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Recent developments in spatially resolved transcriptomics (SRT) technologies have enabled scientists to
get an integrated understanding of cells in their morphological context. Applications of these technolo-
gies in diverse tissues and diseases have transformed our views of transcriptional complexity. Most pub-
lished studies utilized tools developed for single-cell RNA sequencing (scRNA-seq) for data analysis.
However, SRT data exhibit different properties from scRNA-seq. To take full advantage of the added
dimension on spatial location information in such data, newmethods that are tailored for SRT are needed.
Additionally, SRT data often have companion high-resolution histology information available.
Incorporating histological features in gene expression analysis is an underexplored area. In this review,
we will focus on the statistical and machine learning aspects for SRT data analysis and discuss how spatial
location and histology information can be integrated with gene expression to advance our understanding
of the transcriptional complexity. We also point out open problems and future research directions in this
field.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The tissues in our body consist of diverse cell types with each
cell type specialized to carry out a particular function. The behavior
of a cell is influenced by its surrounding environment within a tis-
sue. Knowledge of the relative locations of different cells in a tissue
is critical for understanding the spatial organization of cell types
and disease pathology. Although scRNA-seq has made it possible
to characterize cell types and states and to study cellular mecha-
nisms at an unprecedented resolution, the lack of physical relation-
ship among cells has hindered the study of cell–cell interactions
within tissue context. The maintenance of spatial context is critical
for uncovering the complex transcriptional architecture of
heterogenous tissues; for example, within a tumor, several sub-
populations of cancer cells constituting a tumor can vastly differ
from each other in their gene expression profiles and cellular prop-
erties due to residing in distinct tumor microenvironments.

Recent technology advances in spatially resolved transcrip-
tomics (SRT) have enabled gene expression profiling with location
information in tissues [1–6]. Popular experimental methods to
generate SRT data can be broadly classified into two categories.
The first category is image-based in situ transcriptomics, termed
single-molecule fluorescent in situ hybridization (smFISH) [7–11],
which detects several mRNA transcripts simultaneously at subcel-
lular resolution. Later efforts such as seqFISH [12,13], seqFISH+
[14], and MERFISH [15–16] have substantially increased the num-
ber of detectable mRNA species with multiplexed smFISH. With
these new technologies, the expression level for hundreds to thou-
sands of genes can be simultaneously measured with subcellular
resolution in a single cell. The second category is based on spatial
barcoding followed by next-generation sequencing-based tech-
niques, such as Spatial Transcriptomics (ST) [17], SLIDE-seq [18],
SLIDE-seq2 [19], and high-definition spatial transcriptomics
(HDST) [20], which measure the expression level for thousands of
genes in captured locations, referred to as spots. Recently, 10x
Genomics commercialized the ST technology in their Visium Spa-
tial Gene Expression platform, which reduced the diameter size
from 100 mm per spot in ST to 55 mm. Although SLIDE-seq and
HDST have higher resolution than ST and Visium, the number of
unique molecules detected per spot by these technologies is lower
than ST and Visium.

Sequencing-based methods for SRT are often complemented by
high-resolution hematoxylin and eosin (H&E) stained histology
images, which are invaluable for examining cellular morphology
and how it changes over embryonic development or disease pro-
gression. Since sequencing-based technologies intend to capture
mRNAs without the need to prespecify what genes to include, they
can characterize both known and unknown molecular features in a
tissue section. The combined gene expression and histological fea-
tures within spatial context allow researchers to access additional
dimensions of information helping to inform developmental tra-
jectory and the origin and progression of complex disease. Using
sequencing-based SRT technologies, Asp et al. profiled spatiotem-
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poral gene expression patterns in developing human heart [21];
Maniatis et al. studied the progression of amyotrophic lateral scle-
rosis [22]; and Chen et al. identified transcriptional changes in tis-
sue domains surrounding amyloid plaques in Alzheimer’s disease
[23]. Sequencing-based SRT has also been employed to study var-
ious types of cancer, including prostate cancer [24], melanoma
[25], breast cancer [26], pancreatic ductal adenocarcinomas [27],
and squamous cell carcinoma [28].

Due to the profound impact of SRT in advancing our views of
transcriptional complexity, Nature Methods recently selected SRT
as Method of the Year 2020 [29–33]. Many of the published studies
on SRT used computational tools developed for scRNA-seq. How-
ever, SRT data have different properties from those from scRNA-
seq e.g., sequencing-based SRT technologies often measure the
transcriptomes of multiple cells per spot, and the gene expression
levels of neighboring spots and cells are correlated. However, the
spatial dependency of gene expression and the histological fea-
tures are not modeled by tools that are developed for scRNA-seq.
To fully harness the added spatial and histology information in
SRT, new methods that can connect gene expression features with
spatial location and histological features are needed. In this review,
we will focus on statistical and machine learning methods for the
analysis of SRT data with a particular emphasis on how histology
image information can be jointly modeled with gene expression.
Since numerous methods are available, we mainly focus on meth-
ods that can be applied to both imaging- and sequencing-based
SRT data. We will discuss common tasks in data analysis and avail-
able methods for each of these tasks (Fig. 1). We will also point out
open problems and future research directions.
2. Spatial clustering

In SRT studies, an important step is to cluster the spots and
identify spatial domains, i.e., regions that are spatially coherent
in both gene expression and histology. Identifying spatial domains
requires methods that can jointly consider gene expression, spatial
location, and histology. Traditional clustering methods used in
scRNA-seq analysis, e.g., K-means [34] and Louvain’s method
[35], only take gene expression data as input, but do not incorpo-
rate spatial location and histology information. As such, the result-
ing clusters may not be contiguous due to the lack of consideration
of spatial and histology constraints during clustering [36]. To
account for spatial dependency of gene expression, several new
spatial clustering methods have been developed.
2.1. Hidden-Markov random field-based approach

Zhu et al. [37] developed a Hidden-Markov random field
(HMRF) approach to model spatial dependency of gene expression.
HMRF represents a stochastic process generated by a Markov ran-
dom field whose state sequence cannot be observed directly but
can be estimated through observations that are assumed to be a



