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1  | INTRODUC TION

Forecasting is a vital component of fisheries management and 
furnishes necessary input for management decisions. However, 
forecasting models are often based on simplistic time series trend 

analyses, which do not capture spatial information. Parametric time 
series methods such as autoregressive integrated moving averages 
(ARIMA) models provide accurate forecasts when the trend is consis-
tent, or many time points are supplied (Box & Jenkins, 1970). These 
time series methods often fail when there are insufficient measures 
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Abstract
Fisheries management is dominated by the need to forecast catch and abundance of 
commercially and ecologically important species. The influence of spatial information 
and environmental factors on forecasting error is not often considered. I propose a 
forecasting method called spatiotemporally explicit model averaging (STEMA) to 
combine spatial and temporal information through model averaging. I examine the 
performance of STEMA against two popular forecasting models and a modern spatial 
prediction model: the autoregressive integrated moving averages with explanatory 
variables (ARIMAX) model, the Bayesian hierarchical model, and the varying coeffi-
cient model. I focus on applying the methods to four species of Alaskan groundfish 
for which catch data are available. My method reduces forecasting errors signifi-
cantly for most of the tested models when compared to ARIMAX, Bayesian, and 
varying coefficient methods. I also consider the effect of sea surface temperature 
(SST) on the forecasting of catch, as multiple studies reveal a potential influence of 
water temperature on the survival and growth of juvenile groundfish. For most of the 
preferred models, inclusion of SST in the model improved forecasting of catch. It is 
advisable to consider both spatial information and relevant environmental factors in 
forecasting models to obtain more accurate projections of population abundance. 
The STEMA method is capable of accounting for spatial information in forecasting 
and can be applied to various types of data because of its flexible varying coefficient 
model structure. It is therefore a suitable forecasting method for application to many 
fields including ecology, epidemiology, and climatology.
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over time or the response fluctuates with little apparent trend 
(Koutroumanidis, Iliadis, & Sylaios, 2006; Stergiou & Christou, 1996). 
Another issue with these models is the inclusion of covariates. Often 
the covariates of interest must be forecast individually and the re-
lationship between those predictors and the response are assumed 
to be linear (Box, Jenkins, & Reinsel, 2013). This is an unrealistic as-
sumption for recent climate data that exhibit anthropogenic-driven 
trends where the pattern of the relationship between predictors and 
response can change over time. Additionally, time series methods 
are unable to consider covariates that also vary over space.

Varying coefficient models offer a flexible modeling structure 
which allows for nonlinear relationships between predictors and the 
response; these models are also capable of handling covariates that 
change over space and time (Augustin, Trenkel, Wood, & Lorance, 
2013; Hastie & Tibshirani, 1993; Phillips, Ciannelli, Brodeur, Pearcy, 
& Childers, 2014). Unlike time series models, prediction in varying 
coefficient models is limited to the model structure and cannot 
produce forecasts beyond the time range of the data. It would thus 
be ideal to combine the nonlinear spatial information from varying 
coefficient models with the forecasting capabilities of time series 
methods. Model averaging allows the combination of information 
from multiple models to inform the predictions of a response while 
accounting for model uncertainty. The models are often weighted 
according to best fit using the Akaike information criterion (AIC) 
or the Bayesian information criterion (BIC) (Buckland, Burnham, & 
Augustin, 1997) in the aggregation process; however, other criteria 
for weighting are also possible (Hansen, 2007; Raftery, Gneiting, 
Balabdaoui, & Polakowski, 2005). I propose a methodology based on 
a combination of information gained through the flexibility of vary-
ing coefficient models with the trend analyses of ARIMA models to 
obtain predictions for catch rates at specific locations, thereby cre-
ating predicted species distributions. The method takes advantage 
of varying coefficient models and model averaging while refining 
these for use in spatio-temporal forecasting. My technique is the 
result of complex leave-one-out construction procedures used to 
create forecast stability. This procedure provides prediction errors 
that are used as weights for model averaging.

Water temperature has effects on the growth, survival, and 
behavior of juvenile fish. Survival of juveniles to reproductive age 
is a key indicator of population maintenance and growth. Fisheries 
management and restoration strategies are keen to monitor re-
cruitment and abundance for target species. However, informa-
tion on reproductive success and recruitment to model population 
abundance are often lacking for deep-water marine species. Catch 
rates are related to population size and are commonly used in fish-
eries management as an index of abundance (Battaile & Quinn, 
2004; Council, 2000; Ricker, 1975). Many deep-water species 
move inshore to reproduce, and thus, offspring are affected by the 
temperature of surface waters in the first few years of life when 
they are sensitive to environmental extremes. Changes in SST af-
fect plankton availability, distribution, and composition, which are 
an important nutrition resource for deep-water species and act 
as a carbon sink (Brierley & Kingsford, 2009). Additionally, SST 

acts as a proxy for many other oceanic processes, affecting cur-
rents, ocean mixing, and sea ice retreat, all of which have effects 
on both fish biomass (Bouchard & Fortier, 2008; Hunt et al., 2002) 
and catch (Cheung et al., 2009; Kim et al., 2012; Monllor-Hurtado, 
Pennino, & Sanchez-Lizaso, 2017). Further, it is evident that man-
agement strategies must now consider temperature trends in 
order for managers to provide accurate long-term advice (Biswas, 
Svirezhev, & Bala, 2005; Ianelli, Hollowed, Haynie, Mueter, & 
Bond, 2011; Vaidyanathan, 2017). Still, current management im-
plementation rarely includes ecosystem processes that have been 
shown to affect fish stock productivity (Skern-Mauritzen et al., 
2015). It is therefore meaningful to consider SST in predicting 
catch, particularly in studies where recruitment information is not 
available or difficult to assess. While adding additional variables 
will improve model fit, it will not necessarily improve prediction. 
Thus, I assess whether prediction of catch is improved through the 
inclusion of SST.

