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Abstract: Redox mediated signaling mechanisms play crucial roles in the pathogenesis of several cardiovascular diseases. 

Atherosclerosis is one of the most important disorders induced mainly by hypercholesterolemia. Oxidation products and 

related signaling mechanisms are found within the characteristic biomarkers of atherosclerosis. Several studies have 

shown that redox signaling via lipid rafts play a significant role in the regulation of pathogenesis of many diseases includ-

ing atherosclerosis. This review attempts to summarize redox signaling and lipid rafts in hypercholesterolemia induced 

atherosclerosis. 
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INTRODUCTION 

 Atherosclerosis, a chronic inflammatory disease which is 
characterized by the accumulation of plasma lipoproteins 
that carry cholesterol and triglycerides in the arteries, is one 
of the major causes of morbidity and mortality worldwide. 
This accumulation results in the proliferation of certain cell 
types within the arterial wall. Arterial wall consists of three 
layers with different cell types and extracellular matrix. The 
outermost layer, tunica adventitia, includes fibroblasts, type I 
collagen fibers, elastic network, lymphatic and tiny blood 
vessels. The middle layer, tunica media, is circularly ar-
ranged with smooth muscle cells and in between the smooth 
muscle layers, elastic network, collagen and proteoglycans 
take place. The innermost layer, tunica intima, includes sin-
gle layer endothelial cell lines in the luminal arterial surface. 
These cells attach on a basement membrane of extracellular 
matrix and proteoglycans that is bordered by the internal 
elastic membrane. Endothelial cells form a physical and 
functional barrier between flowing blood and the stroma of 
the arterial wall and regulate a wide array of processes in-
cluding thrombosis, vascular tone, and leukocyte trafficking 
among others [1]. 

 In the atherosclerotic process, macrophage foam cells are 
formed with the rapid transformation of phagocytic mono-
cytes penetrated into the subendothelial space and athero-
genic lipoproteins like modified low density lipoprotein 
(LDL) are uptaken by receptor-mediated endocytosis 
mechanism [2,3]. Following the endocytosis, these cells have 
an appearance loaded with lipid droplets rich in cholesteryl 
esters [4]. These foam cells also known as ‘fatty streaks’ and 
adaptive thickening of the intima are accepted as the main 
visible lesions at the early stage of the pathogenesis [1,4]. 
Endothelial dysfunction has been proposed as long-term 
atherosclerotic lesions which initiates the inflammatory  
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mechanisms and is used as an important diagnostic and 
prognostic factor [5, 6]. Several biological processes classi-
fied as the reasons for advanced lesions in atherosclerosis 
such as proliferation of intimal smooth muscle cells, accu-
mulation of extracellular matrix components such as colla-
gen, elastic fibers and proteoglycan, and cholesteryl ester 
and free cholesterol accumulation within the cells and in the 
surrounding connective tissues [7]. During the progress of 
the disease, it takes time for the disruption of an atheroscle-
rotic lesion and leading to thrombosis and decrease in oxy-
gen supply to target organs such as heart and brain. As a 
result of these reduced blood flow, heart attack and stroke 
are occured referred to as coronary artery disease and cere-
brovascular disease [1]. 

 Enzymatically hydrolyzed LDL (E-LDL) [8], oxidized 
LDL (ox-LDL) [9] and modified LDL by advanced glycation 
end products (AGEs) are the types of lipids taken up by 
macrophages. The term E-LDL is used for proteolytically 
cleaved apoB and hydrolysed core cholesteryl esters, leading 
to liposome-like particles present at early stages in athero-
sclerotic lesions [8, 10]. With LDL oxidation, denatured 
apoB molecule shows an increase in the platelet-activating 
factor (PAF)-acetylhydrolase-like activity with a PLA2-like 
activity that strips phosphatidylcholine from the ox-LDL 
surface [11, 12]. Following this, ox-LDL particles aggregate 
and form polar surface with the remaining phospholipids on 
the aggregated particles. AGEs, those may cause LDL modi-
fication, are formed by nonenzymatic glycation reaction be-
tween a reducing sugar and a free amino group on a protein, 
lipid, or nucleic acid [13]. 

 Cellular uptake of these atherogenic lipids and lipopro-
teins are mediated by several receptors as summarized in 
Table 1. LDL receptors are generally shown to be downregu-
lated during cholesterol uptake. Scavenger receptors (SRs) 
are the most abundant receptors expressed on macrophages 
and foam cells in atherosclerotic lesions [3]. CD36 takes the 
most important place in the scavenger receptors playing role 
in atherosclerotic process. CD36 is a raft associated glycosy-
lated protein with an 88 kDa molecular weight. Studies 
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showed that CD36 is palmitoylated in cysteine residues of 
N- and C-terminal of both cytosolic tails and this structure 
plays important role for the internalization of CD36 in 
caveloae and lipid membranes. Various ligands such as ox-
LDL, apoptotic cells, AGEs bind to the region localized be-
tween 155-183 amino acids in the structure of scavenger 
receptor cluster of differentiation 36 (CD36) [1]. 

 Hyperlipidemia and other cardiovascular risk factors con-
taining age, obesity, hypertension, diabetes mellitus and se-
rum cholesterol are connected with the development and 
progression of atherosclerotic lesions, plaque rupture, and 
vascular thrombosis. As an autosomal dominant disorder, 
familial hypercholesterolemia affects every 1 person in 500 
from the general population [1, 3]. 

OXIDATION PRODUCTS AND REDOX SIGNALING 
MECHANISMS IN ATHEROSCLEROSIS 

 Free radicals contain unpaired electrons in their outer 
orbitals and take place in oxidation reactions easily. Free 
radicals include reactive species (RS) such as reactive oxy-
gen species (ROS) and reactive nitrogen species (RNS). RS 
damage cellular components such as proteins, lipids, carbo-

hydrates, and nucleic acids [14]. Following the interactions 
of RS with cellular components, several products are known 
to be produced. The main investigated products are 
malondialdehyde (MDA) and 4-hydroxynonenal (HNE) for 
lipid peroxidation, 8- hydroxydeoxyguanosine for DNA oxi-
dation and protein carbonyls, nitrotyrosines for protein oxi-
dation [15, 16]. In this direction, the term redox signaling 
defines a process wherein free radicals (particularly reactive 
oxygen species) and other related species act as messengers 
in biological systems [17]. 

 Redox signaling process is shown to be involved in the 
pathogenesis of atherosclerosis besides several different hy-
potheses [18]. Lipid peroxidation and LDL oxidation in-
duced by RS are the early events in atherosclerotic lesion 
formation [19-22]. There is now a consensus that atheroscle-
rosis represents protein oxidation process in the vascular 
wall besides lipid oxidation [1]. Mostly macrophages are 
thought to be the source of ROS formation in the vessel wall 
but also other cells like endothelial, smooth muscle and ad-
ventitial cells produce ROS in the vessel wall (Fig. 1) [19, 
23] . 

Table 1. Scavenger Receptors Playing Role in the Cellular Uptake of Atherogenic Lipids and Lipoproteins [3] 

Class  Members Location Function 

A Type I MSR-A 

Type II MSR-A 

Type III MSR-A 

MARCO 

Cell membrane of macrophages 

Cell membrane of macrophages 

Cytoplasmic vesicles of macrophages 

Uptake of Ox-LDL by macrophages, transformation 

of macrophages into foam cells 

B CD36 

 

 

SR-BI 

Monocytes/macrophages, platelets, endothelial cells, 

adipocytes 

 

Hepatocytes, steroidogenic cells, epithelial cells, 

macrophages 

Uptake of Ox-LDL by macrophages, transformation 

of macrophages into foam cells, phagocytosis of 

apoptotic cells 

HDL receptor mediates the selective uptake of HDL 

cholesterol 

C SRCL Endothelial cells from human umbilical vein and 

vascular endothelial cells of the heart 

Binds galactose and fucose residues 

D CD68/macrosialin Expressed on endolysosomal compartments and 

macrophages cell surfaces 

Member of lysosomal-associated membrane protein, 

binds Ox-LDL in vitro, transformation of macro-

phages into foam cells 

E LOX-1 Expressed by vascular endothelial cells, macro-

phages in human and mice 

Endocytic uptake and lysosomal degradation of Ox-

LDL. Binding to Ox-LDL induces NF B activation 

and inhibits MCP-1 upregulation in endothelial 

cells. 