Fig. 1. Spatially resolved transcriptomics and its applications. Spatially resolved transcriptomics has enabled gene expression profiling with location information in tissues. In
the experiment, the expression levels for thousands of genes in captured spots are measured, complemented by a high-resolution histology image for the same tissue section.
In sequencing-based spatially resolved transcriptomics, the number of cells in each captured spot varies depending on the diameter of each spot. Some common tasks in
spatially resolved transcriptomics data analysis include: 1) spatial clustering; 2) spatially variable gene detection; 3) cell-type deconvolution; 4) enhancement of gene
expression resolution; 5) cell–cell communications.
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stochastic function of the state sequence. HMRF is commonly used
to model the spatial distribution of signals, for example, segmenta-
tion of brain magnetic resonance images [38]. To utilize HMRF for
clustering analysis of SRT data, Zhu et al. represented the spatial
structure of cells as a set of nodes on a grid with neighboring nodes
connected to each other. The cluster membership of each cell is
hidden but can be estimated from the observed gene expression
data. A critical assumption in HMRF is the Markov property, which
assumes that the spatial dependency can be modeled by only con-
sidering the correlation between immediate neighboring nodes.
With this assumption, the joint distribution of gene expression
across all nodes can be decomposed as the product of much smal-
ler components with each component defined on a fully connected
subgraph. The HMRF framework constructs an undirected graph,
which represents the spatial relationship among cells and enables
clustering by systematically comparing the gene expression profile
of each cell with its neighboring cells. Applying this approach to a
seqFISH dataset generated from mouse visual cortex, they identi-
fied nine spatial domains, where some domains displayed a lay-
ered organization that resembled the anatomical structure of the
visual cortex. Although these results are promising, the HMRF
approach did not incorporate histology information. Thus, its per-
formance for sequencing-based SRT data might be sub-optimal.
2.2. SpaCell

Pixel intensities in histology images contain informative fea-
tures that can be used for diagnosing diseases such as cancer stag-
ing [39]. Effectively incorporating histology image information to
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gene expression data analysis is still an underexplored analysis
area [40]. SpaCell [41] is the first paper that integrates histology
and gene expression data in spatial clustering. SpaCell starts by
dividing the whole tissue slide histology image into small tiles
with each image tile resized to 299 � 299 pixels, containing one
spot. Of note, as the diameter size for each spot varies in different
sequencing-based SRT technologies, the pixel size also varies. To
extract feature vectors for each image tile, the weights in a convo-
lutional neural network (CNN) are initialized from the ResNet50
model that utilizes images in the ImageNet database [42] and then
further fine-tuned. This CNN captures generic features of images
and is used to find a latent embedding vector representing infor-
mative features in the image tile for each spot. After pretraining,
SpaCell then trains two autoencoders, one for the tile images and
one for the gene expression data. The obtained embedding layers
for these two autoencoders are concatenated into one combined
embedding layer, which is then used to perform clustering analysis
using conventional clustering algorithms, e.g., K-means or Louvain.
The authors showed that this integration approach outperformed
methods that use gene expression data alone or histology imaging
data alone in identifying cancer and non-cancer regions. Although
SpaCell has shown promising performance, the spatial coordinates
of the spots are not utilized in their autoencoders.
2.3. StLearn

Due to the technical limitations of the sequencing-based SRT
technologies in detecting lowly expressed genes, some genes
may not be measured, leading to excessive zeros, which may lead
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to difficulty in assigning cluster membership. However, the spatial
dependency of gene expression across spots offers an opportunity
to improve the gene expression quality. Recognizing this, stLearn
uses the expression of neighboring spots as well as features
extracted from a histology image to spatially normalize gene
expression data before clustering [43]. The intuition behind this
normalization is that spots that are physically close and share sim-
ilar morphological features are expected to have similar gene
expression. As such, stLearn normalizes the expression value for
each gene in the center spot as the mean of morphological
similarity-weighted expression values of its neighboring spots. A
limitation of stLearn is that it uses an arbitrarily chosen radius to
define the neighborhood of a given spot. Given the complexity of
real data, it is unlikely that a fixed radius approach would work
well. This histology guided normalization can help aggregate gene
expression across closely related spots, not only by physical loca-
tion but also by histological features. Consideration of histological
features is an important step to ensure the appropriate aggregation
of gene expression as physically close spots do not necessarily have
similar expression patterns. StLearn uses a similar deep learning-
based approach as described in SpaCell to extract histological fea-
tures. Although histology information is useful, caution is needed
to ensure histology-specific artifacts do not propagate to down-
stream analysis. More specifically, histological stains may demon-
strate non-biological and spatially-determined variability due to
differences in the ability of the stain to permeate different regions
of the tissue [44]. Both SpaCell and stLearn use ImageNet to train
their neural network. Since the images in ImageNet are not histol-
ogy images, we caution that features extracted from ImageNet are
not necessarily informative for histology images.

2.4. BayesSpace

BayesSpace employs a fully Bayesian approach for clustering
analysis of SRT data [45]. To account for spatial dependency of gene
expression, they model a low-dimensional representation of the
gene expression matrix using a spatial prior. Specifically, they
assume that given the unobserved cluster membership, the low-
dimensional representation of the gene expression follows a mul-
tivariate normal distribution, where the mean vector and precision
matrix follow a spatial prior that encourages neighboring spots to
belong to the same cluster. BayesSpace estimates parameters using
a Markov chain Monte Carlo method and infers cluster member-
ships via Metropolis-Hastings. While the spatial prior encourages
spots that are physically close to be assigned to the same cluster,
the spatial prior in their model does not explicitly use the spatial
coordinates. Also, it does not consider information offered by his-
tology images. As shown in both SpaCell [41] and stLearn [43],
spots that are physically close to each other do not necessarily
belong to the same spatial domain. For example, in the cortex,
the tissue is organized in distinct tissue layers, ordered from L1
to L6, that are functionally distinct. Spots that are located at the
boundaries of adjacent cortical layers are physically close but
may belong to different layers and possess distinct gene expression
profiles. Thus, failure to consider histology information may lead to
misclustering of spots that belong to different tissue layers into the
same cluster.

