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A resource for assessing dynamic 
binary choices in the adult brain 
using EEG and mouse-tracking
Kun Chen   1,2, Ruien Wang1,2, Jiamin Huang1,3, Fei Gao1,4, Zhen Yuan1,5, Yanyan Qi   6 & 
Haiyan Wu1,2 ✉

We present a dataset combining high-density Electroencephalography (HD-EEG, 128-channels) and 
mouse-tracking intended as a resource for examining the dynamic decision process of semantics 
and preference choices in the human brain. The dataset includes resting-state and task-related (food 
preference choices and semantic judgments) EEG acquired from 31 individuals (ages: 18–33). Along with 
the dataset, we also provided the preliminary microstate analysis of resting-state EEG and the ERPs, 
topomap, and time-frequency maps of the task-related EEG. We believe that the simultaneous mouse-
tracking and EEG recording would crack the core components of binary choices and further index the 
temporal dynamics of decision making and response hesitation. This publicly available dataset could 
support the development of neural signal processing methods in motor EEG, thus advancing research in 
both the decision neuroscience and brain-computer interface (BCI) applications.

Background & Summary
Mouse-tracking is an emerging approach for a real-time recording of motion trajectory by using the 
computer-based pointing device1, and its use has been continuously increasing in psychology and neuroscience 
studies. Mouse-tracking could provide both spatial and temporal features that allow the investigation of cog-
nitive processing and could work as a novel measure to improve individual detection in experimental settings. 
For example, Sullivan et al. used mouse-tracking in a food choice task and found that the tastiness processing is 
195 ms earlier than healthfulness processing2.

Most of the existing neuroimaging studies combined with mouse-tracking were functional magnetic reso-
nance imaging (fMRI) studies3–5. These data were not publicly available, and the relatively low temporal reso-
lution of fMRI limits its use in tracking fast temporal neural dynamics underlying the decision and execution 
of the choices. Alternatively, EEG is a non-invasive electrophysiological technique with high temporal reso-
lution, which could track the dynamics of decisions at a millisecond time scale. Importantly, the openness of 
EEG/Magnetoencephalography (MEG) datasets during task-free or task-related paradigms6–8 is increasing, 
which merits advances in automatic data processing and research reproducibility. For example, the open data-
set from Human Connectome Project (HCP), which provides both resting-state and task-related high-density 
EEG data, has been cited over 1000 times9, indicating mass attention received. However, the combination of 
mouse-tracking and EEG during different tasks is still missing.

One obvious obstacle to existing EEG mouse-tracking approach is the hand movement artifacts. Previous 
neural decoding studies and brain-computer interface (BCI) studies have applied EEG in mouse control, which 
could provide participants (health control or patients with motor disabilities) with cursor movement and target 
selection10–12. Although mouse control is a crucial component during EEG-based BCI, little is known about the 
mouse- or decision-related motor effect for EEG signals in humans. Most studies that used raw EEG data rarely 
provided artifact removal details or datasets with a synchronized recording of EEG and mouse-tracking.

Here, we provide the first open-access HD-EEG (128-channels) dataset recorded during resting-state and 
three binary choice tasks (food preference, word choice and image choice). During the mouse-tracking along 
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with EEG, both task-related motor responses and mental processing could be reflected in the behavioral and 
brain patterns. These open data can be used for classifying motor noise and EEG signals related to decision 
processes. We have preliminarily shown the EEG patterns when people make decisions in image/text-based 
semantic judgment task, food preference task, and resting-state based on this dataset. This data from different 
decision tasks can further provide brain data in computer cursor controlling or identifying temporal dynamic 
patterns in responses or choices.

We anticipate that the current work could encourage decision neuroscience, cognitive neuroscience, and 
biomedical engineering researchers to reuse the dataset for brain activation pattern analyses, artificial removal, 
and neural decoding.

Methods
Participants and task overview.  Thirty-one college students (18–33 years old, average: 20.68 years old; 
14 males) participated in the present experiment. None of the participants reported any neurological or psychi-
atric history. All participants were right-handed and had normal or corrected-to-normal vision. Each participant 
voluntarily enrolled in and signed an informed consent form prior to the experiments and got the monetary 
compensation of approximately MOP 60 for one experimental session. The anonymous participants can only 
be identified by the tag from “sub-01” through “sub-31”. This study was performed in strict accordance with the 
Guidelines for Research Ethics of the University of Macau. The Institutional Review Board of the University has 
approved all procedures.

