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Abstract: 3,4-methylenedioxypyrovalerone (MDPV) is a harmful and controlled synthetic cathinone
used as a psychostimulant drug and as sport-enhancing substance. A sensor was developed for
the direct analysis of MDPV by transducing its oxidation signal by means of an electropolymerized
molecularly imprinted polymer (e-MIP) built in-situ on the screen-printed carbon electrode’s (SPCE)
surface previously covered with multi-walled carbon nanotubes (MWCNTs) and silver nanoparticles
(AgNPs). Benzene-1,2-diamine was used as the functional monomer while the analyte was used as the
template monomer. Each step of the sensor’s development was studied by cyclic voltammetry (CV)
and electrochemical impedance spectroscopy (EIS) in a solution containing ferricyanide, however
no redox probe was required for the actual MDPV measurements. The interaction between the
poly(o-phenylenediamine) imprinted polymer and MDPV was studied by density-functional theory
(DFT) methods. The SPCE-MWCNT-AgNP-MIP sensor responded adequately to the variation of
MDPV concentration. It was shown that AgNPs enhanced the electrochemical signal by around a
3-fold factor. Making use of square-wave voltammetry (SWV) the developed sensor provided a limit
of detection (LOD) of 1.8 µmol L–1. The analytical performance of the proposed sensor paves the
way to the development of a portable device for MDPV on-site sensing to be applied in forensic and
doping analysis.

Keywords: analytical chemistry; ‘bath salts’; biomimetics; drug analysis; electropolymerization; elec-
troanalysis; forensic chemistry; modified electrodes; new psychoactive substances (NPS);
o-phenylenediamine

1. Introduction

Methylenedioxypyrovalerone (MDPV), also known as “Magic”, “Vanilla Sky”, “Ivory
Wave”, “Super Coke”, or “Energy 1” is one of the many synthetic cathinones intentionally
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synthesized to be commercialized as a ”legal” alternative to ecstasy (3,4-methylenedioxy-
methamphetamine, MDMA) [1,2]. MDPV is believed to have entered the drug market in
mid-2008, when its consumption spread worldwide, resulting in the emergence of many
cases of intoxications and fatal outcomes [3–7]. Like many other new psychoactive sub-
stances (NPSs), MDPV is often purchased online as “bath salts”, “legal highs”, “plant
food”, or “research chemicals” [8,9]. Since 2012 this substance is classified as a Schedule I
drug in the US Controlled Substances Act [10]. The World Anti-Doping Agency (WADA)
has later prohibited the use of cathinones and its analogues, such as MDPV, before or
during athletic competitions [11]. The European Monitoring Centre for Drugs and Drug
Addiction (EMCDDA) attributed the use of MDPV as the cause of dozens of deaths in Eu-
rope [12]. According to users’ testimonies, MDPV primarily induces similar positive effects
to MDMA, such as euphoria and feeling of increased energy, followed by several undesir-
able consequences like sleeplessness, memory impairment, agitation, muscle spasms and
paranoia [13,14]. In some cases, it can lead to life-threatening side effects like hyperthermia,
rhabdomyolysis, seizures, respiratory failure and eventually culminate in fatality [15–18].
Some clinical studies identified further consequences of MDPV use such as hypertension,
chest pain, hyperthermia, persecutory delusions, tachycardia, aggressiveness, and sui-
cidal thoughts [19–22]. MDPV inhibits the reuptake of norepinephrine, serotonin and,
mainly, dopamine, where this substance displays greater potency than amphetamine-like
drugs [23]. Although intranasal route seems to be the most established administration
route, others include oral, rectal, intravenous, and even inhalation. Depending on the
administration route and the purity of the substance, a single dosage usually contains an
amount between 5 to 20 mg of MDPV [24].