2.5. SpaGCN

More recently, Hu et al. developed SpaGCN, a graph convolu-
tional network-based approach that considers both spatial location
and histology information in clustering [36]. SpaGCN starts by
building a weighted undirected graph in which each vertex repre-
sents a spot, and every two vertices are connected via an edge with
prespecified weight that measures the degree of similarity
3832
between two spots. The distance between any two vertices is
determined by both the physical locations of the corresponding
spots and their histological features. The edge weight is negatively
correlated with this distance; thus, two spots are considered sim-
ilar if and only if they are physically close and have similar pixel
intensities in the histology image. To define a distance metric con-
sidering both gene expression and histological features, SpaGCN
extended the 2D space in the tissue slice into a 3D space that incor-
porates histology information as the third dimension. Next,
SpaGCN utilizes a graph convolutional layer to aggregate gene
expression from neighboring spots, where the expression in each
spot is a weighted average across its neighboring spots with
weights determined by spatial location and histology. Unlike
stLearn which uses an arbitrarily chosen radius to define the neigh-
borhood of a given spot, SpaGCN automatically weighs each spot in
gene expression aggregation, which allows it to consider all spots
simultaneously without arbitrarily defining a radius threshold.
The graph convolutional layer in SpaGCN is connected to a cluster-
ing layer to iteratively cluster the spots into different spatial
domains, where the filter parameters in the graph convolutional
layer are also updated during this iterative clustering process. Each
cluster identified from this analysis contains spots that are coher-
ent in gene expression and histology. Rather than considering the
corresponding histological features within each spot as an image
as in SpaCell [41] and stLearn [43], SpaGCN extracts RGB values
of each pixel and weighs the three-color channels according to
their explained variation. This approach is less sensitive to artifacts
in H&E stained histology images.
3. Identification of spatially variable genes

Another important task in SRT data analysis is to identify spa-
tially variable genes (SVGs), i.e., genes that show spatial expression
variation across a tissue section. Methods for SVG detection fall
into two categories, where the first category aims to detect SVGs
without the consideration of spatial domains, and the second cat-
egory detects SVGs with the guidance of spatial domains identified
from a spatial clustering algorithm. Recently developed methods,
such as Trendsceek [46], SpatialDE [47], SPARK [48], belong to
the first category, whereas SpaGCN [36] belongs to the second cat-
egory. Consideration of spatial domains in SVG detection will help
ensure the detected genes show enriched expression pattern in a
spatial domain. These genes can serve as landmarks in helping to
reconstruct the spatial locations of cells in scRNA-seq [49–50].
3.1. Trendsceek

Trendsceek utilizes a marked point process to assess the signif-
icance of the spatial expression trend for each gene [46]. For all cell
pairs within a particular radius, Trendsceek tests for a significant
dependency between their gene expression levels and their 2D dis-
tance defined by the spatial coordinates of the cell pairs. To per-
form the test, four summary statistics of the pair distribution
including conditional mean, conditional variance, Stoyan’s mark
correlation, and the mark-variogram, are calculated and compared
to the null distribution of the summary statistics derived from per-
muted gene expression labels. This test is non-parametric and does
not need to pre-specify a spatial pattern or a spatial region of inter-
est. As a result, the detected SVGs do not have a guaranteed spatial
expression pattern. Since Trendsceek considers cells in a pairwise
fashion, it may have limited power to detect the global expression
pattern of a gene that spans beyond a cell pair.
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3.2. SpatialDE

SpatialDE is another recently developed method for SVG detec-
tion [47]. It is based on Gaussian process regression, a class of mod-
els used in geostatistics. Briefly, for each gene, SpatialDE
decomposes its expression variability into spatial and nonspatial
components using two random effect terms: a spatial variance
term that parametrizes gene expression covariance by pairwise
distances of samples and a noise term that models nonspatial vari-
ability. The ratio of the variance explained by these components
quantifies the fraction of spatial variance. One can detect signifi-
cant SVGs by comparing this full model to a model without the
spatial variance component with a likelihood ratio statistic and
P-value estimated by the chi-squared distribution with one degree
of freedom. SpatialDE also provides a spatial clustering method to
group genes that mark distinct expression patterns, which further
allow them to uncover the hidden histological pattern of gene
expression. Results from such analysis can elucidate the relation-
ship between tissue structure and cell-type composition based
on the expression patterns of the detected SVGs.

3.3. Spark

Both Trendsceek [46] and SpatialDE [47] transform gene
expression count data into normalized expression before analysis.
However, gene expression is count-based. Analyzing the normal-
ized data may lead to loss of power because it fails to account
for the mean–variance relationship that exists in raw counts. To
directly model count data, Sun et al. developed SPARK [48], which
is built upon a generalized linear spatial model with a variety of
spatial kernels to accommodate count data generated from both
smFISH- and sequencing-based SRT studies. Since the generalized
linear spatial model likelihood consists of high-dimensional inte-
gral that has no closed-form solution, SPARK uses an approximate
inference algorithm that is based on a penalized quasi-likelihood to
make the computation more tractable. As a parametric based
method, SPARK requires the pre-specification of spatial kernels.
Since the spatial pattern varies from gene to gene, and it is often
unknown without the consideration of spatial domains, SPARK
considers multiple spatial kernels with each kernel representing
a specific spatial gene expression pattern. To combine results
across multiple spatial kernels together, SPARK uses a recently
developed Cauchy combination approach to calculate a calibrated
P-value [51]. Although SPARK has shown improved performance
compared to Trendsceek [46] and SpatialDE [47], the reliance on
pre-specified spatial kernels may limit its detection of genes whose
expression patterns are not captured by their pre-specified kernels.

