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Abstract A cornerstone of theoretical neuroscience is the circuit model: a system of equations

that captures a hypothesized neural mechanism. Such models are valuable when they give rise to

an experimentally observed phenomenon – whether behavioral or a pattern of neural activity – and

thus can offer insights into neural computation. The operation of these circuits, like all models,

critically depends on the choice of model parameters. A key step is then to identify the model

parameters consistent with observed phenomena: to solve the inverse problem. In this work, we

present a novel technique, emergent property inference (EPI), that brings the modern probabilistic

modeling toolkit to theoretical neuroscience. When theorizing circuit models, theoreticians

predominantly focus on reproducing computational properties rather than a particular dataset. Our

method uses deep neural networks to learn parameter distributions with these computational

properties. This methodology is introduced through a motivational example of parameter inference

in the stomatogastric ganglion. EPI is then shown to allow precise control over the behavior of

inferred parameters and to scale in parameter dimension better than alternative techniques. In the

remainder of this work, we present novel theoretical findings in models of primary visual cortex and

superior colliculus, which were gained through the examination of complex parametric structure

captured by EPI. Beyond its scientific contribution, this work illustrates the variety of analyses

possible once deep learning is harnessed towards solving theoretical inverse problems.

Introduction
The fundamental practice of theoretical neuroscience is to use a mathematical model to understand

neural computation, whether that computation enables perception, action, or some intermediate

processing. A neural circuit is systematized with a set of equations – the model – and these equa-

tions are motivated by biophysics, neurophysiology, and other conceptual considerations

(Kopell and Ermentrout, 1988; Marder, 1998; Abbott, 2008; Wang, 2010; O’Leary et al., 2015).

The function of this system is governed by the choice of model parameters, which when configured

in a particular way, give rise to a measurable signature of a computation. The work of analyzing a

model then requires solving the inverse problem: given a computation of interest, how can we rea-

son about the distribution of parameters that give rise to it? The inverse problem is crucial for rea-

soning about likely parameter values, uniquenesses and degeneracies, and predictions made by the

model (Gutenkunst et al., 2007; Erguler and Stumpf, 2011; Mannakee et al., 2016).
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Ideally, one carefully designs a model and analytically derives how computational properties

determine model parameters. Seminal examples of this gold standard include our field’s understand-

ing of memory capacity in associative neural networks (Hopfield, 1982), chaos and autocorrelation

timescales in random neural networks (Sompolinsky et al., 1988), central pattern generation

(Olypher and Calabrese, 2007), the paradoxical effect (Tsodyks et al., 1997), and decision making

(Wong and Wang, 2006). Unfortunately, as circuit models include more biological realism, theory

via analytical derivation becomes intractable. Absent this analysis, statistical inference offers a toolkit

by which to solve the inverse problem by identifying, at least approximately, the distribution of

parameters that produce computations in a biologically realistic model (Foster et al., 1993;

Prinz et al., 2004; Achard and De Schutter, 2006; Fisher et al., 2013; O’Leary et al., 2014;

Alonso and Marder, 2019).

Statistical inference, of course, requires quantification of the sometimes vague term computation.

In neuroscience, two perspectives are dominant. First, often we directly use an exemplar dataset: a

collection of samples that express the computation of interest, this data being gathered either

experimentally in the lab or from a computer simulation. Although a natural choice given its connec-

tion to experiment (Paninski and Cunningham, 2018), some drawbacks exist: these data are well

known to have features irrelevant to the computation of interest (Niell and Stryker, 2010;

Saleem et al., 2013; Musall et al., 2019), confounding inferences made on such data. Related to

this point, use of a conventional dataset encourages conventional data likelihoods or loss functions,

which focus on some global metric like squared error or marginal evidence, rather than the computa-

tion itself.

Alternatively, researchers often quantify an emergent property (EP): a statistic of data that directly

quantifies the computation of interest, wherein the dataset is implicit. While such a choice may seem

esoteric, it is not: the above ‘gold standard’ examples (Hopfield, 1982; Sompolinsky et al., 1988;

Olypher and Calabrese, 2007; Tsodyks et al., 1997; Wong and Wang, 2006) all quantify and focus

on some derived feature of the data, rather than the data drawn from the model. An emergent

property is of course a dataset by another name, but it suggests different approach to solving the

same inverse problem: here, we directly specify the desired emergent property – a statistic of data

drawn from the model – and the value we wish that property to have, and we set up an optimization

program to find the distribution of parameters that produce this computation. This statistical frame-

work is not new: it is intimately connected to the literature on approximate bayesian computation

(Beaumont et al., 2002; Marjoram et al., 2003; Sisson et al., 2007), parameter sensitivity analyses

(Raue et al., 2009; Karlsson et al., 2012; Hines et al., 2014; Raman et al., 2017), maximum

entropy modeling (Elsayed and Cunningham, 2017; Savin and Tkačik, 2017; Młynarski et al.,

2020), and approximate bayesian inference (Tran et al., 2017; Gonçalves et al., 2019); we detail

these connections in Section ’Related approaches’.