2  | BACKGROUND

Prediction of fish abundance and catch is crucial in creating manage-
ment strategies for commercially important species, particularly in 
oceans with high system variability. The northern Pacific Ocean has 
undergone several recent regime shifts that affect marine groups 
differently (Napp & Hunt, 2001). Changes in abundance and popula-
tion dynamics of various marine fishes, including salmon, cod, halibut, 
and sardines, have manifested in response to climatic regime shifts 
in the past century (Benson & Trites, 2002; Möllmann & Diekmann, 
2012; Noakes & Beamish, 2009). Abrupt changes in climatic cycles via 
persistent, area-specific shifts in trends of water temperature, ocean 
currents, and primary production create profound changes in the ma-
rine ecosystem, though the precise mechanisms through which these 
changes occur are still not well understood (Anderson & Piatt, 1999; 
Francis, Hare, Hollowed, & Wooster, 1998). Sea surface temperature 
(SST) is a simple measure to obtain. It acts as an easily identifiable 
representative for more complex relationships between oceanic and 
atmospheric conditions that precede or accompany marine regime 
shifts (Möllmann, Folke, Edwards, & Conversi, 2015; deYoung et al., 
2008). Consequently, SST is the most commonly used environmen-
tal variable considered when modeling fish catch and abundance in 
the wild. However, not many studies consider the effect of SST on 
the forecasting of fish catch, especially in management settings. 
Water temperature has also been shown to affect the feeding mo-
tivation, metabolism, reproduction, and behavior of many fish spe-
cies (Donelson, Munday, McCormick, Pankhurst, & Pankhurst, 2010; 
Pörtner et al., 2001), which in turn influences recruitment and abun-
dance. Increased water temperatures due to climate change are there-
fore likely to affect the amount and composition of aquatic species in 
northern latitudes (Pörtner & Knust, 2007; Sharma, Jackson, Minns, & 
Shuter, 2007). Along with increased water temperatures, climate vari-
ability is expected to increase as a result of climate change (Easterling 
et al., 2000; Timmermann et al., 1999). Anomalous oceanic conditions 
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brought about by persistent changes in atmospheric patterns, such as 
the warm SST anomaly known as “the Blob” in the Northern Pacific 
Ocean (Tseng, Ding, & Menghuang, 2017), have effects on regional 
weather and impacts on coastal and deep-water fisheries operations 
as well as the composition of ecosystems (Bond, Cronin, Freeland, 
& Mantua, 2015). Extreme changes in the marine environment that 
often accompany ocean anomalies are more detrimental to juve-
nile fish and can affect their recruitment into the adult population 
(Baumann et al., 2006; Beaugrand, Brander, Alistair Lindley, Souissi, & 
Reid, 2003; Stige, Ottersen, Brander, Chan, & Stenseth, 2006).

Three commercially important groundfish species, Pacific cod 
(Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and 
sablefish (Anoplopoma fimbria), and the most abundant groundfish 
species, giant grenadier (Albatrossia pectoralis), are located within 
the north Pacific ecosystem. The commercial fisheries of Pacific cod, 
Pacific halibut, and sablefish are predominantly or solely longline, 
and catch of giant grenadier is predominantly through bycatch on sa-
blefish longlines (Goen & Erikson, 2017; NPFMC, 2017; Rodgveller, 
Lunsford, & Fujioka, 2008). Pacific halibut, Pacific cod, and sablefish 
also have management guidelines in effect that would likely benefit 
from new and more accurate prediction techniques. Winter ocean 
conditions in the northeast Pacific Ocean have been linked to recruit-
ment in groundfish stocks (Hollowed & Wooster, 1992; Schirripa & 
Colbert, 2006). Studies on juveniles of these four species show that 
increased water temperatures affect behavioral responses, growth, 
and survival (Laurel, Spencer, Iseri, & Copeman, 2016; Sogard & Olla, 
2001; Stoner, Ottmar, & Hurst, 2006; Stoner & Sturm, 2004). No 
laboratory studies have been conducted on the temperature toler-
ances of giant grenadier. Sablefish and giant grenadier are known 
to compete for baited hooks in longline surveys (Rodgveller et al., 
2008). These results indicate that giant grenadier may inhabit sim-
ilar temperature zones as sablefish. This highlights the need to un-
derstand the relationship of temperature to an apex deep-water 
predator likely to be the most abundant fish in the northern Pacific 
(Rodgveller & Hulson, 2014).

Climate change is characterized in many areas of the globe 
as a consistent warming trend which favors acclimation in fishes 
(Crozier & Hutchings, 2014). Variability in global climate systems 
is also increasing the occurrence of extreme climate events and 
changing marine ecosystems dramatically and suddenly (Hoegh-
Guldberg & Bruno, 2010; Walther et al., 2002). If oceanic condi-
tions continue to experience increased variability and instability, 
persistent changes to the physiology of fishes as a result of accli-
matization are likely to translate into reduced phenotypic plasticity 
(Reed, Schindler, & Waples, 2011; Seebacher, White, & Franklin, 
2014). Pacific cod displayed “cold-adapted” responses in hatching, 
growth rates, and mortality when sampled from the coldest cohort 
in three decades (Hurst, Munch, & Lavelle, 2012). This illustrates 
that groundfish from a cohort experiencing more extreme tem-
perature changes, either anomalously cold or warm, may be at a 
disadvantage when experiencing the opposing extreme conditions 
to which they experienced when hatching. The effect is likely to 
be pronounced if an intensely cold year during the hatching of a 

cohort is followed by an extremely warm year (or vice versa) when 
those fish are still in their vulnerable juvenile state. It is therefore 
important to gain a greater understanding of the effects of tem-
perature on commercially and ecologically important species such 
as those discussed here.

3  | DATA

The data for this study were collated from two datasets provided by 
the National Oceanic and Atmospheric Administration (NOAA). Of pri-
mary use were the annual longline survey data of the Marine Ecology 
and Stock Assessment (MESA) Program conducted by the Auke Bay 
Laboratories in Alaska (Alaska Fisheries Science Center, NOAA, 2015). 
The MESA Program has performed longline surveys independently 
since 1979, dropping baited lines at specific locations (“stations’’) 
off the coast of Alaska to collect information on groundfish species. 
Seven major groundfish species are surveyed in the MESA Program 
by the Alaska Fisheries Science Center (AFSC), of which four (sable-
fish, Pacific cod, Pacific halibut, and giant grenadier) will be considered 
in these analyses. The AFSC records number of fish per species col-
lected at each location and calculates a catch per unit effort (CPUE) 
within each management area from the total number of fish caught 
divided by the total number of skates, 100-meter longlines with 45 
evenly spaced hooks per line, deployed each day (Sigler & Lunsford, 
2009). The CPUE is therefore a standardized measure of catch at each 
location. Longline surveys recording CPUE have been shown to be an 
accurate fishery-independent index of abundance for sablefish (Sigler, 
2000) and Pacific halibut (Monnahan & Stewart, 2018) when properly 
accounting for hook spacing and spatial stratification.