3.4. SpaGCN

Trendsceek [46], SpatialDE [47], and SPARK [48] examine each
gene independently and return a P-value to represent the spatial
variability of a gene. However, methods that independently test
genes for spatial variability do not consider the highly correlated
nature of gene expression. As a result, they may identify spurious,
though statistically significant, spatial patterns of individual gene
expression. To approach this limitation, Hu et al. proposed SpaGCN
[36], which detects SVGs that are enriched in a spatial domain by
domain-guided differential expression analysis. When a single
gene cannot mark the expression pattern of a spatial domain,
SpaGCN will construct a metagene, whose expression is a log-
linear combination of the expression values of multiple SVGs, to
represent the expression pattern of the domain. Briefly, SpaGCN
first identifies a base gene that is weakly enriched in the target
domain. Next, it detects some positive genes that are highly
expressed in the target domain as well as other domains, and neg-
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ative genes that are highly expressed in other domains but not the
target domain. By adding positive genes to and subtracting nega-
tive genes from the base gene, SpaGCN can return a metagene that
is uniquely expressed in the target domain. As the spatial domains
are identified through joint consideration of gene expression, spa-
tial location, and histology, SVGs detected by SpaGCN are guaran-
teed to have spatial patterns that match the spatial domains. Based
on analysis across different species and tissues generated from
both sequencing- and smFISH-based SRT technologies, Hu et al.
showed that SpaGCN is more likely to detect genuinely biological
SVGs and metagenes than SpatialDE and SPARK. They also showed
that the SVGs and metagenes detected by SpaGCN are transferrable
and can be utilized to study spatial variation of gene expression in
other datasets.
4. Cell-type deconvolution in spatial transcriptomics spots

Although sequencing-based SRT technologies such as ST and
Visium allow an unbiased survey of the transcriptome, the primary
technological limitation of ST and Visium is the lack of single-cell
resolution. The first-generation ST microarrays consist of ~1000
spots, each with a diameter of 100 lm and covering tens of cells.
In the recent Visium platform, the throughput is increased to
~5000 spots and the diameter of each spot is reduced to 55 lm.
Depending on tissue type, the number of cells per spot in Visium
is about 1–10. Thus, the observed gene expression at each spot in
ST and Visium may stem from a heterogeneous set of cells, not
all necessarily of the same type. On the other hand, scRNA-seq pro-
files gene expression with single-cell resolution, although with the
loss of spatial location information. Given the complementary
information provided by sequencing-based SRT and scRNA-seq,
one can use statistical approaches to integrate these two data types
to infer the spatial locations of different cell types in a tissue. Cell-
type deconvolution is not a new problem. Indeed, this approach
has been employed in bulk RNA-seq to infer cell-type composition
with cell-type-specific gene expression provided by scRNA-seq
[52–55]. However, traditional deconvolution methods do not work
well for sequencing-based SRT data due to the lack of consideration
of spatial dependency of gene expression. More recently, methods
designed specifically for sequencing-based SRT data have emerged.
4.1. Stereoscope

Andersson et al. proposed a model-based method to infer cell-
type proportions for sequencing-based SRT data [56]. For each
gene, it first models the scRNA-seq gene expression count data
using a Negative Binomial distribution, whose first parameter
(the rate) is a product of a scaling factor that accounts for the
library size of a cell and a cell-type-specific rate parameter, and
whose second parameter (the success probability) that depends
on the gene and is assumed to be shared across all cell types.
The total number of transcripts for a given gene in each spot, which
is the sum of transcripts across all cells within the spot, also fol-
lows a Negative Binomial distribution, with rate parameter equal
to the sum of all contributing cells’ rates and the success probabil-
ity remains unchanged. Next, the cell-type-specific rate parameter
and the success probability are inferred from single-cell data and
the library size scaling factor is adjusted for spot library size. For
each spot, the proportion of cell types that best explains the spatial
data is inferred using maximum a posteriori estimation. Applying
Stereoscope to data generated from ST and Visium, cell types from
mouse brain and developmental heart were mapped with expected
cell-type arrangement.
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4.2. RCTd

RCTD is a recently developed supervised learning approach for
cell-type deconvolution in sequencing-based SRT [57]. RCTD mod-
els the observed gene expression counts using a Poisson-lognormal
mixture hierarchical model. The gene counts are assumed to be
Poisson-distributed with an expected rate determined by the spot’s
total transcript count multiplied by a mixture of cell-type-specific
expression profiles. The expected rate is modeled using a linear
mixed-effects model comprised of the mean expression profile,
the proportion of contribution for each cell type, a spot-specific
fixed effect, a gene-specific platform random effect, and a random
error term to account for additional variation, such as spatial
effects. The cell-type proportions are inferred using maximum like-
lihood estimation. Cable et al. [57] demonstrated that platform
effects between scRNA-seq reference and SRT target data can lead
to challenges when transferring cell-type information. To correct
for platform differences between scRNA-seq and SRT, RCTD per-
forms a normalization procedure that relies on merging all spots
into one pseudo-bulk measurement. After normalization, the pro-
portion of each cell type in each spot is estimated using maximum
likelihood estimation. Although RCTD accounts for cross-platform
learning, this deconvolution method is limited in the use of spatial
information and does not take into account the physical distance
between spots, spatial dependency of gene expression, or histology
imaging from the SRT data. If users have prior knowledge that
more than two cell types per spot is rare, RCTD can run doublet
mode to constrain the number of cell types per spot. This step
can reduce overfitting, but may become too restrictive when more
than two cell types are present.

4.3. SPOTlight

SPOTlight is a method for cell-type-deconvolution in SRT that is
based on a seeded non-negative matrix factorization (NMF) regres-
sion framework [58]. SPOTlight first selects cell-type-specific mar-
ker genes and highly variables genes from scRNA-seq data and only
uses their intersections with genes in the SRT data as input. Next,
SPOTlight factorizes the normalized scRNA-seq gene expression
matrix into two lower dimensionality matrices using NMF. The
first output matrix is regarded as a gene-level topic distribution
matrix while the second is regarded as a cell-level topic distribu-
tion matrix. Before running factorization, the two topic matrices
are initialized with prior knowledge, thus guiding it towards a bio-
logically relevant result. The gene-level topic distribution is used to
map the normalized SRT gene expression matrix to a spot-level
topic distribution matrix through a Non-Negative Least Squares
regression (NNLS). Meanwhile, the cell-level topic distribution
matrix is used to learn the cell-type specific topic profiles. SPOT-
light then uses NNLS to find the weights of each cell-type-
specific topic profile that can best reconstruct the spot-level topic
distribution matrix, and the weights represent the cell-type pro-
portions across all spots in the SRT data.