The parameter distributions producing a computation may be curved or multimodal along various

parameter axes and combinations. It is by quantifying this complex structure that emergent property

inference offers scientific insight. Traditional approximation families (e.g. mean-field or mixture of

gaussians) are limited in the distributional structure they may learn. To address such restrictions on

expressivity, advances in machine learning have used deep probability distributions as flexible

approximating families for such complicated distributions (Rezende and Mohamed, 2015;

Papamakarios et al., 2019a) (see Section ’Deep probability distributions and normalizing flows’).

However, the adaptation of deep probability distributions to the problem of theoretical circuit analy-

sis requires recent developments in deep learning for constrained optimization (Loaiza-

Ganem et al., 2017), and architectural choices for efficient and expressive deep generative model-

ing (Dinh et al., 2017; Kingma and Dhariwal, 2018). We detail our method, which we call emergent

property inference (EPI) in Section ’Emergent property inference via deep generative models’.

Equipped with this method, we demonstrate the capabilities of EPI and present novel theoretical

findings from its analysis. First, we show EPI’s ability to handle biologically realistic circuit models

using a five-neuron model of the stomatogastric ganglion (Gutierrez et al., 2013): a neural circuit

whose parametric degeneracy is closely studied (Goldman et al., 2001). Then, we show EPI’s scal-

ability to high dimensional parameter distributions by inferring connectivities of recurrent neural net-

works that exhibit stable, yet amplified responses – a hallmark of neural responses throughout the

brain (Murphy and Miller, 2009; Hennequin et al., 2014; Bondanelli et al., 2019). In a model of

primary visual cortex (Litwin-Kumar et al., 2016; Palmigiano et al., 2020), EPI reveals how the
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recurrent processing across different neuron-type populations shapes excitatory variability: a finding

that we show is analytically intractable. Finally, we investigated the possible connectivities of a supe-

rior colliculus model that allow execution of different tasks on interleaved trials (Duan et al., 2021).

EPI discovered a rich distribution containing two connectivity regimes with different solution classes.

We queried the deep probability distribution learned by EPI to produce a mechanistic understanding

of neural responses in each regime. Intriguingly, the inferred connectivities of each regime repro-

duced results from optogenetic inactivation experiments in markedly different ways. These theoreti-

cal insights afforded by EPI illustrate the value of deep inference for the interrogation of neural

circuit models.

Results

Motivating emergent property inference of theoretical models
Consideration of the typical workflow of theoretical modeling clarifies the need for emergent prop-

erty inference. First, one designs or chooses an existing circuit model that, it is hypothesized, cap-

tures the computation of interest. To ground this process in a well-known example, consider the

stomatogastric ganglion (STG) of crustaceans, a small neural circuit which generates multiple rhyth-

mic muscle activation patterns for digestion (Marder and Thirumalai, 2002). Despite full knowledge

of STG connectivity and a precise characterization of its rhythmic pattern generation, biophysical

models of the STG have complicated relationships between circuit parameters and computation

(Goldman et al., 2001; Prinz et al., 2004).

A subcircuit model of the STG (Gutierrez et al., 2013) is shown schematically in Figure 1A. The

fast population (f1 and f2) represents the subnetwork generating the pyloric rhythm and the slow

population (s1 and s2) represents the subnetwork of the gastric mill rhythm. The two fast neurons

mutually inhibit one another, and spike at a greater frequency than the mutually inhibiting slow neu-

rons. The hub neuron couples with either the fast or slow population, or both depending on modula-

tory conditions. The jagged connections indicate electrical coupling having electrical conductance

gel, smooth connections in the diagram are inhibitory synaptic projections having strength gsynA onto

the hub neuron, and gsynB ¼ 5 nS for mutual inhibitory connections. Note that the behavior of this

model will be critically dependent on its parameterization – the choices of conductance parameters

z ¼ ½gel; gsynA�.
Second, once the model is selected, one must specify what the model should produce. In this

STG model, we are concerned with neural spiking frequency, which emerges from the dynamics of

the circuit model (Figure 1B). An emergent property studied by Gutierrez et al. is the hub neuron fir-

ing at an intermediate frequency between the intrinsic spiking rates of the fast and slow populations.

This emergent property (EP) is shown in Figure 1C at an average frequency of 0.55 Hz. To be pre-

cise, we define intermediate hub frequency not strictly as 0.55 Hz, but frequencies of moderate devi-

ation from 0.55 Hz between the fast (.35Hz) and slow (.68Hz) frequencies.