Currently, there are several methods in literature for MDPV quantification (Table 1).
They are mainly based on liquid chromatography (LC) associated to a mass spectrometry
(MS) detector [25–37], gas chromatography (GC) associated with MS [38–44] or flame
ionization detection (FID) [41]. There are a few works with other techniques, like ion
mobility spectrometry subsequent to liquid-liquid extraction [45], capillary electrophoresis
(CE) with in-line solid-phase extraction (SPE) and spectrophotometric detection [46], Raman
spectroscopy [47], nuclear magnetic resonance (NMR) spectroscopy [48] and direct MS
analysis [49]; there is also a commercially available portable immunoassay [50]. Although
most of these methodologies allow the reliable identification of MDPV, they all require some
kind of sample pre-treatment [51] and tend to be expensive and time-consuming. In this
context, electroanalytical methods could provide more portable, simpler, cost-effective,
and faster analysis than aforementioned procedures. However, in the direct analysis of
complex samples, electroanalytical methodologies may suffer from severe matrix effects
and lack of selectivity. Molecular imprinting technology may be suitable to address such
issue [52]. Particularly, electropolymerized molecularly imprinted polymers (e-MIPs)
are currently being explored to obtain high performance versatile sensors [53–55], which
are being applied for a variety of molecules in the medical and forensic fields [56–58].

The objective of this work was therefore the development of a selective electrochem-
ical sensor for MDPV based on e-MIPs, using benzene-1,2-diamine, also known as 1,2-
phenylenediamine or ortho-phenylenediamine (o-PD) as the functional monomer and the
analyte as the template. The MIP was electropolymerized directly on the surface of a
screen-printed carbon electrode (SPCE) previously modified with carboxylated multi-
walled carbon nanotubes (MWCNT) and silver nanoparticles (AgNP), and the sensor was
applied to the detection of MDPV in biological samples. Although there is a previous,
very recent, work where MIPs are combined with AgNPs [59], to the best of the authors’
knowledge none combines MIP-MWCNT with AgNPs, likewise, this is the first time MIPs
were developed for MDPV.
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Table 1. Analytical methods reported for MDPV.

Technique Extraction LOD/ng mL−1 LOQ/ng mL−1 Matrix Reference

SWV none 5 × 102 2 × 103 buffer this work
AdSDPV none 2 × 102 5 × 102 seized samples [60]
LC-MS LLE 2 10 seized samples [25]
LC-MS SPE 2 × 10−4 1 × 10−3 wastewater [27]
LC-MS SPE 1 5 rat brain tissue [29]
LC-MS SALLE 2 4 urine [31]
LC-MS PHPP 0.1 0.25 plasma [32]
LC-MS LLE 2 × 10−3 5 × 10−3 equine plasma [34]
LC-MS SPE - 5 × 10−3 wastewater [35]
LC-MS LLE 0.5 5 blood [36]
LC-MS SPE 3 × 10−2 0.5 saliva [37]
GC-MS LLE 7 2 × 101 blood, urine [61]
GC-MS LLE and derivatization - 2 × 101 urine [39]
GC-MS SPE and derivatization 2 × 101 5 × 101 urine [42]

GC-MS, LC-MS SPE 2 × 103 - hair, kidney, liver, bile [44]
IMS LLME 2 × 101 7 × 101 oral and nasal fluid [45]

CE-UV PLE-SPE 1 × 105 4 × 105 hair [46]
CE-MS SPE 1 × 101 3 × 101 urine [62]
IM-MS - 1 × 104 - standards [49]

immunoassay none 0.2 - urine [50]

AdSDPV: adsorptive stripping differential pulse voltammetry; CE-UV: capillary electrophoresis with ultra-violet detection; GC: gas
chromatography; IMS: ion-mobility spectroscopy; LC: liquid chromatography; LLE: liquid-liquid extraction; LOD: limit of detection; LOQ:
limit of quantification; MS: mass spectroscopy; PHPP: plasma hydrolysis and protein precipitation; PLE: pressurized liquid extraction;
SALLE: salting-out liquid-liquid extraction; SPE: solid-phase extraction.

2. Materials and Methods
2.1. Chemicals and Samples

All commercial reagents were of analytical grade and were used without further
purification. All aqueous solutions were prepared using ultrapure water with resistiv-
ity not less than 18.2 MΩ cm at 298 K (Millipore water purification system, Burlington,
MA, USA). Potassium hexacyanoferrate (III), potassium hexacyanoferrate (II) trihydrate,
o-PD, dopamine, caffeine, tyramine, and potassium chloride (KCl) were obtained from
Sigma-Aldrich, St. Louis, MO, USA and amphetamine from Tocris Bioscience, Bristol,
UK. Phosphate buffered saline (PBS), 0.17 mol L–1, pH 7.4, was prepared using sodium
phosphate dibasic and potassium phosphate monobasic, all obtained from Sigma-Aldrich.
MDPV hydrochloride was purchased online (www.sensearomatics.eu) and was fully char-
acterized by MS and elemental analysis (shown in the supplementary data of a recent
publication [63]). The analytical data were consistent with the expected structure, with the
salt having a purity of 99.5%, the salt consisted in a racemic (R and S enantiomers) mixture.