4.4. Cell2location

Kleshchevnikov et al. developed cell2location, a SRT deconvolu-
tion algorithm built on a hierarchical Bayesian framework [59]. The
model assumes that the count for a gene in a given SRT spot fol-
lows a Negative Binomial distribution, with an unobserved rate
parameter and a shared gene-specific over-dispersion parameter
to represent the expression variance of that particular gene. The
unobserved rate parameter for a given spot and a gene is defined
as a linear function of the cell-type-specific gene expression signa-
tures for that gene in the scRNA-seq data. This function incorpo-
rates a scaling parameter to account for the inherently different
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expression levels captured by different technologies and two addi-
tive shift parameters to account for differences in expression levels
across spots and genes, respectively. Each cell-type-specific gene
expression signature is weighted by a parameter specific to the
spot of interest, which represents the abundance of cells in the spot
expressing that signature. The method uses hierarchical Gamma
priors for the scaling, weight, and additive shift parameters. In
order to establish informative priors for these parameters, cell2lo-
cation requires the user to define hyperparameters for the average
number of cells, cell types, and tissue zones per spot and the aver-
age difference in technical sensitivity between the scRNA-seq and
SRT data. While the authors specify that the choice of these hyper-
parameters greatly affects the performance of the model, some of
the hyperparameters will often not be readily known by the user
and accurate estimates may be unattainable or require thorough
investigation of the SRT histology image.

4.5. spatialDWLS

spatialDWLS [60] is another recently developed method for cell-
type-deconvolution in SRT. It is an extension of the dampened
weighted least squares (DWLS) approach [55], but can account
for the special properties of SRT data by restricting the analysis
only to cell types that are likely to be present at each spot. DWLS
is originally developed for bulk RNA-seq deconvolution. It esti-
mates cell-type proportions by weighted least squares regression
in which the weight is determined by minimizing the overall error
rate. Since the number of cells in each spot in a typical sequencing-
based SRT dataset is small, e.g., 5–10 cells in 10X Visium, tradi-
tional bulk RNA-seq deconvolution methods such as DWLS, MuSiC
[54], and CIBERSORT [52] may not work well due to noise from
unrelated cell types. As such, spatialDWLS only considers cell types
that are likely to be present in deconvolution in which the cell
types are identified by cell-type enrichment analysis implemented
in Giotto [61]. Through benchmark evaluation, they demonstrate
that spatialDWLS outperforms MuSiC, RCTD, SPOTlight, and Stere-
oscope. Interestingly, MuSiC outperforms RCTD, SPOTlight and
Stereoscope, although the latter three methods are specifically
designed for SRT deconvolution. Also, in terms of computational
speed, spatialDWLS and MuSiC are both much faster than RCTD,
SPOTlight and Stereoscope.
5. Enhancement of gene expression resolution

As described earlier, sequencing-based SRT data lack single-cell
resolution. While cell-type deconvolution algorithms can infer the
locations of cell types, the gene expression measured at each spot
is still a mixture from different cells, possibly from different cell
types. There is a need for spatial gene expression methods that
address the relatively low resolution of the technology. Since gene
expression in neighboring spots is correlated, it is possible to bor-
row information from neighboring spots to increase gene expres-
sion resolution. Furthermore, bright field histology images from
H&E-stained tissue sections offer high-resolution information on
cell morphology, which can be utilized to enhance gene expression
resolution.

5.1. RCTd

In addition to cell-type deconvolution, RCTD is also able to com-
pute the expected cell-type-specific gene expression for each spot
[57]. This method computes the probability that a given unique
molecular identifier comes from each cell type given the cell-
type proportion estimates. Within a spot, the cell-type-specific
gene expression is estimated using the expected gene expression
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measurement for a given cell type conditioned on the estimated
cell-type proportions and the observed gene expression counts in
that spot. However, for individual spots, this conditional expecta-
tion may have large variance due to sampling noise. Furthermore,
this method of estimating cell-type-specific gene expression is lim-
ited to only using proportion estimates from RCTD, which may not
be the most accurate or reliable method for deconvolution of SRT
data. Additionally, the estimated cell-type proportions are treated
as known parameters which introduce additional and unaccounted
for variability due to the true proportions being unknown. This
method also does not utilize shared spatial or histological informa-
tion across spots when estimating the cell-type-specific gene
expression. Lastly, these estimates are based on a strong modeling
assumption that the random effects of gene expression are shared
across all cell types. However, in the model, this random effect
accounts for additional sources of variation including spatial
effects, which are unlikely to be shared across all cell types.
5.2. BayesSpace

BayesSpace resolves expression at a subspot level by leveraging
the spatial neighborhood structure [45]. It segments an observed
spot into multiple equal-sized subspots, then infers the gene
expression of each subspot while keeping the total expression of
the original spot fixed. The performance of BayesSpace depends
on the neighboring spots as without external information, subspot
level gene expression can only be inferred from the original spots’
neighbors. For the current Visium data, the center-to-center dis-
tance between two adjacent spots is 100 lm. This means that a
subspot and its neighbors are not immediately next to each other.
Failure of considering this gap may lead to biased estimation. This
also indicates that splitting the observed gene expression in a spot
into subspots may run into the problem of identifiability as multi-
ple solutions may exist. Without further constraint, it is not clear
which splitting gives the optimal solution. Although their initial
results are promising, further validation is needed to confirm the
validity of the inferred gene expression at the subspot level.
5.3. XFuse

Bergenstråhle et al. developed XFuse [62], a deep generative
model to infer high-resolution spatial gene expression from histol-
ogy image data. XFuse assumes the histology image and gene
expression share the same latent tissue state. Conditional on that
state, the gene expression follows a Negative Binomial distribution,
and the image pixel intensities follow a Gaussian distribution. The
parameters of these two conditional distributions are mapped
from the latent tissue state through a trainable convolutional gen-
erator network. Next, XFuse learns a posterior distribution of the
latent tissue state from observed gene expression and histology
data, and approximates the posterior using a tractable target distri-
bution. The variational parameters along with the parameters of
the generator network are learned and updated by minimizing
the Kullback-Leibler divergence between the target and posterior
distributions. Finally, XFuse infers the unseen high-resolution gene
expression by estimating the posterior with Monte Carlo samples
drawn from the variational distribution. Although XFuse has
revealed fine-grained expression heterogeneity for a few genes in
mouse olfactory bulb, further evaluation is needed to assess its
generalizability to other genes. A limitation of XFuse is that it
assumes the gene expression and histology image share the same
latent state, which implies that only genes whose expression pat-
terns are similar to the histology image will benefit from this
approach, whereas genes whose expression patterns are not simi-
lar to the histology may not be inferred.
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6. Cell-cell communications from gene expression