F SREC Expressed by vascular endothelial cells  

G SR-PSOX 

 

PSR 

Lipid-laden macrophages in human atherogenic 

lesions 

Macrophages, fibroblasts, epithelial cells 

Recognizes phosphatidylserine and Ox-LDL 

 

Phagocytosis of apoptotic cells 

Others CD163 Macrophages Receptor for hemoglobin–haptoglobin complexes 

and prevents macrophages from oxidative damage 

by decreasing heme/iron levels and ROS formation 

MSR, macrophage scavenger receptor; MARCO, macrophage receptor with collagenous structure; SR-BI, Scavenger recptor class B; SRCL, scavenger receptor C-type lectin; 

SREC, scavenger receptor expressed by endothelial cell-I; SR-PSOX, scavenger receptor for phosphatidylserine and oxidized lipoprotein; PSR, phosphatidylserine receptor. 
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 Ox-LDL modulates atherosclerosis biology by cell dam-
age induction, proliferation of smooth muscle cells, foam 
cell formation, chemotaxis of leukocytes and secretion of 
inflammatory mediators. Since oxidation of LDL is the main 
oxidative modification, high plasma levels of native LDL is 
a risk factor for the progression [24]. Ox-LDL uptake by 
macrophages is easier compared to non-oxidized LDL. It is 
known that hypercholesterolemia stimulates ROS formation 
from smooth muscle cells and this also leads to increased 
oxidation of LDL [21]. Ox-LDL includes oxidative agents 
such as aldehyde end products of lipid peroxidation of poly-
unsaturated fatty acids like HNE, derived from phospholip-
ids, mono-, di-, and triacylglycerols, or cholesteryl esters 
(CEs), as well as cholesterol oxidation products. These oxi-
dized lipids via their fibrogenic, apoptotic, coagulant, and 
inflammatory effects, contribute to progression of athero-
genic lesions. Oxidation of LDL changes the composition of 
the particle. In vitro oxidation of LDL can be achieved by 
copper incubation [25] and incubation with culture medium 
from 15-lipoxygenase-overexpressing fibroblasts [26]. Oxi-
dation of the lipid moiety of lipoproteins and formation of 
lipoperoxides transferred to LDL cause oxysterol formation. 
The unsaturated fatty acyl chains of phospholipids, CEs, and 
triglycerides are oxidized most readily, and a significant 
proportion of the unsaturated acyl chains are also oxidized to 
hydroperoxides, isoprostanes, and more AGEs [27]. Choles-
terol and saturated fatty acids react more slowly, and a small 
proportion of cholesterol is converted to oxysterols, initially 

7-hydroperoxycholesterol. Oxysterols, 27-carbon products of 
cholesterol oxidation, are possible reactive mediators of 
structural and functional changes of the vascular wall, which 
are affected by the atherosclerotic process [28]. ApoB, the 
dominant apoprotein of LDL, which is highly glycosylated, 
is subject to both direct oxidative modification and reaction 
with products of lipid oxidation. 

 Main reactive oxygen species implicated in cardiovascu-
lar diseases are superoxide (O2˙ ), hydroxyl (OH˙) and hy-
drogen peroxide (H2O2) and reactive nitrogen species are NO 
and peroxynitrite. While superoxide and hydroxyl radicals 
are more reactive, hydrogen peroxide is more membrane 
permeable. As the basic mechanism, these oxygen species 
are converted to each others by several mechanisms. O2˙  is 
dismutated nonenzymatically or enzymatically by superox-
ide dismutase (SOD) to H2O2. Also various enzymes located 
in the plasma membrane, cytosol, peroxisomes and mito-
chondria catalyse ROS formation. 

Sources of Reactive Oxygen Species 

 Enzymatic sources of O2˙  include NADPH oxidases, 
xanthine oxidase, cyclooxygenase, lipoxygenase, cyto-
chrome P-450 enzymes, uncoupled NOSs, phagocytic mye-
loperoxidase system and mitochondrial electron transport 
chain [29-31]. 

 Mitochondria is an important source of O2˙ . In the elec-
tron transport chain, mainly respiratory electron carriers in-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Main pathways during the development of atherosclerosis. Macrophages, endothelial cells and smooth muscle cells are the cells 

cause reactive species formation during the atherosclerotic process. Reactive species damage cellular constituents and several products are 

formed those can be used as biomarker in the atherosclerosis. 
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duces O2˙  formation. Complex I (containing the flavin 
mononucleotide [FMN] and iron sulfide [FeS] potential 
O2˙ -producing sites) was, for a long time, considered one of 
two major sites of O2˙  production. The second major site of 
mitochondrial O2˙  production is believed to be ubiquinone-
Complex III [32]. Ox-LDL was found to induce O2˙  forma-
tion in mitochondria [33]. In endothelial cells, 4-HNE was 
shown to inactivate proteins containing reactive thiols, such 
as 2-oxoglutarate dehydrogenase and pyruvate dehydro-
genase [34], and thereby inhibit complex I-dependent 
(NADH-linked) respiration [35]. 

Xanthine Oxidase (XO) 

 XO is located in the endothelium of various organs and 
causes O2˙  production during the catalysis of the oxidation 
of hypoxanthine to urate. Tissue distribution of XO is an 
important factor of O2˙  induced injury. XO and xanthine 
dehydrogenase are two forms of the enzyme and in basal 
conditions dehydrogenase form is present in the tissues. Ei-
ther through oxidation or by proteolytic cleavage of xanthine 
dehydrogenase, XO is formed. The levels of plasma-
circulating XO and the ability of circulating XO to bind vas-
cular cells of various organs increase during some pathologi-
cal states such as reperfusion injury, hepatitis, adult respira-
tory distress syndrome and atherosclerosis [30]. In experi-
mental animals with hypercholesterolemia it is capable of 
producing increased amounts of active radicals leading di-
rectly to reduced nitric oxide (NO) activity [36]. Additional 
facts that support the role of xanthine oxidase in the process 
of atherogenesis are the following: (i) in patients with coro-
nary syndrome the levels of this enzyme were found to be 
increased-the same applies to NAD(P)H; and (ii) in young 
asymptomatic patients with familial hypercholesterolemia 
the increased activity of the enzyme is an early event [37]. 

NADPH Oxidase 

 NADPH oxidase, is a multiple subunit electron transport 
system, was discovered in neutrophils where it catalyzes one 
electron reduction of oxygen to produce O2˙  using NADPH 
as the electron donor during phagocytosis and plays role in 
immune protection with its bactericidal activity [31, 38, 39]. 
This enzyme system plays key role in generating ROS in 
fibroblasts, vascular smooth muscle cells and endothelial 
cells besides phagocytic cells. The NADPH oxidase subunits 
are shown to be present in human blood vessels including 
atherosclerotic coronary arteries, in veins and mammary ar-
teries with coronary artery disease, which strengthens the 
importance of the molecular regulation of the enzyme in 
cardiovascular diseases [6, 40]. NADPH oxidase activity in 
non-phagocytic cells, such as cardiovascular cells, is acutely 
increased by diverse pathophysiological stimuli including: (i) 
G- protein-coupled receptor agonists, e.g. angiotensin II and 
endothelin-1; (ii) cytokines, e.g. (tumour necrosis factor- ) 
TNF-  and (transforming growth factor- ) TGF- ; (iii) 
growth factors, e.g. thrombin, (vascular endothelial growth 
factor) VEGF and insulin; (iv) ‘metabolic’ factors, e.g. ox-
LDL, nonesterified (free) fatty acids and glycated proteins; 
(v) hypoxia-reoxygenation or ischaemia-reperfusion; and (vi) 
mechanical stimuli, e.g. oscillatory shear [3]. 