Third, the model parameters producing the emergent property are inferred. By precisely quanti-

fying the emergent property of interest as a statistical feature of the model, we use emergent prop-

erty inference (EPI) to condition directly on this emergent property. Before presenting technical

details (in the following section), let us understand emergent property inference schematically. EPI

(Figure 1D) takes, as input, the model and the specified emergent property, and as its output,

returns the parameter distribution (Figure 1E). This distribution – represented for clarity as samples

from the distribution – is a parameter distribution constrained such that the circuit model produces

the emergent property. Once EPI is run, the returned distribution can be used to efficiently generate

additional parameter samples. Most importantly, the inferred distribution can be efficiently queried

to quantify the parametric structure that it captures. By quantifying the parametric structure govern-

ing the emergent property, EPI informs the central question of this inverse problem: what aspects or

combinations of model parameters have the desired emergent property?

Emergent property inference via deep generative models
EPI formalizes the three-step procedure of the previous section with deep probability distributions

(Rezende and Mohamed, 2015; Papamakarios et al., 2019a). First, as is typical, we consider the

model as a coupled set of noisy differential equations. In this STG example, the model activity (or
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state) x ¼ xf1; xf2; xhub; xs1; xs2½ � is the membrane potential for each neuron, which evolves according to

the biophysical conductance-based equation:

Cm

dxðtÞ
dt

¼�hðxðtÞ;zÞþ dB (1)

where Cm = 1nF, and h is a sum of the leak, calcium, potassium, hyperpolarization, electrical, and

synaptic currents, all of which have their own complicated dependence on activity x and parameters

z¼ ½gel;gsynA�, and dB is white gaussian noise (Gutierrez et al., 2013; see Section ’STG model’ for

more detail).

Second, we determine that our model should produce the emergent property of ‘intermediate

hub frequency’ (Figure 1C). We stipulate that the hub neuron’s spiking frequency – denoted by sta-

tistic !hubðxÞ – is close to a frequency of 0.55 Hz, between that of the slow and fast frequencies.

Mathematically, we define this emergent property with two constraints: that the mean hub frequency

is 0.55 Hz,

Emergent property:

intermediate hub frequency
Circuit model: 

STG

...

EPI

hub

f1

s2

f2 s1

A B CEmergent property statistic:

spiking frequency

D

circuit model

emergent property

E EPI distribution EPI simulationsFEmergent property inference

Figure 1. Emergent property inference in the stomatogastric ganglion. (A) Conductance-based subcircuit model of the STG. (B) Spiking frequency

!ðx; zÞ is an emergent property statistic. Simulated at gel ¼ 4:5 nS and gsynA ¼ 3 nS. (C) The emergent property of intermediate hub frequency.

Simulated activity traces are colored by log probability of generating parameters in the EPI distribution (Panel E). (D) For a choice of circuit model and

emergent property, EPI learns a deep probability distribution of parameters z. (E) The EPI distribution producing intermediate hub frequency. Samples

are colored by log probability density. Contours of hub neuron frequency error are shown at levels of 0.525, 0.53, . . . 0.575 Hz (dark to light gray away

from mean). Dimension of sensitivity v1 (solid arrow) and robustness v2 (dashed arrow). (F) (Top) The predictions of the EPI distribution. The black and

gray dashed lines show the mean and two standard deviations according the emergent property. (Bottom) Simulations at the starred parameter values.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Emergent property inference in a 2D linear dynamical system.

Figure supplement 2. Analytic contours of inferred EPI distribution.

Figure supplement 3. Sampled dynamical systems z ~ quðz j XÞ and their simulated activity from xðt ¼ 0Þ ¼ ½
ffiffi

2
p
2
;�

ffiffi

2
p
2
� colored by log probability.

Figure supplement 4. EPI optimization of the STG model producing network syncing.
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Ez;x !hubðx;zÞ½ � ¼ 0:55 (2)

and that the variance of the hub frequency is moderate

Varz;x !hubðx;zÞ½ � ¼ 0:0252: (3)

In the emergent property of intermediate hub frequency, the statistic of hub neuron frequency is

an expectation over the distribution of parameters z and the distribution of the data x that those

parameters produce. We define the emergent property X as the collection of these two constraints.

In general, an emergent property is a collection of constraints on statistical moments that together

define the computation of interest.

Third, we perform emergent property inference: we find a distribution over parameter configura-

tions z of models that produce the emergent property; in other words, they satisfy the constraints

introduced in Equations 2 and 3. This distribution will be chosen from a family of probability distri-

butions Q ¼ quðzÞ : u 2 Qf g, defined by a deep neural network (Rezende and Mohamed, 2015;

Papamakarios et al., 2019a; Figure 1D, EPI box). Deep probability distributions map a simple ran-

dom variable z0 (e.g. an isotropic gaussian) through a deep neural network with weights and biases

u to parameters z ¼ guðz0Þ of a suitably complicated distribution (see Section ’Deep probability distri-

butions and normalizing flows’ for more details). Many distributions in Q will respect the emergent

property constraints, so we select the most random (highest entropy) distribution, which also means

this approach is equivalent to bayesian variational inference (see Section ’EPI as variational infer-

ence’). In EPI optimization, stochastic gradient steps in u are taken such that entropy is maximized,

and the emergent property X is produced (see Section ’Emergent property inference (EPI)’). We

then denote the inferred EPI distribution as quðz j XÞ, since the structure of the learned parameter

distribution is determined by weights and biases u, and this distribution is conditioned upon emer-

gent property X .