2.2. Equipment

Voltammetric measurements, such as cyclic voltammetry (CV) and square wave
voltammetry (SWV), were carried out using an Autolab PGSTAT10 potentiostat/galvanostat
controlled by GPES 4.9 software. Electrochemical impedance spectroscopy (EIS) studies
were performed using an Autolab PGSTAT204 potentiostat/galvanostat expanded with a
FRA32M EIS module (Metrohm, Herisau, Switzerland) and the NOVA 1.10.1.9 software for
data acquisition. Fitting of the EIS data was performed with EIS Spectrum Analyser 1.0 [64].

Commercial SPCEs consisting of a carbon working electrode modified with carboxyl
functionalized MWCNT (SPCE-MWCNT) with a 4.0 mm diameter, a carbon auxiliary
electrode and a silver (Ag) pseudo-reference electrode (DropSens, Llanera, Spain, ref.
110CNT) were used to prepare the electrochemical sensors.

The electrodes’ surfaces were examined by atomic force microscopy (AFM) using a
scanning probe microscope (SPM) operating on atomic force, magnetic force and scanning
tunnel microscopy Veeco Metrology Multimode/Nanoscope IVA, and by scanning electron

www.sensearomatics.eu
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microscopy (SEM) using a high-resolution scanning electron microscope with X-ray mi-
croanalysis Quanta 400 FEG ESEM/EDAX Pegasus X4M (FEI, Hillsboro, OR, USA), at the
CEMUP Laboratory (University of Porto, Porto, Portugal).

2.3. Preparation of SPCE-MWCNT-AgNP-MIP

The preparation procedure is schematically described in Figure 1. Initially, a com-
mercial SPCE-MWCNT was washed with ultrapure water and dried using a nitrogen
flow. Then, a 10 µL aliquot of a 20 mg L–1 of 10 nm-AgNP dispersion was carefully drop
casted on the surface of the SPCE-MWCNT’s working electrode and dried at 50 ◦C for
10 min to evaporate the solvent. The fabrication process for the synthesis of the e-MIP
consisted of two steps. Firstly, 50 µL of the polymerization solution, containing 0.5 mol L−1

o-PD (monomer) and 2.5 mol L–1 MDPV (template) in PBS, was dropped on the SPCE-
MWCNT-AgNP covering the three electrodes, and the electropolymerization was achieved
running 5 cyclic voltammograms between −0.2 V and +1.3 V at a scan rate of 50 mV s−1.
Following polymerization, template molecules were extracted immersing the prepared
sensor on a flask containing 6 mL of PBS, under stirring, for 15 min. at room temperature.
The sensor was gently washed with water and dried under a nitrogen flow and was ready
to be stored or applied to MDPV analysis, through 10 min-incubation with 50 µL of a
sample containing MDPV, for the rebinding of the analyte. Its quantification was achieved
by directly measuring the current intensity of MDPV oxidation signal by SWV. In parallel,
a non-molecularly imprinted polymer (NIP) was constructed as a control, through elec-
tropolymerization of the monomer in the absence of the template (polymerization solution
containing 0.5 mol L–1 o-PD in PBS).
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Figure 1. Schematics of the development of the SPCE-MWCNT-AgNP-MIP sensor.

2.4. Theoretical Studies

The Monte Carlo simulation was performed using the DICE program [65]. Initial
parametrization of the MDPV and o-PD molecules was made with the use of the LigPar-
Gen web server [66–68], and dihedral non-bonded interactions were later reparametrized
according to the potential energy curves of a rigid scan of their rotations obtained by
density-functional theory (DFT) single-point calculations, at the B3LYP [69,70]/6-31G
(d,p) [71,72] level of theory and D3 (BJ) dispersion correction [73,74], as implemented in the
Gaussian’09 suite [75]. Geometry optimizations were performed with Grimme’s scc-free
GFN-xTB method [76] and its GFN2-xTB improvement, which is able to reproduce organic
molecule structures with DFT accuracy [77,78]. Final single-point energy calculations were
were performed with the ORCA 4.0 package [79]. The ORCA program system [80] and
the SMD implicit solvent model, with water as solvent [81], at the at the BP86 [82]/def2-
SVP [83] level of theory and RI approximation [84,85] and D3 (BJ) dispersion. The Becke
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surfaces with electronic density as mapped function were calculated through the quantita-
tive analysis of molecular surface [86] with Multiwfn package [87]. Properties from Bader’s
Quantum Theory of Atoms in Molecules (AIM) analysis [77,78] were also calculated with
Multiwnf package.