 The phagocytic NADPH oxidase consists of a mem-
brane-associated cytochrome b558 that comprises a large 
subunit, gp91

phox
 (‘phox’ being derived from phagocytic oxi-

dase), and a small one, p22
phox

. Besides these, there are at 
least three cytosolic subunits (p47

phox
, p67

phox
 and p40

phox
) 

and a low-molecular-weight G protein (Rac1 or Rac2). 
p47

phox
, p67

phox
 and gp91

phox
 (NOX2) present on phagocytic 

NADPH oxidase have been identified in vascular cells. 
However, several studies have confirmed that p22

phox
 is pre-

sent in all NADPH oxidase systems and that this subunit is 
essential for the functionality of the enzyme. Upon cell 
stimulation, p47

phox
 becomes phosphorylated on multiple 

sites with several kinases (protein kinase C, protein kinase 
A, or mitogen activated protein kinase) and the cytosolic 
subunits form a complex which migrates to the membrane 
where it binds to the cytochrome b558. Then electrons are 
transferred from the substrate, NADPH, to O2, leading to 
O2˙  generation [19, 41]. Phosphorylation and translocation 
of p47

phox
 allows its interaction with p22

phox
 and facilitates 

the binding of p67
phox

 to cytochrome b558 [31]. Also another 
key posttranslational modification involved in oxidase acti-
vation is Rac activation. 

 Several homologues of gp91
phox

, have recently been re-
ported to be expressed in nonphagocytic cells. Other mem-
bers of the NOX family comprise of NOX1,NOX2 NOX3, 
NOX4 and NOX5, as well as larger and more complex 
homologues termed DUOX1 and DUOX2 [38]. NOX1 to 5 
are 65-kDa core proteins, whereas DUOX 1 and 2 are 175- 
to 180-kDa proteins that have a domain homologous to 
gp91

phox
 as well as an additional peroxidase domain. Using 

this new terminology, NOX2 represents the neutrophil 
gp91

phox
. The first homologue of gp91

phox
, namely NOX1, 

was found to have significant proliferative activity and was 
also therefore known by the alternative term mitogenic oxi-
dase or MOX-1 [30]. 

 Functionally endothelial NADPH oxidase shares some 
but not all of the characteristics of neutrophil NADPH oxi-
dase. One major difference is that endothelial NADPH oxi-
dase continuously generates a low level of O2˙  even in un-
stimulated cells, although its activity can be further increased 
by several agonists. However, neutrophil NADPH oxidase 
primarily produces O2˙  when the cells are stimulated. In 
regard to the isoform of NOXs, gp91

phox
 (NOX2) has been 

considered as the major isoform of NOX proteins in vascular 
endothelial cells [42, 43]. The functional role of this NOX 
isoform has been confirmed by decrease in phorbol ester-
induced O2˙  production and endothelium-dependent relaxa-
tion in gp91

phox
/  mice [43]. In addition to gp91

phox
, NOX4 

mRNA is also detectable in endothelial cells. It appears that 
NOX4-dependent oxidase functionally contributes to the 
basal O2˙  production in endothelial cells [44]. 

Nitric Oxide Synthase (NOS) 

 Ox-LDL also activates nitric oxide synthase and in-
creases production of NO as a key regulator of vasodilata-
tion. Multiple interactions of NO˙ with oxidizing lipids could 
lead to either vascular protection or potentiation of inflam-
matory vascular injury. Ox-LDL increases O2˙  production 
in endothelial cells and decreases the bioavailability of NO 
through a process involving lectin-like ox-LDL receptor 
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(LOX-1). Low levels of NO˙ generated by endothelial NOS 
(eNOS) can terminate lipid radicals and inhibit lipoxy-
genases, which would be protective. But elevated levels of 
NO˙, for example, after inducible nitric oxide synthase 
(iNOS) expression in inflammation, can be converted to 
prooxidant species like peroxynitrite (ONOO˙) and NO2 
[45]. In the presence of available O2 radicals, ox-LDL may 
contribute to ONOO˙ formation, which can potentiate in-
flammatory injury of vascular cells. A role for ONOO

#
 in 

initiating lipid oxidation in atherosclerosis has been sug-
gested [46]. The reduction of endothelial-produced NO and 
O2˙  is able to blunt normal endothelial dysfunction as a 
result of the decreased endothelial NO production. The in-
creased production of ROS reduces the production and con-
sequently the bioavailability of NO, leading to vasoconstric-
tion, platelet aggregation and adhesion of neutrophils to the 
endothelium [47]. 

Myeloperoxidases (MPO) 

 This enzyme is uses H2O2 for the production of more 
powerful oxidative substances by activated phagocytes. This 
enzyme, through NADPH, leads to the production of hypo-
chlorous acid (HOCl) and its analogs (substances related to 
endothelial injuries due to the action of H2O2) [48]. It is con-
sidered to participate in the process of atheromatosis by the 
induction of oxidative modifications in low and high density 
lipoproteins [49]. This hypothesis is consistent with the re-
sults of clinical trials, according to which the levels of MPO 
and its products are elevated in patients with coronary syn-
drome. In contrast to human lesions, these oxidative products 
are absent in experimental animals with apolipoprotein E and 
LDL-receptor deficiency [21]. The three mechanisms 
through which myeloperoxidase participates in oxidative 
modifications are NO consumption, LDL oxidation, and re-
action with L-arginine for the production of NO synthase 
inhibitors. All of these are dependent on H2O2. Also immu-
nohistochemical studies have proved the presence of mye-
loperoxidase and HOCl in atherosclerotic lesions [50]. 

 High density lipoprotein (HDL) isolated from patients 
with cardiovascular disease contains elevated levels of 3-
chlorotyrosine and 3-nitrotyrosine, which are two character-
istic products of MPO, enzyme secreted by macrophages 
[51]. MPO-dependent oxidation of specific amino acids, 
mainly tyrosine and methionine residues of apoA-I, impairs 
its ability to remove excess cellular cholesterol via the ATP-
binding cassette transporter A1 (ABCA1) pathway [52]. 
MPO also generates HOCl like H2O2 and other ROS, which 
is also secreted by macrophages [53]. Enzymatically active 
MPO was found in human atherosclerotic lesions [49], and 
lipoproteins that have been modified by HOCl have been 
detected in advanced human atherosclerotic plaques. Tyrosy-
lated HDL is more potent than native HDL in removing cho-
lesterol from lipid-laden fibroblasts and macrophages in vi-
tro. This process does not appear to involve passive choles-
terol desorption from the cell-surface membranes [54], 
which suggests the possibility that tyrosylated HDL pro-
motes reverse cholesterol transport by interacting with 
ABCA1 in macrophages and perhaps other peripheral tissues 
more efficiently than native HDL [55, 56]. Enzymatically 
active MPO and elevated levels of dityrosine, marker for 

protein oxidation by tyrosyl radicals, have been detected in 
human atherosclerotic plaques [49]. 