Daily global SST readings, available for dates starting in 1981 
through 2012, were obtained from the National Centers for 
Environmental Information (NOAA, 2015). The data were inter-
polated and optimized from satellites, buoys, and ships on 1/4° 
latitude–longitude grids using a method devised by Richard W. 
Reynolds at the National Centers for Environmental Prediction. A 
coefficient of variation for SST was derived for each 1/4° latitude–
longitude grid for the winter season (November through April), 
because the groundfish studied in the MESA surveys undergo re-
productive activity in the winter months in the waters surrounding 
Alaska. In addition, evidence has suggested that winter conditions 
have the greatest influence on groundfish populations (Hollowed 
& Wooster, 1992). The winter coefficient of variation for SST was 
calculated as

at each latitude–longitude pairing, with σ being the winter seasonal 
standard deviation and μ the winter season’s mean of SST. The coef-
ficient of variation is an improved measure of seasonal SST over the 
mean, because it standardizes scale and allows us to consider the 
changes in variation of SST with the changes in mean over time.

cv=
�

�
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Fluctuations in CPUE are likely to be linked to changes across co-
horts which are often determined by survival in the first year of life. 
Water temperature has been found to affect the MESA groundfish 
covered by my analyses, and juvenile fish are more susceptible to en-
vironmental changes than their adult counterparts. Therefore, CPUE 
for a given year is likely to be linked to the winter SST encountered 
at the juvenile state by fish entering the adult population. Since the 
MESA survey targets waters where adults reside during the sum-
mer, and the four species covered in my analyses reach maturity at 
5–8 years, SST was lagged for years one through five to allow us to 
capture the effect of SST on the juvenile stages and recruitment. All 
five lagged SST measures were included for modeling.

I focused on determining the spatio-temporal catch predictions 
for four of the species in the MESA study area known as the Gulf of 
Alaska which ranges from the Dixon Entrance west to Chuginadak 
Island. The fisheries data were matched with winter SST data from 
1982 to 2012. With lagged winter SST included, this created a data-
set of CPUE for four groundfish species spanning 23 years from 1990 
to 2012. There are 1679 observations each for sablefish, Pacific cod, 
giant grenadier, and Pacific halibut.

4  | METHODS

My proposed forecasting method consisted of two parts, a model av-
eraging technique made up of a spatially varying coefficient model 
with prediction obtained via an ARIMA model and a temporally varying 
coefficient model with prediction incorporated via an ARIMA model. 
The proposed method was applied to the Alaska groundfish data. I then 
compared three main methods of forecasting to my proposed method: a 
simple ARIMA model with covariates (ARIMAX) with lagged winter SST 
from 1 to 5 years used as predictors, a naïve spatially varying coefficient 
model in which the fitted values for the current year were considered 
the predicted values for the next year, and a hierarchical Bayesian fore-
casting procedure. The ARIMAX and Bayesian implementations are lin-
ear models, while the naïve spatially varying coefficient model and the 
proposed forecasting method make use of nonlinear models.

The distributions of CPUE values for Pacific cod and Pacific hal-
ibut were right-skewed and were accommodated in the model fit-
ting, while sablefish and giant grenadier CPUE values were Gaussian 
distributed.

All of the methods were subjected to a leave-one-out proce-
dure. This allowed us to determine whether the success of the 
proposed technique was mainly due to its predictions being ver-
ified and adjusted using the leave-one-out procedure. Since the 
naïve spatially varying coefficient model is not a typical forecast-
ing procedure, only the leave-one-out setting was considered 
for this model. For the naïve model, a station was removed from 
the dataset and the spatial model fitting was performed on the 
{1, 2, …, b − 1, b + 1, …, n} stations. The spatial forecast obtained 
after each leave-one-out operation is denoted Ỹsp(−b)

J
, where b is 

the removed station. The ARIMAX and hierarchical Bayesian mod-
els go through a similar leave-one-out procedure, where a year 

c was removed from the dataset and the ARIMAX (or Bayesian) 
modeling procedure was performed on the {1, 2, …, c − 1, c + 1, 
…, J − 1} years. The ARIMAX forecast obtained after each leave-
one-out procedure is similarly denoted Ỹt(−c)

J
 for the removed year 

c. A mean and standard deviation of the leave-one-out forecasts 
for each station’s ARIMAX, Bayesian, and naïve spatial models 
were calculated. The means of the leave-one-out forecasts for 
each station were used as the final forecast CPUE values for the 
leave-one-out versions of the ARIMAX, Bayesian, and naïve spa-
tial models. Weights for the model averaging of the two compo-
nent predictions for the proposed method were determined by 
the standard error of the leave-one-out predictions for each. A 
minimum of 10 observations per location was considered to pro-
vide a sufficient number of points to obtain a trend over time; that 
is, a minimum of 10 yearly observations per station were included 
in the training datasets that were used to predict the subsequent 
year. For each of the following models, let J be the year for which 
prediction is sought, where J = 2000, 2001, …, 2012.

In Section 4.1, I introduce and describe the basic ARIMAX model, 
the spatially varying coefficient model, and the Bayesian forecasting 
method to which I compared my proposed forecasting technique. I 
then show how the ARIMA model and spatially varying coefficient 
model were combined using model averaging to produce my pro-
posed forecasting method in Section 4.2.