VMD package [88] was used to visualize simulation and render images.

3. Results and Discussion
3.1. Characterization of the Electrodes during the Modification Process
3.1.1. Electrochemical Evaluation

Electropolymerization was performed in the presence of o-PD and MDPV, in an anal-
ogous manner to the development of other e-MIPs in literature [89–91]. o-PD is largely
used to develop MIPs [90,92–98] due to its highly reactive properties (and ability to poly-
merize at room temperature, for similar reason is also commonly used as a derivatizing
agent [99–101]. Interestingly it seems that even though a ‘linear’ poly(o-PD) (i.e., when both
vicinal amino groups react [102–104]) is more stable and produced in larger quantities, it is
the ‘ramified’ poly(o-PD) (i.e., when only one of the amino group reacts and the other is left
free to further reactions [102,105]) that is responsible for the suitable interactions with the
template/monomer [90]. During the electrochemical polymerization [106] an irreversible
oxidation process appeared during the first cycle and disappeared during the following
cycles. The molecularly imprinting polymerization on the electrode surface resulted in
a substantial reduction on the charge transfer and the decreasing of the anodic current
with the number of CV cycles, suggesting the successful formation of a non-conductive
imprinted polymeric film. Two MIP-sensors were subsequently prepared, one directly de-
veloped on the MWCNT-carbon surface and the other developed on that surface previously
covered with AgNPs. Figure 2A shows that the modification with AgNPs enhanced the
sensitivity of the electrode, in the NIP but especially in the MIP, possibly due to the further
increase in the effective surface area on which the MIP is obtained, it was not adequately
study if the reason was instead possibly electrocatalytic.

As a proof-of-concept of the sensor, a brief SWV study was carried out (Figure 2B).
The presence of an oxidation signal corresponding to MDPV in MIP after polymerization
proves its presence as template within the polymeric layer. It is worth mentioning that the
monomer electrooxidation was performed at lower potentials (ca. 0.25 V) than the template
oxidation, avoiding possible drawbacks during electropolymerization [56]. Additionally,
MDPV signal disappears following the extraction step, indicating the effectiveness of such
process. Indeed, the electrochemical mechanism of MDPV oxidation at a carbon surface
has been recently proposed [60]. After incubating the sensor with MDPV, its anodic wave
is again observed, confirming the adequate access of this molecule to the sensor surface
through the previously formed cavities.

In order to characterize the surface modification of the electrodes’ surface, as well
as the resistance of the different modification steps, CV and EIS were performed using
2.5 mmol L−1 [Fe (CN)6]3−/4− as redox probe. As displayed in Figure 2C, CV of [Fe
(CN)6]3−/4− at the surface of SPCE-MWCNT the typical well-defined pair of redox peaks is
observed due to the high electron transfer rate and the large surface area. Notwithstanding,
the current intensity of the redox probe drastically decreases following MIP and NIP
polymerization, demonstrating the formation of a non-conductive film on the electrode’s
surface. Interestingly, it is suggested that the polymerization occurs more efficiently in the
absence of template molecules, which intercalation through the polymeric chain allows
greater access of electrons to the electrode surface. This finding is also observed by EIS
(Figure 2D), where the semicircle diameter corresponds to the charge transfer resistance
that is ascribed to the MIP (RMIP) and is higher in the electrode following polymerization of
the NIP (9.58 kΩ) than the MIP’s (2.82 kΩ). After the extraction step, in which the MDPV
molecules are removed leaving complementary cavities imprinted on the polymeric film,
the redox probe obtains easier access to the electrodes surface, resulting in improvement
of CV redox signals and decreasing of resistance (RMIP = 0.912 kΩ). When the sensor is
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incubated with a solution containing the analyte, the rebinding of MDPV molecules slightly
changes the conductivity and electron transfer.
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the step-by-step construction of the SPCE-MWCNT/AgNP-MIP sensor through CV (C) and EIS Nyquist diagrams with
suitable fitting (the circuit used is shown within the figure) (D). Measurements (A,C,D) were performed using a 50 µL PBS
solution containing 2.5 mmol L–1 [Fe (CN)6)]3−/4− and 0.1 mol L–1 KCl.