Lipoxygenases 

 Lipoxygenases are a family of iron-containing enzymes 
that catalyse the dioxygenation of polyunsaturated fatty acids 
in lipids containing a cis,cis-1,4- pentadiene structure, creat-
ing a family of biologically active lipids, such as prosta-
glandins, thromboxanes and leukotrienes, which participate 
in inflammatory reactions and increase the permeability of 
vessels. In experimental models, 15-lipoxygenase was shown 
to induce LDL oxidation by enzymatic and nonenzymatic 
reactions. Experimental animals with an absence of the 15-
lipoxygenase gene or reduced expression of 5-lipoxygenase 
are protected from lesions like those found in animals with 
apolipoprotein E and LDL-receptor deficiency [57]. Clinical 
data demonstrate that various genotypes of 5-lipoxygenase 
promoter are found in patients with atherosclerotic lesions or 
inflammation [21]. 

Effects of Reactive Species on Signaling Mechanisms 

 O2˙  anion, in addition to mediate LDL oxidation, may 
contribute to the pathogenesis of atherosclerosis in various 
ways [7]. O2˙  inactivates endogenous vasodilatator, endo-
thelium derived NO, thereby promotes vasoconstriction. Im-
pairment of NO function by O2˙  also results in vascular 
smooth muscle cell proliferation and migration [58]. It was 
shown that incubation of vascular smooth muscle cells with 
H2O2, induced the expression of VEGF, confirming the role 
of ROS in neovascularization in atherosclerotic plaques and 
restenotic lesions [59]. Redox molecules including ROS and 
RNS possess redox potential, play important role in the 
maintenance of cardiac homeostasis by acting through spe-
cific signal transduction pathways [60, 61]. Key components 
in atherogenesis including signaling molecules such as redox 
sensitive transcription factor NF B activation and adhesion 
molecules such as selectins, vascular cell adhesion molecule-
1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-
1) and chemokines such as monocyte chemoattractant pro-
tein-1 (MCP-1) expressions in the vascular endothelium are 
known to be increased by RS [58]. Expression of adhesion 
molecules and MCP-1 are also key steps for the monocyte 
adhesion and emigration to form macrophages and foam 
cells [30]. 

 Macrophage colony-stimulating factor (M-CSF) is an 
important factor regulating the survival, proliferation, differ-
entiation, and chemotaxis of macrophages. During early 
myeloid differentiation, M-CSF synergizes with other 
growth factors and interleukin-3 to produce mononuclear 
phagocyte progenitor cells. After this initial differentiation 
process, M-CSF by itself can regulate the proliferation and 
differentiation of mononuclear phagocyte progenitor cells to 
monocytes, macrophages, and osteoclasts and also supports 
survival and activity of fully differentiated macrophages. 
The receptor for M-CSF (M-CSF-1R) is expressed in mono-
nuclear phagocytes and antigen presenting cells (APCs), 
which can be regarded as a specialized adaptive state rather 
than a separate lineage. M-CSF was considered as an alterna-
tive marker of macrophages, whereas APCs differentiate 
through the action of granulocyte-macrophage-CSF (GM-
CSF), IL-4, and prostaglandin E2 [62]. M-CSF cooperates 
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with the receptor activator of NF B ligand (RANKL) to 
regulate the differentiation of mononuclear phagocytes to-
ward osteoclasts [63]. M-CSF also enhances cytotoxicity, 
ROS (e.g., superoxide radical, peroxynitryl-, hydroxyl-
radical and hydrogen-peroxide production), as well as 
phagocytosis, chemotaxis, and cytokine production in mono-
cytes and macrophages [64]. M-CSF-mediated signaling 
involves many cytoplasmic molecules like c-Src, which is 
linked with c-Cbl and targets the Vav family members of 
guanine nucleotide exchange factors (GEFs), which in turn 
activate Rac-1 as a constituent of activated NADPH-oxidase. 
Alternatively coregulatory signaling pathways like integrin 
signaling (e.g., 3, M 2) also target Vav. Ox-LDL is 
directly mitogenic for macrophages and smooth muscle cells, 
and stimulates the release of MCP-1 and M-CSF from endo-
thelial cells and the production of many inflammatory me-
diators (e.g., endothelin-1) from other vascular cells and 
chemotactic for monocytes/APCs and T cells [65]. 

 The effects of ox-LDL on NF B may be biphasic as con-
centration dependent. Normally, it activates NF B and 
upregulates the expressions of adhesion molecules, tissue 
factor and LOX-1. In high concentration, ox-LDL inhibits 
NF B activation triggered by inflammatory agents such as 
lipoxygenases and therefore exert immunosupressive effect 
[66]. HNEs were shown to activate MAPK in endothelial 
cells either by directly interacting with PKC or through acti-
vation of the EGF receptor [67]. Transcription factor AP-1, 
plays role in the regulation of TGF- 1, procollagen type I, 
platelet-derived growth factor-AA (PDGF-AA), MCP-1, and 
cyclooxygenase-2 (COX-2) expressions, were activated by 
HNE [68]. 

 The presence of foam cells in the atherosclerosis process 
confirms the importance of CD36 scavenger receptors. CD36 
has an important role in the intake of ox-LDL by macro-
phages in the arteria walls and long chain fatty acids into the 
cells. Following binding of ox-LDL to CD36 receptor, lyn 
kinase, a src protein tyrosine kinase, is activated. This activa-
tion induces mitogen ERK kinase kinase 2 (MEKK2) and c-
jun N-terminal kinase (JNK) activation and phagocytosis of 
proatherogenic ox-LDL [69]. Studies carried out in murine 
models showed that inhibition of JNK causes a decrease in 
ox-LDL uptake [70, 71]. CD36, was shown to be upregu-
lated by PKC and PPAR  pathway which are common sig-
naling mechanisms for IL4 and ox-LDL [72]. CD36 scaven-
ger receptor expression was shown to be increased in ox-
LDL treated aortic smooth muscle cells in culture [73]. It has 
been shown as in vivo that hypercholesterolemia increases 
foam cell formation and atherosclerosis by increasing CD36 
mRNA expression and PKC activity in rabbits [74-76]. 

 Fatty acids and their oxidation products activate the nu-
clear orphan receptors PPARs. These are ligand-activated 
transcription factors that play an important role in obesity-
related metabolic diseases such as high triglyceride/low-
HDL syndromes, insulin resistance, and coronary artery dis-
ease [77]. PPARs bind, on heterodimerization with RXR, to 
specific peroxisome proliferator response elements (PPREs) 
in the promoter of target genes, thus regulating the transcrip-
tion of these genes. PPARs consist of isoforms , , and  
with distinct expression patterns and biologic activities. 
PPARs are expressed in atherosclerotic lesions and have 

been shown to affect transcription of genes in vascular endo-
thelial cells, smooth muscle cells, monocytes, and monocyte- 
derived macrophages. PPAR-  induces an increase in ROS, 
which leads to induction of NADPH-oxidase activity in 
macrophages and results in the generation of LDL species 
with PPAR-  activation properties [78]. PPAR-  expression 
is significantly increased on monocyte-to-macrophage dif-
ferentiation, and PPAR-  protein is present at high levels in 
monocytes and macrophage-derived foam cells of athero-
sclerotic lesions [79, 80] and in circulating human mono-
cytes, where its activation increases the expression of 
macrophage-specific markers, such as CD14 and CD11b, 
which are constituents of lipid rafts. Treatment of macro-
phages with ox-LDL in vitro induces mRNA expression of 
PPAR-  and LXR- , a direct transcriptional target of PPAR-
. Internalization of ox-LDL provides the cell with activators 