4.1 | Some existing forecasting procedures

4.1.1 | ARIMAX model

An ARIMAX of order p, d, q in the form

was fit for each location. The lag operator is denoted by L, ϕm 
are the autoregressive parameters, θm are the moving aver-
age parameters, β is the predictor coefficient matrix, and εi 
are the error terms (Box et al., 2013). The predictor vector 
Xi= (SSTi−1,SSTi−2,SSTi−3,SSTi−4,SSTi−5)

T includes lagged winter SST 
values for one to 5 years. The order (p, d, q) with drift δ/(1 − Σϕm) 
for the ARIMAX model is automatically determined using minimiza-
tion of AIC and MLE to determine the best ARIMAX model using 
the function auto.arima in the forecast package (Hyndman, 
2017; Hyndman & Khandakar, 2008) in R (R Core Team, 2017). The 
right-skewed distributions of Pacific cod and Pacific halibut CPUEs 
do not affect the fitting of the ARIMAX models, as each location is 
fit individually. At most, only one outlier was identified per station 
for Pacific cod and Pacific halibut when modeling the entire range 
of training data for one station representative of each of the four 
management areas (Supporting Information Figures S1 and S2). The 
fitted ARIMAX model was then used to predict year J using known 
winter SST values from years J − 5 to J − 1,

�
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with the predicted value for year J denoted ỸA
J
, employing the fore-

cast function from the forecast package.

4.1.2 | Naïve spatially varying coefficient model

A spatially varying coefficient model for CPUE of a given species 
including lagged winter SST for 5 years to one year that varies over 
space is fit for year J − 1,

where XJ−1= (1,SST(J−1)−1,SST(J−1)−2,SST(J−1)−3,SST(J−1)−4,SST(J−1)−5)
T 

and G(J−1)(U)= (g0,J−1(U),g1,J−1(U),g2,J−1(U),g3,J−1(U),g4,J−1(U),g5,J−1(U))
T 

is the functional coefficient vector of winter SSTs with U being the 
longitude-latitude pairs representing sampled locations along the 
Gulf of Alaska. The fitted CPUE values for year J − 1 given as

were considered to be the predicted values for year J. The pre-
dicted values from this naïve spatial model are denoted ỸN

J
. The 

spatially varying coefficient models used rank-based estimation 
as described in Correia and Abebe (2017). Rank estimation tech-
niques are more suitable than least squares estimation for re-
ducing the influence of outliers and contamination common in 
fisheries and ecological data on prediction. The rank-based esti-
mation for varying coefficient models was coded as a modifica-
tion to the gam function in the mgcv package (Wood, 2006) in R 
(R Core Team, 2017) and is provided as part of the code included 
as supplemental material. To accommodate the right-skewed 
distributions of Pacific cod and Pacific halibut CPUE values, I 
used the Gaussian distribution and weights given by the bent 
score function (Kloke & McKean, 2014) in the varying coefficient 
model fitting process.

4.1.3 | Hierarchical Bayesian forecasting

To implement Bayesian forecasting methods, I chose a hierarchical in-
dependent Gaussian process model. Let Zi denote the observed data, 
and Oi be the corresponding true values for station sr, r = 1, …, n at time 
i = 1, ···, J − 1. Also let Zi= (Z(s1,i),… ,Z(sn,i))

T, Oi= (O(s1,i),… ,O(sn,i))
T, 

and N = n × (J − 1) be the total number of observations modeled. The 
Gaussian process model is specified as

where β is the regression coefficient vector, and 
�i= (�s1,i,… ,�sn ,i)∼N(0,�2

�
In) is the pure error term, �2

�
 is the unknown 

variance and In is the identity matrix of order n. The spatio-temporal 

random effects are denoted ηi = (η(s1, i), …, η(sn, i))T ∼ N(0, Ση), where 
Σ� =�2

�
S� is composed of the spatial variance, �2

�
, and the spatial cor-

relation matrix, Sη. The spatial correlation matrix is derived from the 
Matérn correlation function

where ϕ controls the correlation decay rate as distance between 
two spatial points ‖ si − sj ‖  increases, Kν is the modified Bessel func-
tion of order ν, and ν controls the smoothness of the random field. 
Let all of the parameters of the model be denoted �= (� ,�2

�
,�2

�
,�,�), 

and let π(θ) denote the prior distributions. The prior distribution for 
the inverse variance model parameters is given as

where a = 2 and b = 1, while the prior distributions for the mean pa-
rameter β is N(�� ,�

2
�
), where μβ = 0 and �2

�
=1010. The logarithm of the 

joint posterior distribution for this Gaussian process model is

The Bayesian forecasting method was implemented via the R 
package spTimer (Bakar & Sahu, 2015).

4.2 | Spatiotemporally explicit model averaging

The spatiotemporally explicit model averaging (STEMA) technique 
was derived from the combination of a spatially varying coefficient 
model (Section 4.1.2) and a yearly varying coefficient model where 
latitude–longitude pairs in the spatially varying coefficient model 
were replaced by year. Each model’s fitted values were then used to 
fit an ARIMA and forecast the year for which prediction was sought. 
The separate model forecasts were averaged using weights based 
on standard deviations of the leave-one-out procedure, giving more 
weight to the model with lower standard deviation to produce 
a final forecast for each station. The components of the STEMA 
forecasting procedure are described in the following three subsec-
tions, with example code of the procedure given in the Supporting 
Information.

4.2.1 | Spatial model with ARIMA

A spatially varying coefficient model as described above was fit over 
space for each year i = 1990, 1991, …, J − 1. The fitted CPUE values 
for year i given as
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were then used to fit an ARIMA model for each station,

yielding the fitted ARIMA values Ỹsp
J

, where the order (p, d, q) with 
drift δ/(1 − Σϕm) is automatically determined using the auto.
arima function as described in Section 4.1.1. The two-step pro-
cess allows for inclusion of multiple lagged winter SST variables 
smoothed over space in the varying coefficient model setting while 
providing a method for future prediction which is not available in 
these models.

4.2.2 | Temporal model with ARIMA

A time varying coefficient model of the form

was fit for each location, where i = 1990, 1991, …, J − 1; 
t = 1990, 1991, …, J − 1; and SSTt-5 is the winter SST for that location 
lagged by five years. The fitted values from this model,

were then used to fit an ARIMA model

yielding the fitted ARIMA values Ỹt
J
, where the order (p, d, q) with 

drift δ/(1 − Σϕm) is automatically determined as described for the 
spatial model. The coefficient model smooths the CPUEs for each 
location, thereby allowing the time series model to determine a more 
accurate trend despite highly variable CPUE values.