3.1.2. Morphological Study

The surface morphological analysis of the modified electrodes was investigated by
AFM, SEM and EDS. The 3-dimensions AFM images are shown in Figure 3. Notwithstand-
ing the fact that the morphology of the unmodified carbon surface is not flat (Figure 3A),
which makes it harder to visualize the subsequent changes, it is possible to discern the
presence of tubular and spheric structures on the electrode surface after modification with
MWCNT and AgNP (Figure 3B). Following formation of the MIP, the electrode topography
appears to be less detailed, somehow suggesting that the previously described structures
were covered by the polymeric layer (Figure 3C).
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The electrodes’ architecture in different stages of construction was further studied by
SEM. As shown in Figure 3D, a typical three-dimensional spaghetti-like structure is ob-
served on the SPCE-MWCNT, whereas on the surface of SPCE-MWCNT-AgNP (Figure 3E),
the dispersion of bright spheres with diameters of about 10 nm on the electrode’ surface
appears to be uniformly distributed. The composition of the electrode surface at this
stage was analyzed by energy-dispersive X-ray spectroscopy (EDS), which revealed the
respective peaks of carbon and silver (Figure 3F). Following the molecularly imprinting
process, a pronounced modification on the electrode morphology is observed, compatible
with the synthesis of a homogenous and compact polymeric layer (Figure 3G), which is
preserved after the extraction step, being additionally possible to observe the maintenance
of the MWCNT-AgNP structure at the end of the construction procedure (Figure 3H).
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3.2. Theoretical Studies

It has been long discussed that the formation of the pre-polymerization complex
between the analyte and the building monomers in solution is the driving force of the
molecular imprinting process [93,107–109]. The theoretical study of such a process, for its
part, requires a good description of the pre-polymerization complex, but also of the po-
tential energy surface (PES) of the interaction between the analyte and the monomers,
which can originate a wide range of different complexes and conformers. In other words,
a theoretical study must account for a good sampling of the possible interactions, as much
as it needs to describe the monomer-analyte interaction in any given possible compound.
In this work, it was sought to achieve this goal by a combination of Monte Carlo sampling
simulations and semi-empirical quantum mechanical geometry optimizations and DFT
energy calculations, a protocol already presented in the literature in a similar form [110].

After the initial thermalization of a simulation box containing one MDPV molecule at
the interface of two layers, one of 601 o-PD molecules and another of 5000 water molecules,
the production simulation consisted two parallel runs totaling 308 thousand steps using a
constant-NPT (Number of particles, Pressure and Temperature) ensemble. Then 616 snap-
shots of the simulation were used—one for each 500 steps, considering the decorrelation of
the simulation steps—to extract all the conformers composed of the MDPV molecule and its
first o-PD solvation shell. Those 616 pre-polymerization complexes—referred from now on
as cavities—then had their geometries optimized with Grimme’s SCC-free GFN-xTB [76]
method and separated according to the number of o-PD monomers. Cavities of 16 to
25 monomers were found in the sample, but 92 percent of those cavities had between
18 and 23 monomers. The largest group of cavities (representing 22.7 percent of all) had
20 monomers, while 20.5 percent had 19 monomers and 18.5 had 21 monomers. For each
of the most representative groups—from 18 to 23 monomers—the most stable cavities,
according to their bonding energies, were chosen for a further geometry optimization
with the GFN2-xTB method [111,112]. In this step, a 10 kcal mol–1 cut-off was used from
the most stable cavity in each group, totaling 46 cavities, which had their local geometry
minima confirmed by frequency calculations. Those cavities falling within a 5 kcal mol−1

binding energy from the most stable one were finally used for DFT single point energy
calculations at the BP86 [82]/def2-SVP [83] level of theory and RI approximation [84]
and D3(BJ) dispersion.