The structure of the inferred parameter distributions of EPI can be analyzed to reveal key informa-

tion about how the circuit model produces the emergent property. As probability in the EPI distribu-

tion decreases away from the mode of quðz j XÞ (Figure 1E yellow star), the emergent property

deteriorates. Perturbing z along a dimension in which quðz j XÞ changes little will not disturb the

emergent property, making this parameter combination robust with respect to the emergent prop-

erty. In contrast, if z is perturbed along a dimension with strongly decreasing quðz j XÞ, that parame-

ter combination is deemed sensitive (Raue et al., 2009; Raman et al., 2017). By querying the

second-order derivative (Hessian) of log quðz j XÞ at a mode, we can quantitatively identify how sensi-

tive (or robust) each eigenvector is by its eigenvalue; the more negative, the more sensitive and the

closer to zero, the more robust (see Section ’Hessian sensitivity vectors’). Indeed, samples equidis-

tant from the mode along these dimensions of sensitivity (v1, smaller eigenvalue) and robustness (v2,

greater eigenvalue) (Figure 1E, arrows) agree with error contours (Figure 1E contours) and have

diminished or preserved hub frequency, respectively (Figure 1F activity traces). The directionality of

v2 suggests that changes in conductance along this parameter combination will most preserve hub

neuron firing between the intrinsic rates of the pyloric and gastric mill rhythms. Importantly and

unlike alternative techniques, once an EPI distribution has been learned, the modes and Hessians of

the distribution can be measured with trivial computation (see Section ’Deep probability distribu-

tions and normalizing flows’).

In the following sections, we demonstrate EPI on three neural circuit models across ranges of bio-

logical realism, neural system function, and network scale. First, we demonstrate the superior scal-

ability of EPI compared to alternative techniques by inferring high-dimensional distributions of

recurrent neural network connectivities that exhibit amplified, yet stable responses. Next, in a model

of primary visual cortex (Litwin-Kumar et al., 2016; Palmigiano et al., 2020), we show how EPI dis-

covers parametric degeneracy, revealing how input variability across neuron types affects the excit-

atory population. Finally, in a model of superior colliculus (Duan et al., 2021), we used EPI to

capture multiple parametric regimes of task switching, and queried the dimensions of parameter

sensitivity to characterize each regime.
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Scaling inference of recurrent neural network connectivity with EPI
To understand how EPI scales in comparison to existing techniques, we consider recurrent neural

networks (RNNs). Transient amplification is a hallmark of neural activity throughout cortex and is

often thought to be intrinsically generated by recurrent connectivity in the responding cortical area

(Murphy and Miller, 2009; Hennequin et al., 2014; Bondanelli et al., 2019). It has been shown

that to generate such amplified, yet stabilized responses, the connectivity of RNNs must be non-nor-

mal (Goldman, 2009; Murphy and Miller, 2009), and satisfy additional constraints (Bondanelli and

Ostojic, 2020). In theoretical neuroscience, RNNs are optimized and then examined to show how

dynamical systems could execute a given computation (Sussillo, 2014; Barak, 2017), but such bio-

logically realistic constraints on connectivity (Goldman, 2009; Murphy and Miller, 2009;

Bondanelli and Ostojic, 2020) are ignored for simplicity or because constrained optimization is diffi-

cult. In general, access to distributions of connectivity that produce theoretical criteria like stable

amplification, chaotic fluctuations (Sompolinsky et al., 1988), or low tangling (Russo et al., 2018)

would add scientific value to existing research with RNNs. Here, we use EPI to learn RNN connectivi-

ties producing stable amplification, and demonstrate the superior scalability and efficiency of EPI to

alternative approaches.

We consider a rank-2 RNN with N neurons having connectivity W ¼ UV> and dynamics

t _x¼�xþWx; (4)

where U ¼ U1 U2½ �þ g�ðUÞ, V ¼ V1 V2½ � þ g�ðVÞ, U1U2;V1;V2 2 �1;1½ �N , and �
ðUÞ
i;j ;�

ðVÞ
i;j ~Nð0;1Þ. We

infer connectivity parameters z¼ U1;U2;V1;V2½ � that produce stable amplification. Two conditions

are necessary and sufficient for RNNs to exhibit stable amplification (Bondanelli and Ostojic, 2020):

realðl1Þ<1 and ls
1
>1, where l1 is the eigenvalue of W with greatest real part and ls is the maximum

eigenvalue of W s ¼ WþW>
2

. RNNs with realðl1Þ ¼ 0:5� 0:5 and ls
1
¼ 1:5� 0:5 will be stable with modest

decay rate (realðl1Þ close to its upper bound of 1) and exhibit modest amplification (ls
1
close to its

lower bound of 1). EPI can naturally condition on this emergent property

X :Ez;x

realðl1Þ
ls
1

� �

¼ 0:5

1:5

� �

Varz;x
realðl1Þ
ls
1

� �

¼ 0:252

0:252

� �

:

(5)

Variance constraints predicate that the majority of the distribution (within two standard devia-

tions) are within the specified ranges.