Previous gene expression studies have shown that intercellular
communication contributes to organ function and other critical
biological processes [63–66]. After the locations of cell types are
inferred by cell-type deconvolution, it is natural to ask how differ-
ent cell types interact and how their interactions are influenced by
their spatial proximity [67]. For example, when two cell types colo-
calize, cells in one cell type may secrete a signaling ligand mole-
cule, whereas the other cell type may express a receptor
molecule that recognizes the ligand. Binding of the ligand to the
receptor allows the ligand to transmit a signal and change the
molecular behavior of the receiver cell. Indeed, ligand-receptor
pairs have been used to explore communications between cell
types in scRNA-seq [65,68]. Since the distance that the ligand sig-
nal travels is the main factor that determines the different types of
cell–cell signaling, SRT offers richer information to study cell–cell
communications in tissues with spatial structure. Recently, several
methods have been developed to explore cell–cell communications
from gene expression.
6.1. Giotto

Giotto is a comprehensive open-source toolbox for SRT data
analysis and visualization [61]. It includes multiple modules that
cover a wide range of algorithms for SRT data analysis. One of these
modules can characterize how cells communicate within their
microenvironment. Specifically, for any two cell types A and B,
Giotto constructs an enrichment score, which is calculated as the
weighted average expression of a ligand and the corresponding
receptor in a subset of A and B cells that are proximal to each other.
Then, by shuffling cell locations within each cell type, an empirical
null distribution is constructed, which can be used to calculate the
associated P-value. Finally, Giotto ranks all pairs of ligand-receptor
genes in all pairs of neighboring cell types based on the score. By
only considering cells proximal to each other between two cell
types, however, Giotto cannot detect gene-gene interactions that
are associated with complex interaction patterns.
6.2. SpaOTsc

SpaOTsc is a recently developed method that infers cell–cell
communications by examining the interaction relationships
between ligand-receptor pairs and their downstream genes [69].
It can be applied to both scRNA-seq and SRT data. Since scRNA-
seq data do not have spatial location information, SpaOTsc uses
external spatial information e.g., spatial marker genes, to calculate
a spatial metric using the optimal transport algorithm, which
returns a mapping that contains the probability distribution of
each scRNA-seq cell over a spatial region. Then, it uses this metric
to form an optimal transport plan from a probability distribution of
signal ‘‘sender cells” to a target distribution of ‘‘receiver cells”,
where the sender cell distribution is characterized by the expres-
sion levels of ligand genes, and the receiver cell distribution is dis-
tinguished by the paired receptor genes and the ligand-receptor
downstream genes. Results from this analysis yield intercellular
gene-gene regulatory information flows. SpaOTsc also adopts a
random forest approach to estimate the spatial range of ligand-
receptor signaling to further confine the inferred cell–cell commu-
nications. By doing so, long-distance connections between cells are
eliminated. These cell–cell communication inference procedures
can be directly applied to SRT data because spatial coordinates
are available.
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6.3. MISTy

Methods such as Giotto and SpaOTsc only focus on the local cel-
lular niche, i.e., the expressions measured in the immediate neigh-
borhood of each cell. Although methods that consider the broader
tissue structure are available [70], the restriction on a fixed form of
nonlinear relationship between markers and the high computa-
tional complexity make such methods less flexible. More recently,
Tanevski et al. developed MISTy [71], a flexible machine learning
framework that offers a range of cell–cell communication analysis
in a scalable fashion. Using a late fusion multiview framework,
MISTy constructs a domain-specific model for the expression of
markers. Specifically, for each marker of interest, the cell–cell
interactions are studied based on the spatial context — the ‘‘intrin-
sic view” models how other markers influence the given marker’s
expression within the same location, the ‘‘jxtaview” models the
local cellular niche and relates the expression from the immediate
neighborhood of a cell to the observed expression within that cell,
and the ‘‘paraview” captures the effect of tissue structure and
relates the expression of markers measured in cells within a radius
around a given cell. An appealing feature of MISTy is that it also
allows the modeling of other views, e.g., interactions between dif-
ferent cell types, interactions within specific regions of interest or a
higher-level functional organization. Since each MISTy view is con-
sidered as a potential source of variability in the measured marker
expressions, results from MISTy allow the investigation of each
view’s contribution to the total expression of each marker. The
consideration of cell–cell communications from these different
aspects allows an in-depth understanding of marker interactions.
7. Outlook and future research directions

SRT has shown enormous potential in biomedical research.
Applications of SRT technologies in diverse tissue types and dis-
eases have revealed fine-scale cellular heterogeneity within spatial
context and transformed our understanding of the functional and
structural foundations of tissue architecture. Using SRT, we can
build a 3D transcriptome atlas of brain [72], delineate embryonic
development [21], and elucidate disease progression [22–23]. As
new SRT analysis methods become available every month, it is
impossible to include all available methods in this review. How-
ever, we have investigated common computational tasks for SRT
data analysis, selected methods that are applicable to both
imaging- and sequencing-based SRT data, and discussed how spa-
tial location and histology information can be integrated with gene
expression (Table 1). While we discussed the advantages and dis-
advantages of the reviewed methods, comprehensive benchmark
evaluations are needed to fully understand the performance of
each method. Evaluations should be conducted in terms of the rea-
sonableness of the results and the uncertainty provided by each
method, particularly those methods that involve unsupervised
clustering. Since many methods reviewed in this paper may form
individual components within a full analytical workflow, we sug-
gest that a useful benchmark evaluation should also study how
the uncertainty propagates and their potential effects on down-
stream analysis, e.g., identification of domain-specific marker
genes. Although computational methods have evolved for SRT data
analysis, better algorithms are still needed to leverage and inte-
grate the rich information in SRT data, particularly scRNA-seq
and high-resolution histology image data. Below we point out a
few open problems and future research directions.