Text descriptions of task overview were shown in Table 1.

Experimental procedures.  Participants were instructed to sit in an adjustable chair, whose eyes were 
approximately 60 cm away from the monitor (Dell, resolution: 1,920 × 1,080 pixels, vertical refresh rate: 60 Hz), 
see Fig. 3a. They were then informed that they would perform simple decision making tasks. All three tasks were 
divided into three blocks, interleaved with two breaks when the experimenter could check the impedance of the 
electrodes and supplement saline if necessary.

Stimulus presentation and manual response measurement were controlled by PsychoPy13 Standalone 
(2020.2.3), and the EGI PyNetstaion module was used to connect PsychoPy and EGI Netstation. All stimuli were 
presented on the screen against a black background (RGB: 0,0,0). A white cross subtended 1.0 × 1.0° worked 
as a fixation at the center of the screen. There was a grey rectangle (RGB: 169, 169, 169) with the white-font 
“start” subtended 4.0 × 2.2° at the start of each trial, showing up at the bottom center of the screen. Two target 
options (images or words) subtended 10.6 × 8.0°, appeared at the screen’s top left and top right side, respectively. 
After clicking on one of the targets, a blue frame (RGB: 0, 255, 0) will appear on the selected target, subtended 
10.7 × 8.1°.

Session 1: Resting-state.  The resting-state session consisted of two blocks, with 50 trials in each block. In each 
trial, participants were asked to look at the fixation cross at the center of the screen for 7 s, followed by a blank 
lasting for 1 s. There was a 2-min break between the two blocks.

Session 2: Food choice task.  Three hundred and twenty pictures depicting various types of food were selected 
from Food-Pics Extended14 for both the pre-rating and food choice tasks. Firstly, participants were required to 
rate the target food from three aspects, which were presented randomly.

The first rating task aims to examine participants’ preferences in food choices. Participants needed to rate the 
taste of the target food presented at the center of the screen by a five-point Likert scale (“How do you like this 
food?” One denotes “extremely unsavory” while five denotes “extremely delicious”). The second rating relates 
to participants’ perception of food healthiness. Participants were asked to judge whether the target food was 
healthy or not (“How healthy do you think this food is?” One denotes “extremely unhealthy” while five denotes 
“extremely healthy”). In the third rating, participants were asked to judge how much they wanted to eat the tar-
get food after the experiment (“How much do you want to eat this food after the experiment?” One denotes “I 
don’t want it at all” while five denotes “I desperately want it”).

In the formal food choice task, as shown in Fig. 1a, each trial began with a blank with the word “start” at the 
bottom center of the screen. The participant could click the start box once they were ready. Two pictures of tar-
get food appeared in the upper left and upper right corner of the screen. The participants were asked to choose 
the preferred one by continuously moving the mouse to their favorite food box and clicking it. Upon click, the 
selected picture would be highlighted in blue for 1000 ms. After the pictures disappeared, a fixation would show 

Session Description

Resting-state Measures EEG activity during rest.

Food choice task A food preference task based on mouse-tracking. Measures the dynamic process and corresponding EEG signals of  
food preferences.

Image choice task A semantic classification task for images based on mouse-tracking. Measures the dynamic semantic process and 
corresponding EEG signals of binary decisions.

Word choice task A semantic classification task for written words based on mouse-tracking. Measures the dynamic semantic process and 
corresponding EEG signals of binary decisions.

Table 1.  An overview of the four sessions.
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up for 800 to 1500 ms (mean = 1150 ms). There were 160 pairs of pictures in the formal task, with each pair 
appearing twice. This session took about 26 minutes. There were two 2-min breaks in this task.