The final evaluation considered the most stable cavity within each group of repre-
sentative cavities. Figure 4 shows that the most stable cavities, by far, are those with
22 and 23 o-PD monomers around the MDPV molecule. Their close formation energy
(357 against 359.6 kcal mol–1) shows that the increased stability is not an arbitrary effect
of the aggregation of one more monomer, but of real interactions between the monomers
and those and the MDPV molecule. However, the figure also shows that those monomers
are representative of only 22 percent of the cavities (7.8 percent in the 23 monomer case),
which means they are rather difficult to access from the solution environment, and are
likely not responsible for selectivity. One might also expect that once the MDPV molecule
had accessed such a hindered, but highly stable cavity, it would not be eluted. On the other
hand, 18-monomer cavities are both the less stable and less abundant ones, and not likely
to contribute significantly to the selectivity.

The cavities with 19, 20 and 21 monomers account for over 60 percent of the overall
population under those conditions and offer the best insight into the mechanisms of
MIP formation. One observes that even with both MDPV and o-PD possessing aromatic
rings, π-π stacking is not a significant interaction, and bonding occurs almost exclusively
between o-PD’s amine groups and those MDPV’s methylenedioxy group and carbonyl
group. One also may realize that MDPV’s tertiary amine is rather hindered while the
MDPV molecule interacts with an o-PD shell—a key conclusion driven by Monte Carlo
sampling—to be able to contribute to the cavities’ selectivity.
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To evaluate the distribution of non-covalent interactions between o-PD monomers
and MDPV in the MIP pre-polymerization complexes, analysis of Becke surface [113] was
performed for the pre-polymerization cavities with higher representativity, i.e., the com-
plexes with 19, 20 and 21 monomers. This analysis was based on Hirshfeld surface [114],
applying the Becke’s [115], instead of the Hirschfeld’s, partition. Moreover, to further
investigate the non-covalent interactions, AIM analysis [77,78] was performed on the three
most representative cavities, formed with 19, 20 and 21 monomers (20.5%, 22.7% and
18.5%, respectively). Each analysis was calculated from their respective wavefunction file
calculated with the BP86 [82] functional and def2-SVP [83] basis set with water as solvent
through the implicit solvent model SMD [81], by applying the Orca package [79].

The Becke surfaces (Figures S1–S3) demonstrate that the main non-covalent interac-
tions are formed between O atoms from MDPV and o-PD on pre-polymerization com-
plexes. In complexes formed with 19 and 20 monomers, the N atom from the pyrrolidine
group of MDPV also showed to establish non-covalent interactions. Thus, AIM analysis
of pre-polymerization complexes was performed to further evaluate these interactions.
AIM properties of interactions between O or N atoms from MDPV and o-PD monomers are
summarized in Tables S1–S3.

Through the analysis of the AIM molecular graph of the most representative pre-
polymerization complex (with 20 o-PD monomers), showed in Figure 5, several Bond Paths
(BPs)—which connected two attractors—and its respective Bond Critical Points (BCPs)
between atoms from MDVP and from o-PD monomers can be identified. Figures S4 and
S5 show the graphs of the pre-polymerization complexes with 19 and 21 o-PD monomers,
respectively. Through AIM analysis it was demonstrated that the analyte (MDPV) interacts
through several non-covalent interactions with o-PD monomers to form pre-polymerization
cavities. Furthermore, AIM properties of the interactions through O and N atoms of MDPV
and o-PD monomers demonstrate that all these interactions are non-covalent, featured by
their positive values of Laplacian electronic density, ∇2ρ(r), and values of density of total
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energy, H(r), close to zero. Besides that, the Binding Energies (BE) of the non-covalent
interactions calculated through the equation of Espinosa (Equation (1)) demonstrate that
these interactions are weak. However, the high number of interactions stabilizes the analyte
in the pre-polymerization cavities and make the cavities selective to MDPV.

BE = V(r)/2 (1)

where V(r) is the density of potential energy.
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Through this analysis, it was demonstrated that the similar affinity for those com-
pounds is indicated to be directly tied to the main driving forces in the formation of the
pre-polymerization complex: hydrogen bonding to the benzocaine’s amine group and π-π
stacking between benzocaine’s aromatic system and the 3,4-AHBA monomers. In fact,
hydroxyzine is the compound with the largest affinity for the polymer, and it has a chlorine
replacing the amine group playing a double role: while it is able to accept hydrogen bonds
from the polymer, it is also able to direct electron density towards the aromatic system,
contributing to its interaction with the stacked monomers. On the other hand, the aminopy-
rine molecule is the fourth with the largest affinity, just below benzocaine itself. It has no
group analogue to benzocaine’s amine but features a pyrazolone attached to the benzene
ring that is able to interact with it by hyperconjugation, maintaining a planarity similar to
the carboxyl-benzene system in benzocaine and thus also allowing for π-π stacking with
the 3,4-AHBA monomers.
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3.3. Influence of the Experimental Conditions