The methods reviewed in this paper are all developed for the
analysis of a single tissue section. However, the field has now
moved toward generating data with more complex structure. For
example, when building spatially resolved molecular atlases of
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brains, e.g., Allen Brain Atlas, or whole organs, such as in the
Human Cell Atlas [73] and the Human Biomolecular Atlas Program
[74], multiple tissue samples from several subjects and multiple
tissue sections per subject will be generated. Such complex data
structure poses computational challenges. Effective modeling of
such data requires new methods that can account for spatial
dependency of gene expression in the 3D space, gene expression
variability driven by spatial differences associated with biological
variables such as sex, age, race, and body size. To account for these
factors, the gene expression data from tissue sections across differ-
ent individuals need to be registered to a common coordinate
framework [75–76]. Once the gene expression data are registered,
methods that can account for variations across space and individ-
uals can be utilized to identify marker genes that define the tran-
scriptional landmarks. One of the earlier methods for such
analysis is Splotch [77], which analyzes multiple tissue sections
simultaneously and takes the experimental design into considera-
tion to quantify biological and experimental variation at different
levels. We anticipate that there will be greater needs for more
powerful and efficient methods for the analysis of multiple tissue
sections across different subjects in the next few years.

As the resolution of histology images in SRT data is much higher
than that of the companion gene expression data, an ideal
approach should be able to effectively integrate histology informa-
tion in analysis. Although progress has been made in integrating
histology and gene expression, current methods mainly focus on
the global pattern in histology images while the more granular
information e.g., morphology of nucleus in each spot, is ignored.
Nuclei segmentation in histopathology images is routinely done
for pathology diagnosis [78–80]. However, such information has
only been utilized to verify results after gene expression data are
analyzed, but not directly used in analysis [27]. Information on
the number of nuclei per spot and the associated morphology of
each nucleus is invaluable in cell-type deconvolution because it
can tell us how many cells and cell types are present in a spot. A
deconvolution method that takes this detailed information into
account will be able to infer cell-type proportions in each spot
more precisely than existing methods, which in turn will also help
estimate cell-type-specific gene expression. With these more accu-
rate deconvolution results, we can get a better understanding of
cell–cell communications and how they vary by spatial proximity.

Another open question is how to infer gene expression in blank
regions between spots in SRT data. For example, in Visium, the
diameter size of each spot is 55 mm and the center-to-center dis-
tance between spots is 100 mm. The size of these blank regions
between two adjacent spots is 45 mm, which is larger than the
diameter for cells of most cell types. The discontinuity of gene
expression measurement may increase the uncertainty in gene-
gene (e.g., ligand-receptor) and cell–cell interaction analysis.
Although BayesSpace [45] can generate subspot level gene expres-
sion, these empty regions are still left unmeasured. XFuse [62] can
use high-resolution histology images to fill in unmeasured gene
expression, but XFuse is designed for genes whose expression pat-
terns are highly correlated with histological features. Since the
expression patterns for the majority of genes are not correlated
with histological features, XFuse still leaves a large number of
genes with unmeasured expression. New methods that can fill in
the unmeasured gene expression in those blank regions are
needed.

Batch effect is a common issue in the analyses of scRNA-seq
data. Many methods have been developed for batch effect removal
for scRNA-seq [81–85]. In SRT, the batch effect is even more com-
plex, particularly for SRT data that have companion histology
images in which batch effect can affect both gene expression and
histology images across different tissue sections, subjects, and
studies. This is still an unexplored area, but we envision that batch



Table 1
Summary of reviewed methods.

Method Category Language Software Reference Released
Date

Advantages Disadvantages Use
histology
image

HMRF Spatial clustering R;
Python;
C

https://bitbucket.org/qzhud-
fci/smfishhmrf-py

Identification of spatially
associated subpopulations by
combining scRNAseq and
sequential fluorescence in situ
hybridization data [37]

2018-10-
29

Can simultaneously detect the
combinatorial pattern of all
profiled genes.

The classification of a small
number of isolated cells as
domains may be
questionable.
Cannot incorporate
histology information in its
model.

No

SpaCell Spatial clustering Python https://github.com/
BiomedicalMachineLearning/
SpaCell

SpaCell: integrating tissue
morphology and spatial gene
expression to predict disease
cells [41]

2020-04-
01

Can combine histology image
data and spatial gene expression
data for joint clustering.
Can automatically and
quantitatively identify cell types
and disease stages.

Spot location information is
not utilized in the model.

Yes

stLearn Spatial clustering Python https://github.com/
BiomedicalMachineLearning/
stLearn

stLearn: integrating spatial
location, tissue morphology and
gene expression to find cell
types, cell–cell interactions and
spatial trajectories within
undissociated tissues [43]

2020-05-
31

Can integrate gene expression
and spatial distance information
and histology image
information.
Applicable to any SRT data as
long as tissue morphology,
spatial location, and gene
expression information are
simultaneously captured.

Cannot be applied to data
without histology images.

Yes

BayesSpace Spatial clustering; enhancement
of gene expression resolution

R; C++ https://github.com/
edward130603/BayesSpace

BayesSpace enables the robust
characterization of spatial gene
expression architecture in tissue
sections at increased resolution
[45]

2020-09-
05

Account for spatial dependency
in clustering analysis.
Can generate enhanced
resolution gene expression data.

Cannot incorporate
histology information.

No

SpaGCN Spatial clustering; identification
of spatially variable genes

Python https://github.com/
jianhuupenn/SpaGCN

Integrating gene expression,
spatial location and histology to
identify spatial domains and
spatially variable genes by graph
convolutional network [36]

2020–
11-30

Jointly consider spatial domain
identification and SVG detection.
Can integrate gene expression,
spatial location and histology
information (when available) in
spatial domain identification.
Computationally fast and
memory efficient.

Cannot account for cell type
variations in spatially
variable gene detection.

Yes

Trendsceek Identification of spatially
variable genes

R https://github.com/edsgard/
trendsceek

Identification of spatial
expression trends in single-cell
gene expression data [46]

2018–
03-19

Perform a gene-level test that
incorporates both spatial and
expression-level information.

Cannot account for cell type
variations in spatially
variable gene detection.

No

SpatialDE Identification of spatially
variable genes

Python https://github.com/Teichlab/
SpatialDE

SpatialDE: identification of
spatially variable genes [47]

2018–
03-19

Use of a principled statistical
approach to model spatial
dependency of gene expression.