Session 3: Image choice task.  Eighty images of animate objects and 80 inanimate objects were collected and 
designed by ourselves. Each image appeared twice in a pseudo-randomized order. Each trial began with the 
“start” button at the bottom center of the screen, as shown in Fig. 1b. Once started, the target object image 
would appear at the center. Participants need to determine whether the object is an animate or inanimate thing 
by clicking on the corresponding option in the upper left or upper right corner of the screen with a mouse. 
Upon click, the selected option would be highlighted in blue and lasted for 1000 ms. A fixation cross would 
subsequently show up and last for 800–1500 ms randomly. There were 320 trials in total. The positions for the 
“animate” and “inanimate” options were counterbalanced across all trials. It took participants around 27 minutes 
to complete this session. There were two 2-min breaks in this task.

Session 4: Word choice task.  The procedure of the word choice task was almost identical with the image choice 
task, as shown in Fig. 1c. All the pictures from session three were replaced by their corresponding Chinese writ-
ten words. To avoid ambiguity, two raters of Chinese linguistics background were invited to name the pictures 
and reached an agreement upon the 80 animate and 80 inanimate nouns. Two word types were also matched 
regarding word frequency [t(80) = 1.241, p = 0.216, word frequency data retrieved from the chinese corpus 
(http://corpus.zhonghuayuwen.org)] and number of strokes [t(80) = 0.749, p = 0.455]. This session took around 
26 minutes. There were two 2-min breaks in this task.

Although the time to finish all of the tasks is long, we attempted to give participants enough break time dur-
ing the task and between the tasks. Meanwhile, the saltwater during the break time can keep the impedance of 
the electrodes low, which provides sufficient guarantees to ensure high quality EEG data collection.

Data Records
All data are publicly accessible (https://openneuro.org/datasets/ds003766)15 in the brain imaging data structure 
(BIDS)16 format under the OpenNeuro platform.

EEG data collection.  As shown in Fig. 3a,b, EEG data were acquired using a 128-channel cap based on the 
standard 10/20 System with Electrical Geodesics Inc (EGI, Eugene, Oregon) system. The layout of EEG electrodes 
was presented in Fig. 3b. During recording, the sampling rate was 1000 Hz, and the E129 (Cz) electrode was used 
as reference. Electrode impedances were kept below 50k Ω for each electrode during the experiment. The raw 
EEG data was exported to metafile format (.mff) files on the Mac OS.
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Fig. 1  Procedures and timeline of the four sessions. (a) Procedure of the food choice task. (b) Procedure of the 
semantic category task with image modality. (c) Procedure of the semantic category with text modality.  
(d) Timeline of the four different sessions.
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EEG data organization.  The dataset can be accessed via the OpenNeuro link, organized following the 
EEG-BIDS17 specification, which was an extension to the brain imaging data structure for EEG. The overview 
directory tree of our dataset and part of the meta-data are shown in Fig. 2.

The repository contains three regular BIDS files, 31 participants’ data folders, a sourcedata folder, and a 
derivatives folder. The stand-alone files offer an overview of the dataset: (i) dataset_description.json is a JSON file 
depicting the dataset, such as the objective, acquisition time, and location; (ii) participants.tsv contains partici-
pants’ demographic information, such as age, sex, and handedness; (iii) participants.json describes the column 
attributes in participants.tsv. Each participant’s folder contains two folders named beh and eeg respectively and 
one file sub-xx_scans.tsv. The TSV file contains information about the scanning time of each task. The beh folder 
contains the corresponding behavioral data such as stimulus, response time, mouse trajectory, etc. The eeg folder 
contains the minimally processed raw EEG data, channels and marker events files of four sessions. The EEG data 
was converted from raw metafile format (.mff file) to EEGLAB18 dataset format (.set file) using the EEGLAB 
toolbox in MATLAB since EEG-BIDS is not officially compatible with the .mff format. All data was formatted 
to EEG-BIDS using the MNE-BIDS19 package in Python. The sourcedata folder contains two folders, psychopy, 
and rawdata, corresponding to the presentation scripts for all tasks and the raw EEG data in metafile format, 
respectively. Finally, the derivatives folder contains preprocessed EEG data, including resting-state and all three 
task sessions.