Studies were conducted regarding the effect of several experimental parameters
on sensor’s performance, including the concentration of monomer (o-PD) and template
(MDPV), number of electropolymerization cycles and period of incubation for MDPV
rebinding in the specific cavities formed during MIP development. Measurements were
performed through SWV analysis of a 1.5 mmol L−1 MDPV solution; please note that the
results are presented as the difference between the peak current intensity (ip) of the MIP
and the ip of the NIP, ∆ip.

The ratio monomer:template during electropolymerization process is essential to suc-
cessfully obtain a MIP, influencing its stability and selectivity to the target molecule. Several
polymerization solutions were tested, containing different amounts of o-PD, ranging from
0.25 to 10 mmol L−1, and MDPV, in the range between 0.25 and 7.5 mmol L−1. The sensor
prepared using 0.5 and 2.5 mmol L−1 of o-PD and template, respectively, exhibited the best
analytical performance and was therefore selected to the following experiences, represent-
ing a monomer:template ratio of 1:5. The number of polymerization cycles significantly
influenced MDPV peak current. The optimum number of cycles to was 5, other tested
number of cycles (namely 2, 10, 15 and 20) were found to considerable decrease the sensor
sensibility. The higher the number of polymerization cycles the thicker the obtained layer
and therefore the harder it is to successfully extract the template molecules and form
specific cavities. If the layer is however too thin it can be rather unstable or incapable of
properly polymerize around template molecules. In order to choose the best incubation
time, the analysis of MDPV was performed following incubation during 1, 5, 10, 20 and
60 min. The sensibility towards MDPV gradually increased with the incubation period,
being maximum after 10 min.

The calculated film thickness (h) was calculated to be 13 ± 2 nm, using the following
formula [52]:

h = qM/ρAnF (2)

where q is the charge associated with the polymerization, obtained by integrated the peaks
during electropolymerization, M is the o-PD’s molecular weight, ρ is the polymer density
(a value of 1.2 g cm−3 was assumed), A is the electrode geometric area, n is the number
of electrons involved in the electropolymerization of each o-PD molecule, and F is the
Faraday constant. This low thickness value is consistent with the fact that poly(o-PD) is not
a good conducting material, so the molecules of MPDV cannot be too far away from the
SPCE-MWCNT-AgNP-MIP surface.

3.4. Analytical Performance

To evaluate the sensitivity of the sensor, its analytical performance towards the oxi-
dation of MDPV was studied by SWV under optimal conditions. As shown in Figure 6,
the SWV current response increased with the increase of MDPV concentration. Moreover,
two MIP-sensors were tested, the one directly built on the surface of MWCNT and the one
constructed on the AgNPs-MWCNTs. Their respective linear regression equations were:
ip (in A) = (264 ± 6) × 10−4 [MDPV] (in mol L−1) + (57 ± 5) × 10−8, r2 = 0.9986 (n = 5);
and ip (in A) = (567 ± 6) × 10−4 [MDPV] (in mol L−1) + (1 ± 2) × 10−8, r2 = 0.9997 (n = 5).
Although both sensors’ response exhibited a good linear relationship between anodic cur-
rent and MDPV levels, the SPCE-MWCNTs-AgNP-MIP provided a lower limit of detection
(LOD) of 1.8 µmol L−1 (vs. 6.3 µmol L−1 of SPCE-MWCNTs-MIP) and quantification
(LOQ) of 6.1 µmol L−1 (vs. 21 µmol L−1 of SPCE-MWCNTs-MIP), therefore satisfying the
needs for MDPV analysis in forensic samples. When compared to other MDPV analytical
methodologies (Table 1), the proposed method exploited the use of an e-MIP to mimic an
antigen-antibody bond and turn the procedure quite selective beyond sensitive. In addi-
tion, this sensor is a cheaper and more practical alternative to the previously described
methods for MDPV analysis, with the advantage of being constructed in a quickly, simple,
and inexpensive way.
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Moreover, a 10 µmol L−1 MDPV solution was repeatedly evaluated resulting in a
repeatability of 6% (n = 5). The selectivity of the sensor was assessed comparing the
MDPV signal (ip = 15.2 µA, Ep = 0.780 V) with several molecules important in forensic
sciences (all compounds in a concentration of 1.5 mmol L−1): caffeine (non-detected),
MDMA (ip = 20.0 µA, Ep = 1.068 V), amphetamine (non-detected), methamphetamine (non-
detected), dopamine (ip = 26.8 µA, Ep = 0.206 V), and tyramine (ip = 23.4 µA, Ep = 0.554 V).
A preliminary analysis was performed in blood serum (Figure S6).