4.2.3 | Model averaging

The STEMA method underwent the same leave-one-out pro-
cedures as described for the ARIMA and naïve spatial models, 
where the temporal model with ARIMA used the temporal leave-
one-out procedure and the naïve spatial model utilized the spa-
tial leave-one-out steps. For the STEMA technique, the means of 
the spatial and temporal leave-one-out procedures (mean(Ỹsp

J
) and 

mean(Ỹt
J
), respectively) were weighted for each location using a 

ratio of the spatial (�spn) and temporal (�tn) standard deviations 
from the leave-one-out predictions,

where ωsp + ωt = 1. The final spatiotemporally explicit model aver-
aged prediction was obtained for each location by

The standard error of the spatiotemporally explicit model aver-
aged predictions is given as

where SEM is the standard error of the mean.

5  | A SSESSMENT OF FOREC A ST 
PERFORMANCE VIA CROSS-VALIDATION

5.1 | Model comparison

A time series cross-validation based on one-step forecasts was per-
formed on the ARIMAX model (A), the hierarchical Bayesian model 
(B), the naïve spatially varying coefficient model (N1), the STEMA 
technique, and the leave-out-out versions of the ARIMAX (A1) and 
Bayesian (B1) models. I consider h to be the minimum number of 
years needed to create a reliable forecast and proceed as follows: 
for f = 1, 2, …, T − h, where T is the total number of years available 
and j = h + f, train on Fh, …, Fj-1, and forecast and validate on Fj. For 
each estimation technique, a forecast Ŷaj, a=A, A1, B, B1,N1, STEMA 
was computed from the training sets, and the error on the validation 
set was recorded as

To compare estimation techniques, I used a Friedman rank sum 
test on the absolute errors to determine whether there were signif-
icant differences among methods (Friedman, 1937). If the Friedman 
test indicated significant differences, I then performed pairwise mul-
tiple comparisons on the differences between the absolute errors for 
each pair of methods (Bretz, Westfall, & Hothorn, 2016; Tukey, 1949). 
In order to control for the effect of location, a generalized linear 
mixed model was fit with the stations set as random effects. p-Values 
calculated for the pairwise tests were adjusted using the Benjamini–
Hochberg procedure to control the false discovery rate (Benjamini 
& Hochberg, 1995). If the difference was significantly less than 
zero, the first of the two compared methods was the method that 
produced smaller errors; if the difference was significantly greater 
than zero, the second method produced smaller errors. The mixed 
model was fit using the glmer function in the lme4 package (Bates, 
Mächler, Bolker, & Walker, 2015), while the pairwise multiple com-
parisons were performed in the multcomp package (Hothorn, Bretz, 
& Westfall, 2008) using the glht function in R (R Core Team, 2017).

5.2 | Forecast performance in the presence of an 
environmental covariate

In order to determine whether adding SST to the models improved fore-
casting, a null model for each of the four techniques was fit, subjected 
to the same leave-one-out procedure as described previously, and a 
forecast obtained for each. The null A and A1 models are of the form

(

1−

p
∑

m=1

�mL
m

)

(1−L)dŶ
sp
i =�+

(

1+

q
∑

m=1

�mL
m

)

ϵi

YJ−1=g0J(t)+g1J(t)SSTt−5+�J−1

Ŷt
i
= ĝ0J(i)+ ĝ1J(i)SSTi−5,

(

1−

p
∑

m=1

�mL
m

)

(1−L)dŶt
i
=�+

(

1+

q
∑

m=1

�mL
m

)

ϵi,

�sp=
�t

�sp+�t
and �t=

�sp

�sp+�t
,

ỸJ=�sp mean(Ỹ
sp

J
)+�t mean(Ỹ

t

J
).

SE(ỸJ)=

√

�2
sp
SEM (Ỹ

sp

J
)+�2

t
SEM (Ỹt

J
),

eaj=Yj− Ŷaj.
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where the order p, d, q is determined as before.
The fitted CPUE values for year J − 1 from the null naïve spatially 

varying coefficient model given as

are considered to be the predicted values for year J.
The spatiotemporally model averaged forecasts were derived 

from the two null varying coefficient models

of which the fitted values were each used to fit ARIMA models fol-
lowing the steps in Section 4.2. The forecasts obtained from those 
fitted ARIMA models were averaged as described in Section 4.2.3 to 
form the final prediction. The null model errors were compared to 
the errors of their model counterparts which include winter SST for 
each method using one-sided Wilcoxon signed-rank tests, where the 
errors are matched by station and year. If SST is important to fore-
casting, the inclusion of SST in the model will significantly reduce 
forecasting error.

In order to obtain the magnitude of the effect of winter SST 
on prediction using the preferred methods, I calculated a rank cor-
relation r statistic using the asymptotic normal distribution of the 
Wilcoxon signed-rank statistic W on the absolute error differences 
Di between the null model and the SST model. W is calculated as

where N is the total number of calculated errors. Under the hypoth-
esis that winter SST has no impact on prediction, W is asymptotically 
normal as

(Hollander & Wolfe, 1999). The rank correlation is given by

with estimated variance (1 − r2)/(N − 2) (Rosenthal, Cooper, & 
Hedges, 1994). Small, medium, and large effect sizes are .10, .30, and 
.50, respectively (Cohen, 1992).

5.3 | Control of Bayesian parameter ϕ in cross-
validation

One issue that arises from using the time series cross-validation on 
the Bayesian forecasting method is the fluctuation in spatial point 

acceptance rate as the available years of data change. While the spa-
tial decay parameter ϕ can be chosen by the user to obtain optimal 
acceptance rate of spatial points for the calculation of the spatial 
correlation matrix, the appropriate value of ϕ changes given varying 
data structure. There is also insufficient guidance on how forecast 
values are affected by misspecification of ϕ. According to Bakar and 
Sahu (2015), the choice of ϕ is obtained with acceptance rates be-
tween 20% and 40%, which is justified by Gelman, Carlin, Stern, and 
Rubin (2004).