For comparison, we infer the parameters z likely to produce stable amplification using two alter-

native simulation-based inference approaches. Sequential Monte Carlo approximate bayesian com-

putation (SMC-ABC) (Sisson et al., 2007) is a rejection sampling approach that uses SMC

techniques to improve efficiency, and sequential neural posterior estimation (SNPE)

(Gonçalves et al., 2019) approximates posteriors with deep probability distributions (see Section

’Related approaches’). Unlike EPI, these statistical inference techniques do not constrain the predic-

tions of the inferred distribution, so they were run by conditioning on an exemplar dataset x0 ¼ m,

following standard practice with these methods (Sisson et al., 2007; Gonçalves et al., 2019). To

compare the efficiency of these different techniques, we measured the time and number of simula-

tions necessary for the distance of the predictive mean to be less than 0.5 from m ¼ x0 (see Section

’Scaling EPI for stable amplification in RNNs’).

As the number of neurons N in the RNN, and thus the dimension of the parameter space

z 2 ½�1; 1�4N , is scaled, we see that EPI converges at greater speed and at greater dimension than

SMC-ABC and SNPE (Figure 2A). It also becomes most efficient to use EPI in terms of simulation

count at N ¼ 50 (Figure 2B). It is well known that ABC techniques struggle in parameter spaces of

modest dimension (Sisson et al., 2018), yet we were careful to assess the scalability of SNPE, which

is a more closely related methodology to EPI. Between EPI and SNPE, we closely controlled the

number of parameters in deep probability distributions by dimensionality (Figure 2—figure supple-

ment 1), and tested more aggressive SNPE hyperparameter choices when SNPE failed to converge

(Figure 2—figure supplement 2). In this analysis, we see that deep inference techniques EPI and

SNPE are far more amenable to inference of high dimensional RNN connectivities than rejection
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EPI SNPE SMC

and

Figure 2. Inferring recurrent neural networks with stable amplification. (A) Wall time of EPI (blue), SNPE (orange), and SMC-ABC (green) to converge on

RNN connectivities producing stable amplification. Each dot shows convergence time for an individual random seed. For reference, the mean wall time

for EPI to achieve its full constraint convergence (means and variances) is shown (blue line). (B) Simulation count of each algorithm to achieve

convergence. Same conventions as A. (C) The predictive distributions of connectivities inferred by EPI (blue), SNPE (orange), and SMC-ABC (green),

with reference to x0 ¼ m (gray star). (D) Simulations of networks inferred by each method (t ¼ 100ms). Each trace (15 per algorithm) corresponds to

simulation of one z. (Below) Ratio of obtained samples producing stable amplification, stable monotonic decay, and instability.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Architecture parameter comparison of EPI and SNPE.

Figure supplement 2. SNPE convergence was enabled by increasing nround, not natom.

Figure 2 continued on next page
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sampling techniques like SMC-ABC, and that EPI outperforms SNPE in both wall time (elapsed real

time) and simulation count.

No matter the number of neurons, EPI always produces connectivity distributions with mean and

variance of realðl1Þ and ls
1
according to X (Figure 2C, blue). For the dimensionalities in which SMC-

ABC is tractable, the inferred parameters are concentrated and offset from the exemplar dataset x0
(Figure 2C, green). When using SNPE, the predictions of the inferred parameters are highly concen-

trated at some RNN sizes and widely varied in others (Figure 2C, orange). We see these properties

reflected in simulations from the inferred distributions: EPI produces a consistent variety of stable,

amplified activity norms jxðtÞj, SMC-ABC produces a limited variety of responses, and the changing

variety of responses from SNPE emphasizes the control of EPI on parameter predictions (Figure 2D).

Even for moderate neuron counts, the predictions of the inferred distribution of SNPE are highly

dependent on N and g, while EPI maintains the emergent property across choices of RNN (see Sec-

tion ’Effect of RNN parameters on EPI and SNPE inferred distributions’).

To understand these differences, note that EPI outperforms SNPE in high dimensions by using

gradient information (from rz½realðl1Þ; ls1�>). This choice agrees with recent speculation that such

gradient information could improve the efficiency of simulation-based inference techniques

(Cranmer et al., 2020), as well as reflecting the classic tradeoff between gradient-based and sam-

pling-based estimators (scaling and speed versus generality). Since gradients of the emergent prop-

erty are necessary in EPI optimization, gradient tractability is a key criteria when determining the

suitability of a simulation-based inference technique. If the emergent property gradient is efficiently

calculated, EPI is a clear choice for inferring high dimensional parameter distributions. In the next

two sections, we use EPI for novel scientific insight by examining the structure of inferred

distributions.