EEG data preprocessing.  For the data of binary choice tasks, standard preprocessing operations including 
resampling (100 Hz) and filtering (0.1–30 Hz) were performed in the EEGLAB. Moreover, 11 channels close to 
the left and right eyes were used as the EOG channels, and 17 channels with extensive artifacts were removed20 for 
further data processing and visualization, as shown in Fig. 3b. We removed bad channels with the clean_rawdata 
plugin and did spherical interpolation further. Then we converted data to average reference and rejected bad data 
periods with clean_rawdata again. Next, we ran ICA decomposition and used ICLabel21 for automatic independ-
ent component labeling and rejection. After preprocessing, we extracted data epochs from −200 ms to 800 ms at 
the stimulus onset with a mean baseline correction from −200 ms to the onset time. To provide an overview of 
the EEG signals, we presented an exemplar EEG result after preprocessing in Fig. 3c.

The resting-state EEG data preprocessing is basically identical with the task EEG except for minor parameter 
tuning for the subsequent microstate processing22. After standard procedures such as resampling, filtering, and 
artifacts removal on continuous data, we extracted the first 6-second data after fixation onset and segmented it 
into 2000 ms epochs, with −100 ms to 0 ms for baseline correction8,23.

Behavioral and mouse-tracking preprocessing steps.  The behavioral analyses were performed sepa-
rately, including reaction times (RT), accuracy, and mouse trajectory. RT and accuracy results were visualized in 
Fig. 4a–d respectively.
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Fig. 2  File structure of the repository. The left side shows the overview directory tree of our repository, and the 
arrows point to the content preview of corresponding files. The bold items represent folders.
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Mouse-tracking data was preprocessed temporally and spatially24. Temporally, the time windows combining 
trials and responses were sliced into 101 identical time bins using linear interpolation to average their length 
across multiple trials. Spatially, the trajectories of the mouse-tracking data were flipped to the same side and 
transformed into standard coordinate space (bottom left: [0, 0], top right:[1, 1]).

Technical Validation
We could extract at least two kinds of valuable behavioral data for all binary choice tasks: i) behavioral data 
associated with choices, such as choices that participants made or their response time during this procedure, ii) 
mouse trajectory data when participants made a choice. Several novel analyses can be done in neuroscience or 
BCI by combining behavioral data, mouse trajectory, and EEG data. For example, since mouse trajectory and 
EEG are both time-series data, their fusion would allow us to explore the association between human behav-
ior and brain activity in decision making dynamics25. For the image/text-based semantic judgment task, we 
can combine ERP analysis with EEG source reconstruction algorithms to explore the neural representation of 
objects in different modalities with HD-EEG data26. Actually, a recent study from HajiHosseini and Hutcherson 
has investigated the time course of food choices with EEG27. In addition, researchers can decode or predict 
mouse position based on EEG signals to get better performance when using BCI to control computer mouse 
cursor for people with motor disabilities.

Four participants were excluded from further validation. Participant sub-28 performed poorly on both the 
word choice and image choice tasks, with an accuracy of less than 90%. There was 20 Hz EEG noise on partic-
ipant sub-01 and sub-05. Participant sub-19 was excluded because of poor EEG epoch numbers (less than 200 
trials for both word choice and image choice tasks) after automatic data rejection and epoching. Only trials with 
correct response were reserved for the word choice and image choice task in both behavioral and EEG data. 

Other Removed Channels
EOG Removed Channels
EEG Channels

a b

c

Fig. 3  Data collection platform. (a) Data acquisition scenario with the computer mouse and recording EEG 
by a 128-channel EGI system. The participant has provided informed consent for the publication of the image. 
(b) The electrodes were kept or removed in the analyses. (c) Visualization of individual (subject-09) data after 
preprocessing.
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There were 101 channels left, and the bad channel percentages over all three tasks (i.e., food choice task, word 
choice task, and image choice task) were 1.96% ± 1.28 (Mean ± SD), 2.56% ± 1.76, and 2.74% ± 1.85, respec-
tively. The algorithm automatically determines the independent component number, which is around 100. The 
ICLabel removed components percentages for each task were 3.85% ± 1.8, 3.07% ± 1.49, and 3.31% ± 1.03, 
respectively. Since we only care about the correct response, the total trial number for different tasks is reduced 
to 310 to 320. After data rejection and epoching, 7.76% ± 4.43, 8.49% ± 4.21, and 10.02% ± 5.62 of epochs were 
dropped for each task.