of PPAR- , such as the oxidized fatty acids 9-and 13- hy-
droxyoctadecadienoic acid (9- and 13-HODE), as well as 
with activators of LXRs such as 27- and 25-hydroxy-
cholesterol [81, 82]. PPAR-  ligands can also be produced 
locally in atherosclerotic lesions through the oxidation of 
fatty acids by 12/15 lipoxygenase [83]. Arachidonic acid 
metabolites derived from the cyclooxygenase and lipoxy-
genase pathways [e.g., 15-deoxy- -12, 14-prostaglandin J2 
(PGJ2), and 15-hydroxyeicosatetraenoic acid (15-HETE) 
[82, 84] activate also PPAR- . PPAR-  activators inhibit the 
expression of MMP-9 in human macrophages [85] and vas-
cular smooth muscle cells [86] and the production of the 
inflammatory cytokines TNF- , IL-6, and IL-1  by activated 
monocytes [87]. The induction of the scavenger receptor 
CLA-1/SR-BI is inhibited by PPAR-  in human macro-
phages [88]. Activation of PPAR-  has been shown to en-
hance CD36 expression of macrophages, which may indicate 
that PPAR-  could stimulate uptake of ox-LDL and contrib-
ute to foam cell formation [82]. These CD36 effects may be 
compensated through the activation of LXR ,which pro-
motes cholesterol efflux by modulating expression of 
ABCA1 and apoE [89]. Silverstein and Febbraio [90] 
showed a decrease in CD36 mRNA expression as a result of 
inhibition in the transcriptional activity of PPAR  following 
phosphorylation by TGF- . Tontonoz et al. [80] confirmed 
the relation of PKC with PPAR  induction and CD36 ex-
pression with the results showing that diacylglycerol and 
ingenol as PKC activators regulate the mRNA expression of 
CD36. Additionally rosiglitazone as a PPAR  agonist was 
shown to increase CD36 expression in macrophages [91]. 
Leonarduzzi et al. [92] tested the effects of non-oxidized and 
oxidized cholesterol on monocytic cell differentiation and 
foam cell formation and found out that while oxysterols 
stimulated CD36 expression and synthesis in human U937 
promonocytic cells, nonoxidized cholesterol did not exert 
any effect. When investigated in detail, the upregulation of 
CD36 was found to be based on the activation of protein 
kinase C , extracellular signal-regulated kinase 1/2 
(ERK1/2) and PPAR . 

 When cholesterol acceptors such as HDLs are present, 
cholesterol efflux from macrophages is accelerated, which 
prevents foam cell formation. The ATP-binding cassette 
transporters (ABCs) ABCA1 and ABCG1 facilitate transport 
of free cholesterol and cholesterol/phospholipid complexes 
(UC/PL) across cell membranes in cholesterol efflux path-
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ways. During this process, ABCA1 promotes nascent discoi-
dal pre- -HDL particle formation from lipid poor apoA-I. In 
humans and mice, apoA-I is produced primarily in the liver 
and intestine. Extracellular sources of apoA-I have been 
shown to increase cholesterol efflux from macrophages in 
vitro [93] and are considered to be necessary for the activa-
tion of cholesterol efflux through the ABCA1 pathway [94]. 
The Rho family GTPase Cdc42 directly interacts with 
ABCA1 to control filopodia formation, actin organization, 
and intracellular lipid transport [95]. Vesicular transport 
processes involving different interactive proteins like 2-
syntrophin are involved in cellular lipid homeostasis con-
trolled by ABCA1 [96]. 

 Cell-adhesion molecules such as ICAM-1, present within 
the endothelium and increases monocyte adhesion, is 
upregulated by lysophosphatidylcholine formation following 
phophatidylcholine degradation. This formation can induce 
mitochondrial ROS formation through Ca

2+
-dependent proc-

ess and leads to the activation of ERK/MAPK pathway. The 
mechanism is explained as the interaction between the Ca

2+
-

dependent mitochondrial dehydrogenases and complex I 
[97]. 

 Heme/iron oxidative damage can be promoted by in-
creased heme/iron levels released into the plasma from dam-
aged red blood cells that are removed by binding to he-
mopexin and haptoglobin and subsequent cellular uptake via 
CD163 cysteine-rich SRs into monocytes and macrophages. 
Heme is oxidized and rapidly converted into hemin. One 
portion is removed by hemopexin, but the rest interacts with 
cell membranes [98] and with circulating LDL and HDL 
[99]. Accumulation of hemin, however, triggers an oxida-
tive-stress response that promotes heme degradation by HO-
1 into bilirubin, iron, and CO. Because overexpression of 
HO-1 has been found to protect animals from atherosclerotic 
lesions, it is suggested that hemin is a risk factor for athero-
genesis and that HO-1 can protect cells from oxidative dam-
age [99]. Hemoglobin promotes formation of ROS and cata-
lyzes LDL oxidation and covalent cross-linking of the LDL 
protein apoB through the globin radical [100]. 

 Tyrosine kinases are known to affect vessels in several 
ways. In a study, H2O2 was shown to increase the phos-
phorylation of tyrosine kinases and lead to stronger binding 
of neutrophil cells on endothelium and alteration of vessel 
permeability [47]. 

 In advanced lesions, macrophages become apoptotic. 
Apoptosis is induced with the accumulation of free choles-
terol mainly in the endoplasmic reticulum membrane and 
alters the function of integral endoplasmic reticulum mem-
brane proteins. These chain of events induces the endoplas-
mic reticulum stress signal transduction pathway also known 
as the unfolded protein response. Evidence from in vivo stud-
ies suggests that this pathway plays important role in athero-
sclerotic lesions [101]. 

ANTIOXIDANT SYSTEMS IN ATHEROSCLEROSIS 

 A redox couple is a molecule or enzyme that switches 
between reduced and oxidized forms. Two of the most im-
portant redox couples are thioredoxin (Trx) and glutathione 
(GSH). Trx is a small (12 kDa) multifunctional protein car-

rying two cysteines that reversibly switches from dithiol to 
disulfide [Trx(SH)2 to TrxS2]. TrxS2 is generally reduced by 
NADPH and flavoprotein thioredoxin reductase (TrxR). Trx 
ubiquitously expressed in all organs including heart and is 
deeply involved in the protection of cardiomyocytes by its 
antioxidant, antiapoptotic as well as anti-inflammatory prop-
erties. Trx is localized in both the cytosol and the nucleus 
[18]. Plasma or serum Trx levels can be easily determined by 
utilizing the ELISA assay [102]. Moreover, in the various 
cardiovascular disease conditions, the expression level of 
Trx is altered either in organ or in plasma or in both. The 
uptake of ox-LDL by macrophages highly induces Trx ex-
pression [103]. Highly elevated plasma or serum Trx levels 
are reported in patients with diabetes mellitus, especially 
with diabetes mellitus type 2 or with glucose intolerance, and 
patients with hypertension, hypercholesterolemia, and athe-
rosclerosis, all of which are major risk factors for cardiovas-
cular diseases [103, 104]. By providing electrons, Trx and 
GSH maintain intracellular proteins in a reduced state. As 
part of the cellular defence against oxidative stress, expres-
sion of different genes of the GSH and Trx systems is in-
creased when cells are exposed to ROS [14]. ROS, RNS, and 
electrophilic lipids contribute to the posttranslational modifi-
cation of protein thiols (protein-SH) to form S-nitrosothiols 
(SNOs). This is a prevalent posttranslational protein modifi-
cation involved in redox-based cellular signaling. Under 
physiologic conditions, protein S-nitrosylation and SNOs 
provide protection preventing further cellular oxidative and 
nitrosative stress. Conversely, increased oxidative stress and 
the resultant dysregulation of NO are implicated in the 
pathogenesis of cardiovascular diseases [105]. Many intra-
cellular redox-sensitive processes, including synthesis of 
DNA precursors by ribonucleotide reductase, transcription 
factor regulation, and cellular growth [106], are modulated 
by the Trx system, composed of Trx, TrxR, and NADPH. 
Because the many antioxidant and regulatory roles of cytoso-
lic Trx are dependent on the activity of cytosolic TrxR, this 
selenoenzyme together with Trx is increasingly being recog-
nized as an essential component for cellular redox control 
and antioxidant defense [14, 106]. The ubiquitous 55-kDa 
selenoprotein TrxR1 was found upregulated in human athe-
rosclerotic plaques and expressed in foam cells [107]. TrxR1 
mRNA in human monocyte-derived macrophages dose-
dependently increases with ox-LDLs, but not with native 
LDLs. 

