development of tissue damage. More recently, intravaginal infec-

tion of mice with C. trachomatis serovar D was shown to induce endometrial leukocyte infiltra-

tion that was significantly (p< 0.05) more intense on day 7 compared to day 90 postinfection

[35]. Moreover, repetitive genital exposure of mice to C. trachomatis serovar D induced cystic

changes and profound uterine lumen distension not detected in uninfected, age-matched
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controls [35] as observed in our studies with serovar E. Inflammation is thought to be the major

cause of chronic fallopian tube tissue damage seen in infertile women infected with C. tracho-
matis [51]. Studies in animal models also suggest CD8 T cells and other immune mechanisms

play a major role in Chlamydia-induced upper tract pathology, including infertility [47, 52].

Conclusions

This study demonstrates that IR immunization elicited immune effectors that mediate chla-

mydial clearance in the genital tract, indicating cooperation between the rectal and genital

mucosae functioning as mucosal inductive and effector sites, respectively, according to the

compartmentalization within the common mucosal immune system. Our study also con-

firmed that infection- and vaccine-induced immunity are functionally distinct in their ability

to prevent the sequelae of chlamydial infection such as infertility and upper genital tract

inflammation. Taken together, these results highlight the potential of rectal delivery as a viable

mucosal route for eliciting protective immunity in the female genital tract.

Supporting information

S1 Fig. Reproductive tracts of pregnant mice. Representative reproductive tracts of pregnant

mice from the rVCG-PmpD/PorB and the aged-matched uninfected control groups showing

multiple embryos.

(TIF)

S2 Fig. Protection against uterine inflammation in rVCG-gD2-immunized mice reinfected

with live serovar E chlamydiae. rVCG-gD2-immunized mice reinfected with serovar E chla-

mydiae were not protected from genital tract inflammation, such as uterine lumenal dilation

(A) and mucosal edema (B). Mean lesion severity and distribution scores (C) were significantly

higher (p� 0.05) in mice immunized with rVCG-gD2 than those immunized with

rVCG-PmpD/PorB.

(TIF)

S1 Table. Number of animals with tubal pathology lesions. Lesion diagnosis in the ovaries,

oviducts and uteri of mice immunized with rVCG-PmpD/PorB or rVCG-gD2 control after

reinfection with serovar E chlamydiae.

(TIFF)

S2 Table. Pathological lesion severity and distribution scores. Severity and distribution of

pathological lesions in the ovaries, oviducts and uteri of mice immunized with rVCG-PmpD/

PorB or rVCG-gD2 control after reinfection with serovar E chlamydiae.

(TIF)
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