Behavioral validation.  Here we presented some basic behavioral results to validate the dataset availability. 
Figure 4a–c showed the distribution of response time across trials of three binary choice tasks, respectively. The 
response time under animate condition (M = 1214.49 ms, SD = 224.31) was significantly shorter than inanimate 
condition (M = 1266.94 ms, SD = 222.86) in the word choice task, t(26) = −5.21, p < 0.001. The response time 
under animate condition (M = 1239.54 ms, SD = 210.73) was also significantly shorter than inanimate condi-
tion (M = 1284.78 ms, SD = 224.1) in the image choice task, t(26) = −4.06, p < 0.001. Figure 4d compared the 
response accuracy in different conditions of image and word choice tasks. The accuracy under animate condi-
tion (M = 0.989, SD = 0.011) was significantly higher than inanimate condition (M = 0.949, SD = 0.057) in the 
word choice task, t(26) = 3.57, p < 0.005. The accuracy under animate condition (M = 0.992, SD = 0.012) was 
also significantly higher than inanimate condition (M = 0.951, SD = 0.057) in the image choice task, t(26) = 3.60, 
p < 0.005.

We averaged all mouse trajectories in the food choice task and across two conditions (animate vs. inanimate) 
in the image choice and word choice tasks. The averaged mouse trajectories from three tasks were visualized in 

b

d

a

c

e

Fig. 4  Behavioral results of the tasks. (a) Reaction time distribution of the food choice task. (b) Reaction time 
distribution of different semantic categories in the semantic category task with image modality. (c) Reaction 
time distribution of different semantic categories in the semantic category task with text modality. (d) Accuracy 
of different semantic categories in the semantic category tasks with image/text modality. (e) Average trajectory 
of mouse movements in three different tasks.
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Fig. 4e. We observed a larger deviation for the inanimate condition in both image choice and word choice tasks, 
which are consistent with previous work.

EEG validation.  Resting-state EEG.  After the preprocessing, we used the Microstate28 (https://www.thom-
askoenig.ch/index.php/software/microstates-in-eeglab) plugin in EEGLAB to analyze the resting-state EEG data. 
We conducted the microstate analysis and identified four topography states (see Fig. 8). In light of the sample 
results, the topography states were stable, and the individual topography states were overlapped with four grand 
averaged topography states.

Food choice task EEG.  Following preprocessing, the EEG data of the food choice task was segmented in the 
time windows from −200 ms to 800 ms locked to food stimulus onset, concerning left vs. right choices. For each 
participant, the data were merged and averaged into two ERPs (left vs. right). The averaged ERPs were presented 
in Fig. 5. ERP amplitudes for the left and right choice over Cz demonstrated no significant difference. For the 
validation test, the spectral analysis was performed to measure ERP power from 1 to 30 Hz. The time-frequency 
analysis on the epoch data was conducted with the MNE-Python29 function of tfr_morlet. The time-frequency 
maps in Fig. 6 presented the global field power (GFP) results of subject 009 over C3, Cz, and C4. It identified 

Food Choice Image Choice Word Choice

Fig. 5  The comparison of the left vs. right choices during food task, and animate vs. inanimate comparison for 
image choice and word choice tasks over electrode Cz.

E36 (C3) E129 (Cz) E104 (C4)

Food Choice

Image Choice

Word Choice

Fig. 6  The group level averaged time-frequency maps of three tasks.
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higher alpha power in C3 and C4 than Cz due to the left and right motor responses. This was in line with a previ-
ous study which observed similar lateralized patterns in motor response, particularly for alpha power30.

Image choice task EEG.  Likewise, the EEG data were segmented based on the image stimulus onset. The aver-
aged ERPs and time-frequency results were displayed in Figs. 5 and 6. In particular, we observed more positive 
ERP amplitude over Cz for animate than inanimate stimuli. However, the averaged time-frequency maps across 
both conditions in Fig. 6 did not show a power difference between C3 and C4.