 Specific protein disulfide targets for reduction by Trx are 
protein disulfidisomerases (PDI) and Trx is also a specific 
electron donor for many peroxiredoxins, which are important 
for the reduction of peroxides and have generated recent 
interest for their potential to regulate signaling pathways. In 
macrophage-derived foam cells on ox-LDL stimulation, per-
oxiredoxin I (Prx I) plays a dual role. As an antioxidant, in-
duction of Prx I during treatment with ox-LDL led to im-
proved cell survival with a decrease in ROS. Additionally, 
activation of p38/MAPK was dependent on the upregulation 
of Prx I. Therefore, Prx I in macrophage-derived foam cells 
could be considered both an antioxidant and a regulator of 
oxidant-sensitive signal transduction [108]. 

 GSH is a cysteine-containing tripeptide that reversibly 
forms a homodimer, GSH disulfide (GSSG). The 
GSH/glutaredoxin (GR) system plays a critical role in pro-
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tecting macrophages from ox-LDL-induced cell death, and 
the disturbance of this system renders macrophages suscep-
tible to oxidative stress-induced cell injury [109]. 

 GSH and Trx are involved in cardiovascular disorders, 
and low serum concentration of GSH is associated with 
coronary artery disease [110], whereas elevated serum Trx 
levels are correlated with acute coronary syndrome [111]. 
Ox-LDLs are able to modulate the intracellular GSH level 
through the induction of enzymes in GSH synthesis [112], 
and macrophages treated with ox-LDL have increased cellu-
lar content of GSH [113] and activate the antioxidative Trx 
and GSH systems and TrxR1, and GSH reductase [114]. 
Pharmacologic depletion of cellular GSH enhanced ox-LDL 
cytotoxicity to human monocytes and macrophages [115], 
suggesting that GSH may protect macrophages from ox-LDL 
cell injury. Glutaredoxin (thioltransferase), which acts as an 
electron carrier in the glutathione-dependent synthesis of 
deoxyribonucleotides by the enzyme ribonucleotide reduc-
tase, was found highly expressed in macrophages invading 
atherosclerotic plaques [103]. 

LIPID RAFT REDOX SIGNALING IN ATHERO-
SCLEROSIS 

 As a mosaic of different compartments or domains, the 
biologic membranes can form a number of types of subdo-
mains due to the interaction between membrane components. 
Lipid rafts (LRs) are originally defined as sphingolipid- and 
cholesterol-rich microdomains in the plasma membrane that 
play a role in a number of signaling processes involving spe-
cific receptors [116]. A growing body of evidence supports 
the notion that lipid rafts play a crucial role in the redox sig-
naling that regulates the pathophysiology of many degenera-
tive diseases [117]. It is also known that distinct cholesterol- 
and sphingolipid-rich membrane rafts is importantly in-
volved in transmembrane signaling in a variety of mammal-
ian cells [118, 119]. The formation of LR signaling plat-
forms with aggregation of different signaling molecules may 
represent one of important mechanisms determining the va-
riety of transmembrane signaling; it also robustly amplifies 
signals from activated receptors. Among these LR signaling 
platforms, it is also reported that some large redox signaling 
molecules are also aggregated or recruited into LR clusters 
and subsequently produce superoxide and other ROS [120-
122]. This type of LR signaling platforms with ROS produc-
tion has been referred to as LR redox signaling platforms 
[121]. This LR signaling mechanism has also been reported 
to play important roles in the normal regulation of many 
other cell or organ functions and in the development of dif-
ferent pathological conditions of different cells or organs. 

 LRs are considered to be an important signaling compo-
nent in the cell membrane [116, 119]. LRs consist of dy-
namic assemblies of cholesterol and lipids with saturated 
acyl chains that include sphingolipids and glycosphingolip-
ids in the exoplasmic leaflet of the membrane bilayer. In 
addition, phospholipids with saturated fatty acids and choles-
terol in the inner leaflet are important elements for LRs. By 
interdigitation and transmembrane proteins, the long fatty 
acids of sphingolipids in the outer leaflets couple the 
exoplasmic and cytoplasmic leaflets, which form a very sta-
ble and detergent-resistant membrane structure [119, 123]. 

This stable structure is one of the most basic features of LRs. 
Different from this stable membrane structure, a large por-
tion of cell membrane lipid (60-80%) is more fluid, as it 
mostly consists of phospholipids with unsaturated and 
kinked fatty acid chains, as well as cholesterol. Another in-
teresting feature of these membrane LRs is their capacity of 
including or excluding proteins to variable extents when 
cells respond to different physiological or pathological stim-
uli. Many proteins have been demonstrated to have LR affin-
ity such as glycosylphosphatidylinositol (GPI) anchored pro-
teins, doubly acylated proteins, cholesterol-linked proteins, 
and some other transmembrane proteins, including ion chan-
nels, tyrosine kinases, and different membrane exchangers or 
transporters [119, 124]. 

 Actually two types of lipid rafts are identified in the bio-
logic membranes: caveolae and noncaveolae lipid rafts. Two 
major models are commonly cited or accepted currently to 
describe the nature or behavior of lipid rafts. In the first 
model, lipid rafts are considered relatively small structures 
enriched in cholesterol and sphingolipids within which asso-
ciated proteins are likely to be concentrated [116]. In this 
sphingolipid-enriched lipid raft, the most prevalent compo-
nent of the sphingolipid fraction in the cell membrane is 
sphingomyelin (SM), which is composed of a highly hydro-
phobic ceramide moiety and a hydrophilic phosphorylcho-
line headgroup. The tight interaction between the cholesterol 
sterol ring system and the ceramide moiety of SM promotes 
the lateral association of sphingolipids and cholesterol and 
thereby the formation of distinct microdomains. In these 
microdomains, cholesterol exerts a stabilizing role by filling 
the voids between the large and bulky glycerosphingolipids. 
It is this cholesterol-SM interaction that determines a transi-
tion of these microdomains into a liquid-ordered or even gel-
like phase, which is a unique characteristic of lipid rafts. 
Other domains of the cell membranes primarily exist in a 
more fluid liquid-disordered phase because of the absence of 
this cholesterol-SM interaction [125]. 

 Caveolae, 50-100 nm invaginations of the plasma mem-
brane, are a subset of lipid rafts enriched in sphingolipids 
and cholesterol. The caveolae can selectively sequestrate 
membrane-targeted proteins and create a unique signaling 
microdomain, thereby controlling transmembrane signaling. 
Caveolae are characterized by the presence of caveo-
lins,which distinguishes caveolae from other lipid raft do-
mains. At least three caveolin isoforms of molecular weights 
between 22 and 24 kDa have been identified: caveolin 1 and 
caveolin 2 are abundant in most cell types, while caveolin 3 
is specific to muscle cells [126]. Caveolin 1, a substrate for 
nonreceptor tyrosine kinases including Fyn, Abl, and Src, 
acts as a scaffolding protein and can be phosphorylated on 
tyrosine 14 by these kinases in response to external stimuli 
such as ROS. Such tyrosine phosphorylation activates the 
downstream signaling targets and thus serves as a crucial 
step for intracellular signaling occurring within caveolae. 
Sphingomyelinase (SMase)-dependent cleavage of sphingo-
myelin resulting in the formation of ceramide appears to play 
a crucial role in lipid raft formation [127]. Sphingomyelin 
hydrolysis is catalyzed by SMases that hydrolyze the phos-
phodiester bond of sphingomyelin, yielding ceramide and 
phosphocholine. There is convincing evidence that ceramide 
performs its signaling function from within the lipid rafts, 
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ordered sphingolipid- and cholesterol-rich lipid domains 
[128], which can function as an ordered support for receptor-
mediated signaling events. 