EPI reveals how recurrence with multiple inhibitory subtypes governs
excitatory variability in a V1 model
Dynamical models of excitatory (E) and inhibitory (I) populations with supralinear input-output func-

tion have succeeded in explaining a host of experimentally documented phenomena in primary

visual cortex (V1). In a regime characterized by inhibitory stabilization of strong recurrent excitation,

these models give rise to paradoxical responses (Tsodyks et al., 1997), selective amplification

(Goldman, 2009; Murphy and Miller, 2009), surround suppression (Ozeki et al., 2009), and normal-

ization (Rubin et al., 2015). Recent theoretical work (Hennequin et al., 2018) shows that stabilized

E-I models reproduce the effect of variability suppression (Churchland et al., 2010). Furthermore,

experimental evidence shows that inhibition is composed of distinct elements – parvalbumin (P),

somatostatin (S), VIP (V) – composing 80% of GABAergic interneurons in V1 (Markram et al., 2004;

Rudy et al., 2011; Tremblay et al., 2016), and that these inhibitory cell types follow specific connec-

tivity patterns (Figure 3A; Pfeffer et al., 2013). Here, we use EPI on a model of V1 with biologically

realistic connectivity to show how the structure of input across neuron types affects the variability of

the excitatory population – the population largely responsible for projecting to other brain areas

(Felleman and Van Essen, 1991).

We considered response variability of a nonlinear dynamical V1 circuit model (Figure 3A) with a

state comprised of each neuron-type population’s rate x ¼ xE; xP; xS; xV½ �>. Each population receives

recurrent input Wx, where W is the effective connectivity matrix (see Section ’Primary visual cortex’)

and an external input with mean h, which determines population rate via supralinear nonlinearity

fð�Þ ¼ �½ �2þ. The external input has an additive noisy component � with variance s2 ¼ s2

E;s
2

P;s
2

S;s
2

V

� �

.

This noise has a slower dynamical timescale t noise>t than the population rate, allowing fluctuations

around a stimulus-dependent steady-state (Figure 3B). This model is the stochastic stabilized supra-

linear network (SSSN) (Hennequin et al., 2018)

Figure 2 continued

Figure supplement 3. Model characteristics affect predictions of posteriors inferred by SNPE, while predictions of parameters inferred by EPI remain
fixed.
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Figure 3. Emergent property inference in the stochastic stabilized supralinear network (SSSN). (A) Four-population model of primary visual cortex with

excitatory (black), parvalbumin (blue), somatostatin (red), and VIP (green) neurons (excitatory and inhibitory projections filled and unfilled, respectively).

Some neuron-types largely do not form synaptic projections to others (jðWa1 ;a2
Þj<0:025). Each neural population receives a baseline input hb, and the E-

and P-populations also receive a contrast-dependent input hc. Additionally, each neural population receives a slow noisy input �. (B) Transient network

responses of the SSSN model. Traces are independent trials with varying initialization xð0Þ and noise �. (C) Mean (solid line) and standard deviation

sEðx; zÞ (shading) across 100 trials. (D) EPI distribution of noise parameters z conditioned on E-population variability. The EPI predictive distribution of

sEðx; zÞ is show on the bottom-left. (E) (Top) Enlarged visualization of the sE-sP marginal distribution of EPI quðz j Xð5HzÞÞ and quðz j Xð10HzÞÞ. Each
black dot shows the mode at each sP. The arrows show the most sensitive dimensions of the Hessian evaluated at these modes. (F) The predictive

distributions of s2

E þ s2

P of each inferred distribution quðz j Xð5HzÞÞ and quðz j Xð10HzÞÞ.
The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. EPI inferred distribution for Xð10HzÞ.
Figure supplement 2. EPI optimization.

Figure supplement 3. EPI predictive distributions of the sum of squares of each pair of noise parameters.

Figure supplement 4. SSSN simulations for small increases in neuron-type population input (left); average (solid) and standard deviation (shaded) of
stochastic fluctuations of responses (right).
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t
dx

dt
¼�xþfðWxþhþ �Þ; (6)

generalized to have multiple inhibitory neuron types. It introduces stochasticity to four neuron-type

models of V1 (Litwin-Kumar et al., 2016). Stochasticity and inhibitory multiplicity introduce substan-

tial complexity to the mathematical treatment of this problem (see Section ’Primary visual cortex:

Mathematical intuition and challenges’) motivating the analysis of this model with EPI. Here, we con-

sider fixed weights W and input h (Palmigiano et al., 2020), and study the effect of input variability

z¼ ½sE;sP;sS;sV �> on excitatory variability.