Left Right

Food Choice

Image Choice

Word Choice

Fig. 7  Averaged topographical distribution at −100 ms before the onset of the stimuli, 200 ms, 500 ms, and 
800 ms after the stimulus onset during three tasks.
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Fig. 8  Microstate maps. (a) Individual (subject-09) global field power (GFP) peaks during 0 ms–2000 ms.  
(b) Individual (subject-09) microstate map. (c) Group level microstate map. MS_1: microstate 1, MS_2: 
microstate 2, MS_3: microstate 3, MS_4: microstate 4.
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Word choice task EEG.  Segmented EEG data were time-locked to word stimulus. Similarly, we displayed the 
averaged ERPs and time-frequency results in Figs. 5 and 6. For ERP amplitudes, we replicated more positive ERP 
amplitude over Cz for animate than inanimate words. This result is consistent with previous studies that showed 
larger negative N400 for inanimate word or sentence processing31. Again, the averaged time-frequency maps 
across both conditions in the word choice task did not show a power difference between C3 and C4.

Consistent with previous studies, we found longer RTs, larger deviations in mouse trajectories, and more 
negative conflict-related negativity for the inanimate condition than animate condition. Therefore, it validates 
the dataset from both behavioral and EEG features.

Decoding choices with EEG.  Decoding analyses were performed in MNE-Python combined with Scikit-learn, 
using the support vector machine classifier (with the function of SVC). For all three tasks, participants needed to 
click on the left or right option for a given pair of options. For simplicity, we decoded participants’ binary choices 
(left or right) for all three task-based EEG data. Here we extracted EEG epochs from −200 ms to 1800 ms since 
participants’ mean response time is over 1200 ms. The performance of classification is higher than the chance level 
(0.5). Specifically, the accuracy for the three tasks (i.e., food choice task, word choice task, and image choice task) 
were 0.67 ± 0.08, 0.73 ± 0.09, and 0.77 ± 0.1, respectively. The topomap for left or right choice in Fig. 7 also showed 
different patterns over time. The decoding results evaluated the potential of the data for future decoding use.

Usage Notes
Most of the software or packages used for analyzing these data are freely available. All codes for preprocess-
ing and plotting are openly accessed (see Section Code availability). We used a python package named squeak 
(https://github.com/eointravers/squeak) for the mouse trajectory data analysis of binary choice tasks. For task 
EEG data analysis, we used MNE-Python to generate formatted BIDS data, and plot ERP and time-frequency 
results based on the preprocessed data. Also, we used EEGLAB with plugins to preprocess all EEG data and do 
the microstate analysis for resting-state EEG data. For more detailed technical usage instructions, please refer 
to the GitHub repository.

There are three types of EEG event markers in all three binary choice tasks. The first is the trial index marker. 
Its value ranges from “0000” to “0319”, corresponding to the fixation starting from the first trial to the 320th trial, 
respectively. This type of marker mainly facilitates the correspondence between EEG data and behavioral data 
when the marker is missing.

The second is the stimulus marker, which appeared when the stimulus occurred and varied across tasks. 
There is only one stimulus marker in the food choice task, “0400”. In the image choice and word choice task, 
there are four types of stimulus markers, from “0400” to “0403”, which correspond to: (1) showing an animate 
object, the animate option appears on the left; (2) showing an animate object, the animate option appears on the 
right; (3) showing an inanimate object, the animate option appears on the left; (4) showing an inanimate object, 
the animate option appears on the right.

The third type is the response marker, which is locked to the option participants made. The food choice task 
has two response markers, “0500” and “0501”, denoting the left and right, respectively. In the image choice and 
word choice tasks, there are eight types of response marker, from “0500” to “0507”, which correspond to: (1) 
showing an animate object, the animate option appears on the left, left option selected; (2) showing an animate 
object, the animate option appears on the left, right option selected; (3) showing an animate object, the animate 
option appears on the right, left option selected; (4) showing an animate object, the animate option appears on 
the right, right option selected; (5) showing an inanimate object, the animate option appears on the left, left 
option selected; (6) showing an inanimate object, the animate option appears on the left, right option selected; 
(7) showing an inanimate object, the animate option appears on the right, left option selected; (8) showing an 
inanimate object, the animate option appears on the right, right option selected.

Code availability
The code used to preprocess the data and plot results is openly available on GitHub (https://github.com/
andlab-um/MT-EEG-dataset). For more details about code usage, please refer to the GitHub repository.