 Initiation of intracellular signaling cascades is associated 
with aggregation or reduction of cell surface receptors 
through LR clustering in the plasma membrane [120, 129]. 
These receptors aggregated in LR clusters are many, includ-
ing T-cell receptor/CD3 complex, B cell receptors, CD2, 
CD40, CD44, L-selectin, insulin receptors, or integrins, 
which transfer the signal to these transmembrane signaling 
proteins or proteins in inner leaflets of the cell membrane 
when they aggregate within LR clusters. This completes the 
transmembrane signaling process [130, 131]. Recent studies 
have indicated that several death receptors, including tumor 
necrosis factor receptor (TNFR), Fas, and DR 4 and 5 pro-
duce their detrimental effects through this mechanism [119, 
132]. During LR clustering, aggregated receptors or other 
signaling molecules could be either constitutively located in 
LRs or translocated by trafficking or recruitments upon 
stimulation [133, 134]. This dynamic clustering of lipid mi-
crodomains may represent a critical common mechanism in 
transmembrane signal transduction. It has been reported that 
clustered LRs contain different compositions of proteins, 
constituting platforms or macrodomains that form a new 
mixture of molecules, including different signaling mole-
cules and crosslinkers or enzymes [116, 119]. The formation 
of LR platforms activates, facilitates, or amplifies signal 
transduction. There is considerable evidence that LR cluster-
ing could be formed as a ceramide-enriched membrane plat-
form and that ceramide production or enrichment is through 
sphingomyelinase (SMase)-catalyzed cleavage of choline 
from sphingomyelin (SM) in individual LRs [135, 136]. 
However, ceramide-enriched membrane platforms might 
also be formed without existence of classically-defined LRs 
simply through a fusion of several ceramide molecules. 
These ceramide molecules could come from LRs or other 
membrane fractions. 

 These lipid-rich microdomains (lipid rafts) of the cell 
membrane are central to the understanding of cellular lipid 
homeostasis and the consequences of lipid loading on cell 
function. They are ceramide, which is induced by ox-LDL 
through enhancement of neutral and acidic sphingomyelinase 
(SMase) activity [137], leads to coalescence of submicro-
scopic rafts into large ceramide membrane macrodomains 
[135]. These macrodomains may serve as platforms for pro-
tein concentration and oligomerization, transmitting signals 
across the plasma membrane. ceramide then activates a vari-
ety of diverse protein kinase- and protein phosphatase-
dependent signaling pathways, which in most cases suppress 
cell growth or promote programmed cell death or both [135]. 
In addition, ceramide is a ligand for apoE, which binds more 
avidly to ceramide-rich microdomains on sphingomyelinase-
treated liposomes [138]. Together with the stimulation of 
heparan sulfate proteoglycan (HSPG) and low-density lipo-
protein receptor elated protein (LRP)-mediated uptake by 
macrophages through ceramide and apoE, which is crucial 
for foam cell formation [139], a function of ceramide-rich 
microdomains in apoE-dependent metabolism is suggested. 

 Lipid rafts can be disrupted by cholesterol depletion, 
whereas cholesterol enrichment stabilizes the formation of 

lipid rafts [116]. E-LDL preferentially increases cellular cho-
lesterol, whereas ox-LDL increases cellular ceramide content 
because of a higher mRNA expression of acid and neutral 
sphingomyelinase (SMase), neutral SMase activation-
associated factor, and glucosylceramidase during ox-LDL 
loading [3]. E-LDL and ox-LDL differentially influence 
membrane-microdomain formation in human macrophages 
and thereby differ in their regulation of macrophage effector 
functions during atherogenesis. Glycosphingolipids, as con-
stituents of lipid rafts and especially ceramides, are ligands 
for apoE, and apoE binds more avidly to ceramide-rich mi-
crodomains on sphingomyelinase-treated liposomes [138]. 
This indicates a function of ceramide-rich microdomains in 
apoE-dependent metabolism. The generation of ceramide in 
the plasma membrane by SMases may stimulate HSPG and 
low-density lipoprotein receptor-related protein (LRP)-
mediated uptake by macrophages, which is catalyzed by 
apoE, and plays a crucial role in tissue remodeling and foam 
cell formation [139]. Concerning the relation of atherogenic 
LDL and lipid rafts in human aortic endothelial cells, ox-
LDL causes the disappearance of the lipid-raft marker GM1 
from the plasma membrane. Exposure to ox-LDL may result 
in the disruption or redistribution of lipid rafts, which in turn 
induces stiffening of the endothelium, an increase in endo-
thelial force generation, and the potential for network forma-
tion [140]. 

 A significant amount of eNOS, which generates NO in 
the endothelium, is found in caveolae. Caveolae are flask-
shaped invaginations of the plasma membrane that are 
coated with the protein caveolin, which can function as a 
negative regulator of eNOS [141]. They contain proportion-
ately small amounts of phospholipids and large amounts of 
cholesterol, sphingomyelin, and glycosphingolipids as well 
as SR-BI and CD36. Ox-LDL causes an efflux of caveolae 
cholesterol out of the cell and onto ox-LDL, leading to a 
redistribution of eNOS and caveolin to an intracellular mem-
brane [142]. This requires the presence of ox-LDL binding to 
CD36, whereas the absence of CD36 protects caveolae from 
cholesterol depletion and the translocation of eNOS out of 
caveolae and maintains the ability of acetylcholine to stimu-
late NO production. Caveolae-localized sphingomyelin may 
serve as the substrate for the generation of the ceramide that 
stimulates eNOS. In contrast to ox-LDL and CD36, which 
remove cholesterol from caveolae, HDL and SR-BI move 
cholesterol into them. This could serve as an indirect effect 
on eNOS function and helps to maintain the cholesterol level 
of caveolae, which allows eNOS to remain associated with 
caveolae [143]. 

 Accumulating evidence exists that membrane lipid rafts 
and lipid platforms, respectively, may represent the impor-
tant mechanisms by which redox signals are produced and 
transmitted in response to various agonists or stimuli [125]. 
In this regard, many studies have shown that lipid rafts or 
platforms may participate in the signaling of cell apoptosis 
associated with oxidative stress during activation of various 
death receptors. It has been well documented that death re-
ceptors, in particular, Fas and tumor necrosis factor receptor 
1 (TNFR1), are localized in lipid rafts and that the receptors 
in lipid rafts can interact to stabilize the raft further and al-
low raft aggregation (i .e., clustering) and the recruitment of 
raftophilic molecules to the complex, producing massive 
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signaling action. These lipid raft-derived platforms are also 
involved in the early alterations of cell functions during acti-
vation of death receptors, which could be physiological or 
pathological. It has been reported that various death factors 
bind to their receptors in individual lipid rafts and subse-
quently stimulate acid SMase to produce ceramide from 
sphingomyelin in endothelial cells. More recently, evidence 
is increasing that the formation of lipid raft-derived or cera-
mide-enriched membrane platforms may be altered by redox 
molecules. Reports indicate that SOD decreased, but O2˙  
increased the formation of ceramide-enriched membrane 
platforms in the membrane of coronary arterial endothelial 
cells [122]. In other studies, H2O2 was also found to activate 
prosurvival signaling pathways, including activation of PI3 
kinase/Akt and ERK1/2 by a lipid raft-dependent mecha-
nism. In addition to this direct evidence, ROS were found to 
influence lipid-raft signaling or function through their ac-
tions on many lipid-raft components such as ceramide pro-
duction, cholesterol, and related raft proteins [144, 145]. 