We quantify levels of E-population variability by studying two emergent properties

Xð5HzÞ : Ez;xsEðx;zÞ ¼ 5Hz Xð10HzÞ : Ez;xsEðx;zÞ ¼ 10Hz

Varz;xsEðx;zÞ ¼ 1Hz2 Varz;xsEðx;zÞ ¼ 1Hz2;
(7)

where sEðx;zÞ is the standard deviation of the stochastic E-population response about its steady

state (Figure 3C). In the following analyses, we select 1 Hz2 variance such that the two emergent

properties do not overlap in sEðz;xÞ.
First, we ran EPI to obtain parameter distribution quðz j Xð5HzÞÞ producing E-population variabil-

ity around 5 Hz (Figure 3D). From the marginal distribution of sE and sP (Figure 3D, top-left), we

can see that sEðx; zÞ is sensitive to various combinations of sE and sP. Alternatively, both sS and sV

are degenerate with respect to sEðx; zÞ evidenced by the unexpectedly high variability in those

dimensions (Figure 3D, bottom-right). Together, these observations imply a curved path with

respect to sEðx; zÞ of 5 Hz, which is indicated by the modes along sP (Figure 3E).

Figure 3E suggests a quadratic relationship in E-population fluctuations and the standard devia-

tion of E- and P-population input; as the square of either sE or sP increases, the other compensates

by decreasing to preserve the level of sEðx; zÞ. This quadratic relationship is preserved at greater

level of E-population variability Xð10HzÞ (Figure 3E and Figure 3—figure supplement 1). Indeed,

the sum of squares of sE and sP is larger in quðz j Xð10HzÞÞ than quðz j Xð5HzÞÞ (Figure 3F,

p<1� 10
�10), while the sum of squares of sS and sV are not significantly different in the two EPI dis-

tributions (Figure 3—figure supplement 3, p ¼ :40), in which parameters were bounded from 0 to

0.5. The strong interaction between E- and P-population input variability on excitatory variability is

intriguing, since this circuit exhibits a paradoxical effect in the P-population (and no other inhibitory

types) (Figure 3—figure supplement 4), meaning that the E-population is P-stabilized. Future

research may uncover a link between the population of network stabilization and compensatory

interactions governing excitatory variability.

EPI revealed the quadratic dependence of excitatory variability on input variability to the E- and

P-populations, as well as its independence to input from the other two inhibitory populations. In a

simplified model (t ¼ t noise), it can be shown that surfaces of equal variance are ellipsoids as a func-

tion of s (see Section ’Primary visual cortex: Mathematical intuition and challenges’). Nevertheless,

the sensitive and degenerate parameters are intractable to predict mathematically, since the covari-

ance matrix depends on the steady-state solution of the network (Hennequin et al., 2018;

Gardiner, 2009), and terms in the covariance expression increase quadratically with each additional

neuron-type population (see also Section ’Primary visual cortex: Mathematical intuition and chal-

lenges’). By pointing out this mathematical complexity, we emphasize the value of EPI for gaining

understanding about theoretical models when mathematical analysis becomes onerous or

impractical.

EPI identifies two regimes of rapid task switching
It has been shown that rats can learn to switch from one behavioral task to the next on randomly

interleaved trials (Duan et al., 2015), and an important question is what neural mechanisms produce

this computation. In this experimental setup, rats were given an explicit task cue on each trial, either

Pro or Anti. After a delay period, rats were shown a stimulus, and made a context (task) dependent

response (Figure 4A). In the Pro task, rats were required to orient toward the stimulus, while in the

Anti task, rats were required to orient away from the stimulus. Pharmacological inactivation of the

SC impaired rat performance, and time-specific optogenetic inactivation revealed a crucial role for

the SC on the cognitively demanding Anti trials (Duan et al., 2021). These results motivated a
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Figure 4. Inferring rapid task switching networks in superior colliculus. (A) Rapid task switching behavioral paradigm (see text). (B) Model of superior

colliculus (SC). Neurons: LP - Left Pro, RP - Right Pro, LA - Left Anti, RA - Right Anti. Parameters: sW - self, hW - horizontal, vW -vertical, dW - diagonal

weights. (C) The EPI inferred distribution of rapid task switching networks. Red/purple parameters indicate modes z�ðsWÞ colored by sW . Sensitivity

Figure 4 continued on next page
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nonlinear dynamical model of the SC containing four functionally defined neuron-type populations.

In Duan et al., 2021, a computationally intensive procedure was used to obtain a set of 373 connec-

tivity parameters that qualitatively reproduced these optogenetic inactivation results. To build upon

the insights of this previous work, we use the probabilistic tools afforded by EPI to identify and char-

acterize two linked, yet distinct regimes of rapid task switching connectivity.

In this SC model, there are Pro- and Anti-populations in each hemisphere (left (L) and right (R))

with activity variables x ¼ ½xLP; xLA; xRP; xRA�> (Duan et al., 2021). The connectivity of these popula-

tions is parameterized by self sW, vertical vW , diagonal dW and horizontal hW connections

(Figure 4B). The input h is comprised of a positive cue-dependent signal to the Pro- or Anti-popula-

tions, a positive stimulus-dependent input to either the Left or Right populations, and a choice-

period input to the entire network (see Section ’SC model’). Model responses are bounded from 0

to 1 as a function f of an internal variable u

t
du

dt
¼�uþWxþhþ dB

x ¼fðuÞ:
(8)

The model responds to the side with greater Pro neuron activation; for example the response is

left if xLP>xRP at the end of the trial. Here, we use EPI to determine the network connectivity

z¼ ½sW ;vW ;dW ;hW �> that produces rapid task switching.