Received: 6 October 2021; Accepted: 11 July 2022;
Published: 16 July 2022

References
	 1.	 Jorgensen, Z. & Yu, T. On mouse dynamics as a behavioral biometric for authentication. In Proceedings of the 6th ACM Symposium 

on Information, Computer and Communications Security, 476–482 (2011).
	 2.	 Sullivan, N., Hutcherson, C., Harris, A. & Rangel, A. Dietary self-control is related to the speed with which attributes of healthfulness 

and tastiness are processed. Psychological Science 26, 122–134 (2015).
	 3.	 Lopez, R. B., Stillman, P. E., Heatherton, T. F. & Freeman, J. B. Minding one’s reach (to eat): The promise of computer mouse-tracking 

to study self-regulation of eating. Frontiers in Nutrition 5, 43 (2018).
	 4.	 Pearce, A. L. et al. Individual differences in the influence of taste and health impact successful dietary self-control: a mouse tracking 

food choice study in children. Physiology & Behavior 223, 112990 (2020).
	 5.	 Anderson, B. B. et al. How polymorphic warnings reduce habituation in the brain: Insights from an fMRI study. In Proceedings of the 

33rd Annual ACM Conference on Human Factors in Computing Systems, 2883–2892 (2015).
	 6.	 Mheich, A. et al. HD-EEG for tracking sub-second brain dynamics during cognitive tasks. Scientific Data 8, 1–14 (2021).
	 7.	 Lim, W., Sourina, O. & Wang, L. STEW: simultaneous task EEG workload data set. IEEE Trans. Neural Syst. Rehabilitation Eng. 26, 

2106–2114 (2018).
	 8.	 Langer, N. et al. A resource for assessing information processing in the developing brain using EEG and eye tracking. Scientific Data 

4, 1–20 (2017).
	 9.	 Van Essen, D. C. et al. The Human Connectome Project: A data acquisition perspective. NeuroImage 62, 2222–2231 (2012).

https://doi.org/10.1038/s41597-022-01538-5
https://github.com/eointravers/squeak
https://github.com/andlab-um/MT-EEG-dataset
https://github.com/andlab-um/MT-EEG-dataset


1 0Scientific Data | (2022) 9:416 | https://doi.org/10.1038/s41597-022-01538-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

	10.	 McFarland, D. J., Krusienski, D. J., Sarnacki, W. A. & Wolpaw, J. R. Emulation of computer mouse control with a noninvasive 
brain–computer interface. Journal of Neural Engineering 5, 101 (2008).

	11.	 McFarland, D. J., Sarnacki, W. A. & Wolpaw, J. R. Electroencephalographic (EEG) control of three-dimensional movement. Journal 
of Neural Engineering 7, 036007 (2010).

	12.	 Simeral, J., Kim, S.-P., Black, M., Donoghue, J. & Hochberg, L. Neural control of cursor trajectory and click by a human with 
tetraplegia 1000 days after implant of an intracortical microelectrode array. Journal of Neural Engineering 8, 025027 (2011).

	13.	 Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behavior Research Methods 51, 195–203 (2019).
	14.	 Blechert, J., Lender, A., Polk, S., Busch, N. A. & Ohla, K. Food-pics_extended—an image database for experimental research on 

eating and appetite: additional images, normative ratings and an updated review. Frontiers in Psychology 10, 307 (2019).
	15.	 Chen, K. et al. A resource for assessing dynamic binary choices in the adult brain using EEG and mouse-tracking. OpenNeuro 

https://doi.org/10.18112/openneuro.ds003766.v2.0.2 (2022).
	16.	 Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging 

experiments. Scientific Data 3, 1–9 (2016).
	17.	 Pernet, C. R. et al. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data 6, 1–5 

(2019).
	18.	 Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent 

component analysis. Journal of Neuroscience Methods 134, 9–21 (2004).
	19.	 Appelhoff, S. et al. MNE-BIDS: Organizing electrophysiological data into the BIDS format and facilitating their analysis. Journal of 