 It has been indicated that induction of lipid oxidation 
through ROS can amplify foam cell formation through ox-
LDL uptake and a subsequent clustering of ceramide-
enriched lipid domains. In addition, ox-LDL may affect cell-
surface turnover of ceramide-backbone sphingolipids and 
apoE-mediated uptake by LRP family members. This in turn 
leads to cell-surface expansion of ceramide-enriched do-
mains and activation of apoE/LRP1/CD1-mediated antigen 
presentation. HDL-mediated lipid efflux, however, disrupts 
lipid membrane microdomains and prevents foam cell for-
mation. It is concluded that lipid rafts and related oxidative 
processes play an important role in the formation of macro-
phage foam cells and thus in the progression of atherosclero-
sis [3]. 

 In addition to the role of the lipid-raft redox-signaling 
network in alterations of macrophage behavior, this signaling 
network may also be importantly involved in cell deform-
ability, thereby initiating or promoting atherogenesis. It has 
been indicated that disruption of lipid rafts by oxidants such 
as ox-LDL alters the cytoskeletal structure, including the 
extent of polymerization, stabilization, crosslinking, and 
membrane association. These molecular alterations may in-
crease force generation by the cytoskeleton, resulting in a 
stiffening of the cytoskeleton and hence stiffening of the cell 
and plasma membrane. Increased force generation and in-
creased stiffness may also elevate membrane tension and 
thereby influence the activity of various mechanosensitive 
ion channels. Direct evidence suggests that ox-LDL could 
disrupt lipid rafts, resulting in a series of pathological 
changes in the biomechanical properties of vascular endothe-
lial cells and ultimately inducing endothelial dysfunction and 
atherogenesis [146]. 

 Mitogen-activated protein kinases and receptor tyrosine 
kinases were first recognized as residing in caveolin-rich 
microdomains; certain GPCRs and associated molecules 
were subsequently shown to be enriched in these domains 
[147-150]. Besides these proteins, several other proteins are 
associated to or included in different rafts shown in Table 2 

[151-156]. 

 Little is known about how proteins localize to different 
lipid domains. Different mechanisms for lipid raft targeting 

have been proposed or described: (i) Proteins may bind to 
caveolin via a scaffolding domain located near the N-
terminus of caveolin-1 and caveolin-3 [157, 158]. Many pro-
teins that bind to caveolin contain a putative caveolin-
binding motif (a loosely defined pattern of aromatic and 
nonaromatic residues) [159]. (ii) N-linked myristoylation (of 
a glycine residue following the initial methionine) or thio-
acylation with palmitate (palmitoylation of cysteine residues) 
causes partitioning into the lipid-ordered phase of lipid rafts 
[160-165]. Caveolins function not only as scaffolds that lo-
calize signaling proteins, but, in addition, can inhibit numer-
ous enzymes, including AC, eNOS, and several kinases and 
serine/threonine phosphatases [166-173]. Consistent with the 
latter findings, data from studies with knockout animal mod-
els and from overexpression protocols suggest that caveolins 
play central roles in regulating signal transduction by various 
systems [173-177]. 

 M-CSF stimulates raft-associated NADPH oxidase, re-
sulting in ROS formation, which regulates Akt and 
p38/MAPK, and thus contributes to monocyte/macrophage 
survival [178]. Superoxide-producing phagocyte NADPH-
oxidase consists of a membrane-bound flavocytochrome 
b558 complex with the subunits gp91

phox
 and p22

phox
, and the 

cytosolic factors p47
phox

, p67
phox

, and the small GTPase Rac-
1, which translocate to the membrane to assemble the active 
complex after cell activation. Activated Rac-1 stabilizes the 
NADPH oxidase complex and promotes the production of 
ROS, which is used for host defense as well as oxidation of 
LDL (Fig. 2). ROS can also directly activate extracellular 
signal-regulated kinases (ERK), a member of mitogen-
activated protein kinases (MAPKs), which regulate cell pro-
liferation, differentiation, motility, and survival, and the PI3-
kinase enzyme complex, creating a bridge between the 
MAPK and PI3-kinase pathways [179]. In addition, M-CSF 
can directly induce PI3-kinase activation and phosphatidyli-
nositolphosphate formation, resulting in NADPH-oxidase-
mediated ROS production, which leads to induced Erk acti-
vation and monocyte survival [180]. 

 NADPH oxidase as well as the tyrosine kinases of the 
Src family (e.g., Lck, Fyn, and Lyn), which are lipid-
modified signaling proteins, GPI-linked proteins, and adap-
tor proteins are constituents of raft-membrane microdo-
mains. On receptor binding, immune receptors become raft 
associated, and additional components of the signaling path-
ways are recruited to rafts to form signaling complexes. The 
entry of immune receptors into rafts can regulate cell activa-
tion, and raft integrity is crucial for the initiation and main-
tenance of intracellular signals [181]. It has been shown that 
superoxide production by NADPH oxidase is inhibited by 
cholesterol depletion because of impaired translocation of 
cytosolic protein subunits to the membrane [182]. Formation 
of lipid rafts in the membrane of coronary endothelial cells 
induces clustering and activation of reduced NADPH oxi-
dase, thereby forming a redox signaling platform on the cell 
membrane that mediates transmembrane signaling of death 
receptors, resulting in endothelial dysfunction [121]. How-
ever, the inappropriate or excessive action of the NADPH 
oxidase system results in chronic inflammatory disorders 
like atherosclerosis. The sphingolipid ceramide has been 
reported as one of the critical signaling molecules to mediate 
the activation of NADH/NADPH oxidase in different cells. 
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Results demonstrated an induction of ceramide rafts on ox-
LDL loading of human macrophages [183], which could be 
involved in the activation of NADH/NADPH oxidase. 

CONCLUSION 

 There is a large body of evidence connecting the effects 
of oxidative stress and related signaling mechanisms with 

Table 2. Proteins Associated to or Included in Different Rafts and Their Functions Protein Function 

Protein Function 

Glycosylphosphatidylinositol protein linked proteins Several signaling mechanisms 

Flotillins Uptake of cholera toxin and endocytosis of glycosylphosphatidylinositol linked proteins 

Src family kinases Phosphorylation of proteins on tyrosine residues 

Epidermal growth factor receptors Binds ligands as epidermal growth factor and transforming growth factor  

Platelet derived growth factor receptors Regulates cell proliferation, cellular differentiation, cell growth and development 

Endothelin receptors Calcium homeostasis 

Phosphotyrosine phosphatase syp Signal transduction, binds to activated platelet derived growth factor recept 

Growth factor receptor bound protein 2 Signal transduction, proliferation of various cell types 

MAP kinase Gene expression, mitosis, differentiation, proliferation, and cell survival/apoptosis 

Protein kinase C Phosphorylation of hydroxyl groups of serine and threonine amino acid residues on the proteins 

and controlling their functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). NADPH oxidase and lipid raft signaling. NADPH oxidase is activated by several factors, following the phosphorylation of 

p47phox, cytosolic subunits are bound to subunits in the membrane and then it catalyzes superoxide radical formation. Superoxide radical 

induces modification of LDL, expression of sphingomyelinase mRNA and degradation of sphingomyelin to ceramide. On the other hand, 

lipid rafts (cholesterol rich domains) are formed by several factors mainly by cholesterol. Receptors are aggregated in lipid raft clusters and 

these structures play important role in signaling mechanisms. Also NADPH oxidase is activated by lipid rafts. All these events increase oxi-

dative stress in the cell. 
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atherogenesis. Redox signaling is shown to play crucial role 
in several cardiovascular diseases also in hypercholes-
terolemia induced atherosclerosis. Tightly regulated ROS 
production by a family of NADPH oxidases, which is espe-
cially important in redox signaling, are raft associated. Un-
derstanding how lipid raft associated redox signaling path-
ways promote the process of atherosclerosis can be a key 
factor for clinical approaches. 
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