I chose to apply a search similar to Paci, Gelfand, and Holland 
(2013) for the optimal ϕ value by fitting the current dataset with 
values of ϕ starting at 10 and decreasing by an order of magni-
tude of 1 for each subsequent fitting. Once the model achieved 
an acceptance rate closest to 32%, that model was then used to 
obtain forecasting estimates for year J. This ensured that ϕ was 
selected for each model fitting step to always obtain an optimal 
acceptance rate despite the changing size of training data. Variable 
training data that occur when using the temporal cross-validation 
affect the spatial information available, making a fixed value of 
ϕ unsuitable for accurate forecasting using the Bayesian method 
with temporal cross-validation.

6  | RESULTS

Friedman tests for all four species revealed significant differ-
ences across model techniques (sablefish: χ2 = 74.022, p ≤ 0.0001; 
Pacific cod: χ2 = 365.501, p ≤ 0.0001; Pacific halibut: χ2 = 152.471, 
p ≤ 0.0001; giant grenadier: χ2 = 460.030, p ≤ 0.0001). The STEMA 
method had lowest mean absolute errors for Gaussian distributed 
species (sablefish and giant grenadier) when ignoring station and 
year effects (Table 1). Pairwise multiple comparisons were there-
fore performed on method pairings for all species to determine the 
best methods of forecasting for each species. The results of these 
pairwise comparison tests of the different methods are given in 
Tables 2–5. Based on the differences in mean absolute errors that 
are significant, the following methods had the lowest significant ab-
solute errors: the STEMA method for sablefish, the naïve and STEMA 
methods for Pacific cod, the naïve method for Pacific halibut, and 
the STEMA method for giant grenadier. STEMA did not significantly 
improve forecasting over the N1 model in the case of Pacific cod, and 
the N1 method outperformed STEMA in lowering forecasting errors 
for Pacific halibut.

The results of the one-sided Wilcoxon signed-rank tests for 
comparing models including winter SST to those without for all 
forecasting methods are summarized in Table 6. For all four ground-
fish species, the STEMA method of forecasting had significantly 
reduced absolute errors when lagged winter SSTs were included 
as covariates. For Pacific cod, Pacific halibut, and giant grenadier, 
the models using the naïve method of forecasting benefited sig-
nificantly from the addition of SST. The A and A1 methods for all 
species had higher absolute errors upon the addition of SST to the 
models.

(
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7  | DISCUSSION

I propose a model averaging forecasting technique to capture both 
spatial and temporal information in ecological time series data. The 
method incorporates a flexible model capable of handling spatially 
dependent covariates with the familiarity and forecasting ability of 
ARIMA models for time series analysis. I applied the proposed method 
to catch data of four ecologically and commercially important species 
of groundfish where information regarding juvenile survival is often 
difficult to obtain and life-history data are sparse or unknown, thereby 
making projections of population and catch challenging.

The A and A1 models were inadequate for forecasting annual 
catch by location for any of the four species in the analysis. Previous 
studies indicated that ARIMA models outperform other linear time 
series methods when forecasting monthly data (Stergiou, Christou, & 
Petrakis, 1997); however, ARIMA is less suited to yearly data (Stergiou 

& Christou, 1996) and nonlinear time series (Koutroumanidis et al., 
2006). Spatial information is therefore an important component of 
modeling and forecasting catch in mobile marine species. A more 
flexible model, such as the varying coefficient model I employed, is 
also more desirable for capturing unknown nonlinear relationships 
between the response and predictors in complex systems.

The proposed STEMA method was always chosen as a preferred 
method for forecasting over ARIMAX and Bayesian models. It should 
be noted that catches for the two species in which STEMA did not 
significantly outperform the N1 model were right-skewed, as noted in 
Section 4. For these two species, the N1 and STEMA methods which 
employed the rank-based estimation of Correia and Abebe (2017) 
using a Gaussian distribution with bent score function outperformed 
the A, A1, B, and B1 techniques for forecasting. Correia and Abebe 
(2017) showed that a bent score function in the estimation of general-
ized additive models (GAMs) improved model fit for Pacific cod catch 

TABLE  2 Pairwise multiple comparisons of absolute errors of 
forecasting methods with winter SST included in the models for 
sablefish

Linear hypotheses Estimate Std. error z value Pr(>|z|)

A1–A −0.050 0.038 −1.323 0.253

B–A −0.130 0.038 −3.435 0.002

B–A1 −0.080 0.038 −2.115 0.057

B1–A −0.128 0.038 −3.369 0.002

B1–A1 −0.078 0.038 −2.049 0.061

B1–B 0.002 0.038 0.066 0.947

N1–A −0.090 0.038 −2.378 0.033

N1–A1 −0.040 0.038 −1.057 0.335

N1–B 0.040 0.038 1.058 0.335

N1–B1 0.038 0.038 0.993 0.344

STEMA–A −0.254 0.038 −6.707 0.000

STEMA–A1 −0.204 0.038 −5.386 0.000

STEMA–B −0.124 0.038 −3.264 0.002

STEMA–B1 −0.126 0.038 −3.331 0.002

STEMA–N1 −0.164 0.038 −4.330 0.000

Notes. p-Values are adjusted using false discovery rate method. A p-
value < 0.05 indicates the difference in absolute errors of the compari-
son is significant (in bold). Differences significantly less than zero indicate 
the first of the two compared methods was the method that produced 
smaller errors; estimates significantly greater than zero indicate the sec-
ond method produced smaller errors.
1Leave-one-out procedure used.