Reports of MDPV intoxication cases in concentrations ranging from 2.0 × 107 to
4.8 × 109 ng mL−1 in blood, and from 7.6 × 102 to 1.4 × 103 ng mL−1 in urine, were
reported [12], being the performance of the SPCE-MWCNT-AgNP-MIP sensor appropriate
for its medical and forensic application. Although the LOD is not so low as in other
published works (Table 1), those methodologies are mostly non electroanalytical but
mainly based in a chromatographic separation, which makes this alternative particularly
advantageous in terms of portability and speed. It is worth mentioning that this study
was performed using a racemic mixture, however recent studies are showing that the S
enantiomer is more potent than the R [116], thus this is something that should be addressed
in future electroanalytical studies including in the theoretical simulation step [117,118].

4. Conclusions

An electrochemical SPCE-MWCNT-AgNP-MIP sensor was developed and successfully
applied to the analysis of MDPV. In addition to the speed and simplicity, the e-MIP proved
to be sufficiently resistant and robust, and the formed cavities demonstrated adequate
selectivity for the target molecule, that had also served as the template. By combining
MWCNT and AgNPs, the sensor achieved a LOD of 1.8 µmol L−1, repeatability of 6%,
along with suitably selectivity. The experimental results confirmed that the sensor has the
capacity of detecting MDPV in clinically relevant concentrations. Its successful application
to biological samples will potentially make it a suitable alternative in forensic analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/2/353/s1, Figure S1. Becke surface of interactions between MDPV and o-PD monomers at the
MIP pre-polymerization complex with 19 monomers, Figure S2. Becke surface of interactions between

https://www.mdpi.com/2079-4991/11/2/353/s1
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MDPV and o-PD monomers at the MIP pre-polymerization complex with 20 monomers, Figure S3.
Becke surface of interactions between MDPV and o-PD monomers at the MIP pre-polymerization
complex with 21 monomers, Figure S4. AIM molecular graph of the MIP pre-polymerization cavity
with MDPV and 19 o-PD monomers. The orange lines are the Bond Paths (BP) that connect two
attractors, and the orange spheres are the Bond Critical Points (BCP), Figure S5. AIM molecular
graph of the MIP pre-polymerization cavity with MDPV and 21 o-PD monomers. The orange lines are
the Bond Paths (BP) that connect two attractors, and the orange spheres are the Bond Critical Points
(BCP), Figure S6. Blood serum (collected from healthy adults) diluted in PBS (1:20), blank and two
different samples spiked with 25 µmol L−1, Table S1. AIM properties for the MIP pre-polymerization
cavity with MDPV and 19 o-PD monomers and its respective Binding Energy (BE) calculated through
the Equation of Espinosa. Electronic density ρ(r), Laplacian of electronic density ∇2ρ(r), ellipticity ε,
density of potential energy V(r) and density of total energy H(r), all data in atomic units and BE is
in kcal mol−1, Table S2. AIM properties for the MIP pre-polymerization cavity with MDVP and 20
o-PD monomers and its respective Binding Energy (BE) calculated through the Equation of Espinosa.
Electronic density ρ(r), Laplacian of electronic density∇2ρ(r), ellipticity ε, density of potential energy
V(r) and density of total energy H(r), all data in atomic units and BE is in kcal mol−1, Table S3.
AIM properties for the MIP pre-polymerization cavity with MDVP and 21 o-PD monomers and its
respective Binding Energy (BE) calculated through the Equation of Espinosa. Electronic density ρ(r),
Laplacian of electronic density ∇2ρ(r), ellipticity ε, density of potential energy V(r) and density of
total energy H(r), all data in atomic units and BE is in kcal mol−1.
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