Rely on asymptotic
normality and minimal P-
value-combination rules for
hypothesis testing, which
may lead to false positives
and loss of power.
Cannot account for cell type
variations in spatially
variable gene detection.

No

SPARK Identification of spatially
variable genes

R; C++ https://github.com/xzhoulab/
SPARK

Statistical analysis of spatial
expression patterns for spatially
resolved transcriptomic studies
[48]

2020–
01-27

Explicit modeling of gene
expression as count data.
Use of kernel approaches to
model spatial dependency of
gene expression.

Computationally slow and
memory consuming.
Cannot account for cell type
variations in spatially
variable gene detection.

No
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Table 1 (continued)

Method Category Language Software Reference Released
Date

Advantages Disadvantages Use
histology
image

Stereoscope Cell-type deconvolution Python https://github.com/almaan/
stereoscope

Spatial mapping of cell types by
integration of transcriptomics
data [56]

2019–
12-13

First method for cell-type
deconvolution in SRT.

Assume both SRT and
scRNA-seq data follow a
negative binomial
distribution.
Do not account for spatial
dependency of gene
expression.

No

RCTD Cell-type deconvolution;
enhancement of gene
expression resolution

R https://github.com/dmcable/
RCTD

Robust decomposition of cell
type mixtures in spatial
transcriptomics [57]

2020–
05-08

Can correct for platform
differences between SRT data
and scRNA-seq reference.
Can restrict deconvolution only
to the most likely cell types.

Do not explicitly model
spatial dependency of gene
expression.
Assume platform effects are
shared among all cell types.

No

SPOTlight Cell-type deconvolution R https://github.com/
MarcElosua/SPOTlight_
deconvolution_analysis

SPOTlight:Seeded NMF
regression to Deconvolute
Spatial Transcriptomics Spots
with Single-Cell Transcriptomes
[58]

2020–
06-04

A small number of cells per cell-
type is sufficient to train the
model.

Need prior information of
cell-type-specific marker
genes.

No

Cell2location Cell-type deconvolution Python https://github.com/
BayraktarLab/cell2location

Comprehensive mapping of
tissue cell architecture via
integrated single cell and spatial
transcriptomics [59]

2020–
11-15

Can accurately infer the presence
of rare cell types.
Can provide estimates of relative
cell type fractions along with
additionally estimates of
absolute cell type abundance.

Do not explicitly model
spatial dependency of gene
expression.
Require the user to define
hyperparameters for the
average number of cells, cell
types, and tissue zones per
spot and the average
difference in technical
sensitivity between scRNA-
seq and SRT data.

No

spatialDWLS Cell-type deconvolution R https://github.com/RubD/
Giotto

SpatialDWLS: accurate
deconvolution of spatial
transcriptomic data [60]

2021–
05-10

Can restrict deconvolution only
to the most likely cell types.

Do not account for spatial
dependency of gene
expression in
deconvolution.

No

XFuse Enhancement of gene
expression resolution

Python https://github.com/ludvb/
xfuse

Super-resolved spatial
transcriptomics by deep data
fusion [62]

2020–
03-13

Can infer spatial gene expression
at the same resolution as the
histology image data.

Assume the gene expression
and histology image share
the same latent state.

Yes

Giotto Cell-cell communications R https://github.com/RubD/
Giotto

Giotto, a pipeline for integrative
analysis and visualization of
single-cell spatial transcriptomic
data [61]

2020-05-
30

Can identify genes whose
expression variation within a
cell type is significantly
associated with an interacting
cell type.

Only focus on unsupervised
correlation-based analysis,
thus may fail to identify
interactions that are limited
to a specific area, specific
cell types, or that are related
to more complex patterns.

No

SpaOTsc Cell-cell communications Python https://github.com/zcang/
SpaOTsc

Inferring spatial and signaling
relationships between cells from
single cell transcriptomic data
[69]

2020–
04-29

Model both direct and indirect
cell–cell communications.

The computation of the
cell–cell distance inference
can become intractable
when the dataset is
excessively large [69]. HY-
PERLINK "SPS:refid::bib69"

No

MISTy Cell-cell communications R https://github.com/saezlab/
mistyR

Explainable multi-view
framework for dissecting inter-
cellular signaling from highly
multiplexed spatial data [71]

2020–
05-10

Can build multiple views
focusing on different spatial or
functional contexts to dissect
different effects.

Rely on a radius parameter
to determine the number of
cells to be included in each
view.

No
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effect correction will become an important problem as the scale of
SRT increases. Methods to evaluate and remove batch effects in
both gene expression and histology images are needed.

The understanding of cellular behavior within spatial context is
critical to our understanding of human disease. Although
histopathology is the clinical gold-standard for the diagnosis of
many diseases, interpretation of histology is still an art that makes
pathologists essential for accurate disease diagnosis. In some cases
e.g., rare diseases, histological assessment may be subject to diag-
nostic uncertainty due to the lack of knowledge of pathological
changes. This uncertainty can be alleviated by expression informa-
tion on genes with well-defined functions. The gene expression
data together with high-resolution histology images in these new
spatial technologies will help deepen our understanding of what
is happening in tissue, which will be applicable to most areas of
biomedical research. Since histology image and gene expression
data provide complementary information, it will be desirable to
have methods that can incorporate pathologist’s annotation as
prior information in the analysis.

SRT has become the latest frontier for cutting-edge research in
biomedicine, and new technologies are continued to be developed
[86–87]. In this review, we provide an overview of the current state
and common computational tasks in SRT data analysis. A crucial
aspect for the analysis of SRT data alongside histology images is
the ability to visualize and work with such data, especially within
a complex study design framework. To streamline the analysis,
infrastructure such as SpatialExperiment [88] is needed. In addi-
tion, a few recently developed software packages, e.g., STUtility
[75], Seurat [89], Giotto [61], Tangram [90], and SquidPy [91], have
integrated many of the reviewed methods in their packages, which
will facilitate the adoption of SRT analysis methods in real studies.
As the scale and complexity of SRT data will continue to grow, soft-
ware that can visualize and interrogate multimodel data and out-
puts will be needed. We hope this review will draw researchers
with complementary expertise to collaborate and develop more
effective computational methods to integrate information from
gene expression and digital pathology to fully unleash the power
of these spatial technologies.
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