TABLE  3 Pairwise multiple comparisons of absolute errors of 
forecasting methods with winter SST included in the models for 
Pacific cod

Linear hypotheses Estimate Std. error z value Pr(>|z|)

A1–A −0.033 0.040 −0.835 0.454

B–A −0.275 0.040 −6.828 0.000

B–A1 −0.241 0.040 −6.004 0.000

B1–A −0.307 0.040 −7.626 0.000

B1–A1 −0.273 0.040 −6.802 0.000

B1–B −0.032 0.040 −0.800 0.454

N1–A −0.525 0.040 −12.996 0.000

N1–A1 −0.492 0.040 −12.185 0.000

N1–B −0.251 0.040 −6.226 0.000

N1–B1 −0.219 0.040 −5.434 0.000

STEMA–A −0.550 0.040 −13.699 0.000

STEMA–A1 −0.516 0.040 −12.879 0.000

STEMA–B −0.275 0.040 −6.855 0.000

STEMA–B1 −0.243 0.040 −6.061 0.000

STEMA–N1 −0.024 0.040 −0.609 0.542

Notes. p-Values are adjusted using false discovery rate method. A p-value 
< 0.05 indicates the difference in absolute errors of the comparison is 
significant (in bold). Differences significantly less than zero indicate the 
first of the two compared methods was the method that produced 
smaller errors; differences significantly greater than zero indicate the 
second method produced smaller errors.
1Leave-one-out procedure used. 

A A1 N1 B B1 STEMA

Sablefish 1.771 1.688 1.612 1.558 1.562 1.369

Pacific cod 0.280 0.267 0.136 0.180 0.175 0.145

Pacific halibut 0.293 0.285 0.199 0.205 0.204 0.205

Giant grenadier 1.599 1.480 1.614 1.844 1.839 1.086

Note. Lowest mean absolute errors for each species are in bold.

TABLE  1 Mean absolute error of each 
method for four species, ignoring station 
effects
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over modeling with a Gamma distribution using a log link function. This 
Gamma distribution is one of the typical methods employed in fisher-
ies research to deal with skewed catch data. However, the bent score 
function more appropriately accounted for skewness in the distribution 
of Pacific cod catch. The lower absolute forecasting errors for mod-
els using rank-based estimation (N1 and STEMA) for Pacific cod and 
Pacific halibut data indicate that the success of the bent score function 
to accommodate skewness also reaches to forecasting applications of 
varying coefficient models, which are an extension of GAMs. The ap-
plication of the estimation techniques of Correia and Abebe (2017) to 
the varying coefficient models used in STEMA takes advantage of the 
improved fit for heavy-tailed distributions common in fisheries data.

While the STEMA method did not beat the N1 method in two of 
the species, naïve methods are notoriously difficult to beat in time 
series forecasting, particularly for annual data (Athanasopoulos, 
Hyndman, Song, & Wu, 2011; Kilian & Taylor, 2003). The bent score 
function used in the estimation of the varying coefficient models 
in the N1 and STEMA methods for Pacific cod and Pacific halibut 
reduces the effect of extreme values on estimation. This dampens 
large deviations in Pacific cod and Pacific halibut CPUE and pro-
duces fitted values closer to the mean CPUE. Naïve methods will in-
variably do better for very short-term forecasts, because responses 
close to their mean values behave more like a random walk (Kilian & 
Taylor, 2003). The fact that STEMA was better than or equal to the 
N1 method for short-term forecasts in three out of the four species 

despite the known strengths of the naïve method illustrates the ef-
fectiveness of the STEMA method.

A statistically significant reduction in forecasting errors was dis-
cernible when winter SST was included for all preferred forecasting 
methods with lowest absolute errors. Thus, adding covariates rele-
vant to the ecology of the species under consideration can signifi-
cantly improve the forecasting power of a model. The inclusion of 
SST in the A and A1 models increases the absolute forecasting errors 
for all species. Covariates in the ARIMAX and Bayesian settings are 
incorporated linearly; however, the effect of winter SST on ground-
fish catch is likely to be nonlinear (Laurel, Hurst, Copeman, & Davis, 
2008; Rooper & Martin, 2009; Sadorus, Mantua, Essington, Hickey, 
& Hare, 2014), which is apparent in Supporting Information Figure 
S3; therefore, the effect’s nonlinear shape is not being taken into 
account in the A, A1, B, and B1 forecasting methods.

I broke down size of the effect of winter SST on groundfish catch 
for the preferred forecasting methods by management area as defined 
by the AFSC for the MESA survey in Figure 1, where the order of the 
areas is from west to east along the coast of Alaska. Effect size of win-
ter SST on the forecasting errors varies from none to large as defined 
by Cohen (1992), depending upon species and management area. It is 
likely that a given species will respond to SST differently in different 
locations (Rouyer, Fromentin, Hidalgo, & Stenseth, 2014), which is ev-
ident by the variable effect sizes of winter SST by station provided in 
Supporting Information Figures S4–S8. Other factors such as habitat, 

TABLE  4 Pairwise multiple comparisons for absolute errors of 
forecasting methods with winter SST included in the models for 
Pacific halibut

Linear hypotheses Estimate Std. error z value Pr(>|z|)

A1–A −0.034 0.006 −5.413 0.000

B–A −0.384 0.006 −61.003 0.000

B–A1 −0.350 0.009 −39.580 0.000

B1–A −0.387 0.006 −61.442 0.000

B1–A1 −0.353 0.009 −39.895 0.000

B1–B −0.003 0.009 −0.334 0.739

N1–A −0.423 0.006 −67.557 0.000

N1–A1 −0.389 0.009 −44.229 0.000

N1–B −0.040 0.009 −4.494 0.000

N1–B1 −0.037 0.009 −4.160 0.000

STEMA–A −0.391 0.006 −62.332 0.000

STEMA–A1 −0.357 0.009 −40.516 0.000

STEMA–B −0.008 0.009 −0.860 0.450

STEMA–B1 −0.005 0.009 −0.526 0.642

STEMA–N1 0.032 0.009 3.634 0.000

Notes. p-Values are adjusted using false discovery rate method. A p-value 
< 0.05 indicates the difference in absolute errors of the comparison is 
significant (in bold). Differences significantly less than zero indicate the 
first of the two compared methods was the method that produced 
smaller errors; differences significantly greater than zero indicate the 
second method produced smaller errors.
1Leave-one-out procedure used. 