Open Source Software 4, 1896 (2019).
	20.	 Pedroni, A., Bahreini, A. & Langer, N. Automagic: Standardized preprocessing of big EEG data. NeuroImage 200, 460–473 (2019).
	21.	 Pion-Tonachini, L., Kreutz-Delgado, K. & Makeig, S. ICLabel: An automated electroencephalographic independent component 

classifier, dataset, and website. NeuroImage 198, 181–197 (2019).
	22.	 Koenig, T., Kottlow, M., Stein, M. & Melie-Garca, L. Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data 

using global randomization statistics. Computational Intelligence and Neuroscience 2011 (2011).
	23.	 Luo, Y. et al. Biomarkers for prediction of schizophrenia: Insights from resting-state EEG microstates. IEEE Access 8, 213078–213093 

(2020).
	24.	 Freeman, J. B. & Ambady, N. MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking 

method. Behavior Research Methods 42, 226–241 (2010).
	25.	 Tafuro, A., Vallesi, A. & Ambrosini, E. Cognitive brakes in interference resolution: A mouse-tracking and EEG co-registration study. 

Cortex 133, 188–200 (2020).
	26.	 Zhao, B., Dang, J. & Zhang, G. EEG source reconstruction evidence for the noun-verb neural dissociation along semantic 

dimensions. Neuroscience 359, 183–195 (2017).
	27.	 HajiHosseini, A. & Hutcherson, C. A. Alpha oscillations and event related potentials reflect distinct dynamics of attribute 

construction and evidence accumulation in dietary decision making. eLife 10, e60874 (2021).
	28.	 Michel, C. M. & Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a 

review. NeuroImage 180, 577–593 (2018).
	29.	 Gramfort, A. et al. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience 7, 267 (2013).
	30.	 Deiber, M.-P. et al. EEG alpha activity reflects motor preparation rather than the mode of action selection. Frontiers in Integrative 

Neuroscience 6, 59 (2012).
	31.	 Roehm, D., Schlesewsky, M., Bornkessel, I., Frisch, S. & Haider, H. Fractionating language comprehension via frequency 

characteristics of the human EEG. Neuroreport 15, 409–412 (2004).

Acknowledgements
This work was mainly supported by the Science and Technology Development Fund (FDCT) of Macau 
[0127/2020/A3], the Natural Science Foundation of Guangdong Province(2021A1515012509), Shenzhen-Hong 
Kong-Macao Science and Technology Innovation Project (Category C) (SGDX2020110309280100), and the SRG 
of University of Macau (SRG2020-00027-ICI, CRG2021-00001-ICI).

Author contributions
K. Chen. and H. Wu conceived the experiments, R. Wang and J. Huang conducted the experiments, K. Chen.and 
H. Wu analyzed the results. K. Chen led the manuscript writing. All authors wrote the manuscript, reviewed the 
manuscript, and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.W.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2022, corrected publication 2022

https://doi.org/10.1038/s41597-022-01538-5
https://doi.org/10.18112/openneuro.ds003766.v2.0.2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A resource for assessing dynamic binary choices in the adult brain using EEG and mouse-tracking

	Background & Summary

	Methods

	Participants and task overview. 
	Experimental procedures. 
	Session 1: Resting-state. 
	Session 2: Food choice task. 
	Session 3: Image choice task. 
	Session 4: Word choice task. 


	Data Records

	EEG data collection. 
	EEG data organization. 
	EEG data preprocessing. 
	Behavioral and mouse-tracking preprocessing steps. 

	Technical Validation

	Behavioral validation. 
	EEG validation. 
	Resting-state EEG. 
	Food choice task EEG. 
	Image choice task EEG. 
	Word choice task EEG. 
	Decoding choices with EEG. 


	Usage Notes

	Acknowledgements

	Fig. 1 Procedures and timeline of the four sessions.
	Fig. 2 File structure of the repository.
	Fig. 3 Data collection platform.
	Fig. 4 Behavioral results of the tasks.
	Fig. 5 The comparison of the left vs.
	Fig. 6 The group level averaged time-frequency maps of three tasks.
	Fig. 7 Averaged topographical distribution at −100 ms before the onset of the stimuli, 200 ms, 500 ms, and 800 ms after the stimulus onset during three tasks.
	Fig. 8 Microstate maps.
	Table 1 An overview of the four sessions.