TABLE  5 Pairwise multiple comparisons for absolute errors of 
forecasting methods with winter SST included in the models for 
giant grenadier

Linear hypotheses Estimate Std. error z value Pr(>|z|)

A1–A −0.075 0.040 −1.887 0.068

B–A 0.274 0.040 6.797 0.000

B–A1 0.349 0.040 8.661 0.000

B1–A 0.271 0.040 6.733 0.000

B1–A1 0.346 0.040 8.595 0.000

B1–B −0.002 0.040 −0.058 0.954

N1–A 0.010 0.040 0.255 0.856

N1–A1 0.085 0.040 2.134 0.041

N1–B −0.263 0.041 −6.500 0.000

N1–B1 −0.261 0.041 −6.435 0.000

STEMA–A −0.367 0.040 −9.218 0.000

STEMA–A1 −0.292 0.040 −7.333 0.000

STEMA–B −0.641 0.040 −15.895 0.000

STEMA–B1 −0.639 0.040 −15.817 0.000

STEMA–N1 −0.378 0.040 −9.478 0.000

Notes. p-Values are adjusted using false discovery rate method. A p-
value < 0.05 indicates the difference in absolute errors of the compari-
son is significant (in bold). Differences significantly less than zero indicate 
the first of the two compared methods was the method that produced 
smaller errors; differences significantly greater than zero indicate the 
second method produced smaller errors.
1Leave-one-out procedure used. 
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prey availability, and proximity to other individuals of the same species 
may influence the effects of SST on survival of juveniles. For example, 
while all these groundfish are not schooling species, Stoner and Ottmar 
(2004) found that young Pacific halibut were more likely to locate and 
attack baits in groups than when solitary. Therefore, Pacific halibut, 
which experience reduced ability to locate bait in low temperatures, 
may instead successfully find bait in the presence of other individuals. 
SST may also be a proxy for other environmental variables, such as oxy-
gen levels, ocean mixing, and plankton availability, that may affect these 
groundfish to varying degrees. Sadorus et al. (2014) found a significant 
relationship between dissolved oxygen and catch rates of Pacific hali-
but. Primary production (plankton) concentration and distribution and 
subsequent changes in secondary production levels have also been 
linked to groundfish abundance (Francis et al., 1998; McGowan, Cayan, 
& Dorman, 1998). Correia and Abebe (2017) found improved predic-
tion when adding winter SST to models for sablefish and Pacific cod 
catches; however, model fit did not substantially improve with the ad-
dition of winter SST. Therefore, the link of SST to groundfish catches 
is likely complex and difficult to quantify directly in wild populations.

I have shown that spatial information is crucial to forecasting in 
large-scale data, and my STEMA technique is successful in reducing 
forecasting errors. Additionally, the inclusion of environmental covari-
ates can improve forecasting in many cases. As is the case with fore-
casting and prediction techniques, predictions outside the range of 
observed covariates (i.e., extrapolation) are ill-advised (Conn, Johnson, 
& Boveng, 2015; Steyerberg et al., 2010). Forecasts more than one 
time point ahead can be achieved for the STEMA technique via the 
forecast function after fitting the ARIMA models in the spatial 
model with ARIMA (Section 4.2.1) and temporal model with ARIMA 
(Section 4.2.2). The leave-one-out procedure and model averaging 
would be performed as described (Section 4.2.3) for each time point 
for which forecasts were estimated. While the proposed technique is 
only suitable to forecast future, regular time points for the same loca-
tions, this is typically desirable for many ecological and epidemiological 
analyses where predicting the status of a fixed population at future 
time points is desired. It would be feasible to extend STEMA-generated 
forecasts to new locations by using any of several spatial interpolation 
methods including inverse distance weighting, kriging, and smoothing 

Species Method
Abs. errors w/o 
SST Abs. errors w/SST p-Value

Sablefish A 1.455 (1.017) 1.771 (1.291) 1.000

A1 1.396 (1.055) 1.688 (1.237) 1.000

B 1.626 (1.053) 1.558 (1.034) 0.000

B1 1.619 (1.059) 1.562 (1.046) 0.000

N1 1.585 (1.186) 1.612 (1.161) 0.845

STEMA 1.386 (1.057) 1.369 (1.093) 0.006

Pacific cod A 0.157 (0.180) 0.280 (0.314) 1.000

A1 0.165 (0.186) 0.267 (0.289) 1.000

B 0.222 (0.146) 0.180 (0.120) 0.000

B1 0.215 (0.138) 0.175 (0.116) 0.000

N1 0.142 (0.136) 0.136 (0.134) 0.000

STEMA 0.153 (0.159) 0.145 (0.162) 0.000

Pacific halibut A 0.242 (0.153) 0.293 (0.286) 1.000

A1 0.227 (0.147) 0.285 (0.277) 1.000

B 0.193 (0.177) 0.205 (0.176) 1.000

B1 0.193 (0.177) 0.204 (0.176) 1.000

N1 0.207 (0.181) 0.199 (0.179) 0.001

STEMA 0.208 (0.165) 0.205 (0.164) 0.011

Giant grenadier A 1.041 (1.126) 1.599 (1.505) 1.000

A1 1.055 (1.131) 1.480 (1.393) 1.000

B 1.847 (1.381) 1.844 (1.572) 0.020

B1 1.817 (1.391) 1.839 (1.590) 0.168

N1 1.747 (1.474) 1.614 (1.386) 0.001

STEMA 1.149 (1.165) 1.086 (1.109) 0.000

Notes. Mean absolute errors and standard deviations in parentheses are given. A p-value < 0.05 in-
dicates the absolute errors of the models including winter SST are significantly smaller than the ab-
solute errors of the null models. Methods with lowest forecast errors as determined by the pairwise 
multiple comparisons in Tables 2–5 are in bold.
1Leave-one-out procedure used. 

TABLE  6 One-sided Wilcoxon 
signed-rank test comparing the absolute 
errors of the rank-estimated GAMs 
including winter SST with the absolute 
errors of the null model
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splines. Migratory and irregular population values can also be fore-
cast provided seasonality is appropriately accounted for in the ARIMA 
model structure portion of the STEMA method. The STEMA technique 
is also as intuitive, accessible, and simpler to deploy than other fore-
casting methods compared in this paper, making it a suitable forecast-
ing method for population ecology, fisheries and wildlife management, 
vector-borne disease research and monitoring, and econometrics.
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F IGURE  1 Effect size of lagged winter SST on CPUE of each species broken down by management area using best forecasting method 
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