Rapid task switching is formalized mathematically as an emergent property with two statistics:

accuracy in the Pro task pPðx; zÞ and Anti task pAðx; zÞ. We stipulate that accuracy be on average 0.75

in each task with variance :0752

X : Ez

pPðx;zÞ
pAðx;zÞ

� �

¼ :75

:75

� �

Varz
pPðx;zÞ
pAðx;zÞ

� �

¼ :0752

:0752

� �

:

(9)

Seventy-five percent accuracy is a realistic level of performance in each task, and with the chosen

variance, inferred models will not exhibit fully random responses (50%), nor perfect performance

(100%).

The EPI inferred distribution (Figure 4C) produces Pro- and Anti-task accuracies (Figure 4C, bot-

tom-left) consistent with rapid task switching (Equation 9). This parameter distribution has rich struc-

ture that is not captured well by simple linear correlations (Figure 4—figure supplement 1).

Specifically, the shape of the EPI distribution is sharply bent, matching ground truth structure indi-

cated by brute-force sampling (Figure 4—figure supplement 5). This is most saliently observed in

the marginal distribution of sW-hW (Figure 4C top-right), where anticorrelation between sW and hW

switches to correlation with decreasing sW. By identifying the modes of the EPI distribution z�ðsWÞ
at different values of sW (Figure 4C red/purple dots), we can quantify this change in distributional

structure with the sensitivity dimension v1ðzÞ (Figure 4C red/purple arrows). Note that the direction-

ality of these sensitivity dimensions at z�ðsWÞ changes distinctly with sW, and are perpendicular to

the robust dimensions of the EPI distribution that preserve rapid task switching. These two direction-

alities of sensitivity motivate the distinction of connectivity into two regimes, which produce different

types of responses in the Pro and Anti tasks (Figure 4—figure supplement 2).

Figure 4 continued

vectors v1ðz�Þ are shown by arrows. (Bottom-left) EPI predictive distribution of task accuracies. (D) Mean and standard error (Ntest = 25, bars not visible)

of accuracy in Pro (top) and Anti (bottom) tasks after perturbing connectivity away from mode along v1ðz�Þ (left), vtask (middle), and vdiag (right).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Task accuracy by EPI inferred SC network connectivity.

Figure supplement 2. SC network simulations by regime.

Figure supplement 3. Eigenmodes of SC connectivity.

Figure supplement 4. EPI optimization of the SC model producing rapid task switching.

Figure supplement 5. SC connectivities obtained through brute-force sampling.
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When perturbing connectivity along the sensitivity dimension away from the modes

z¼ z�ðsWÞþ dv1ðz�ðsWÞÞ; (10)

Pro-accuracy monotonically increases in both regimes (Figure 4D, top-left). However, there is a

stark difference between regimes in Anti-accuracy. Anti-accuracy falls in either direction of v1 in

regime 1, yet monotonically increases along with Pro accuracy in regime 2 (Figure 4D, bottom-left).

The sharp change in local structure of the EPI distribution is therefore explained by distinct sensitivi-

ties: Anti-accuracy diminishes in only one or both directions of the sensitivity perturbation.

To understand the mechanisms differentiating the two regimes, we can make connectivity pertur-

bations along dimensions that only modify a single eigenvalue of the connectivity matrix. These

eigenvalues lall, lside, ltask, and ldiag correspond to connectivity eigenmodes with intuitive roles in

processing in this task (Figure 4—figure supplement 3A). For example, greater ltask will strengthen

internal representations of task, while greater ldiag will amplify dominance of Pro and Anti pairs in

opposite hemispheres (Section ’Connectivity eigendecomposition and processing modes’). Unlike

the sensitivity dimension, the dimensions va that perturb isolated connectivity eigenvalues la for

a 2 fall; side; task; diagg are independent of z�ðsWÞ (see Section ’Connectivity eigendecomposition

and processing modes’), e.g.

z¼ z�ðsWÞþ dvtask: (11)

Connectivity perturbation analyses reveal that decreasing ltask has a very similar effect on Anti

accuracy as perturbations along the sensitivity dimension (Figure 4D, middle). The similar effects of

perturbations along the sensitivity dimension v1ðz�Þ and reduction of task eigenvalue (via perturba-

tions along �vtask) suggest that there is a carefully tuned strength of task representation in connec-

tivity regime 1, which if disturbed results in random Anti-trial responses. Finally, we recognize that

increasing ldiag has opposite effects on Anti-accuracy in each regime (Figure 4D, right). In the next

section, we build on these mechanistic characterizations of each regime by examining their resilience

to optogenetic inactivation.

EPI inferred SC connectivities reproduce results from optogenetic
inactivation experiments
During the delay period of this task, the circuit must prepare to execute the correct task according

to the presented cue. The circuit must then maintain a representation of task throughout the delay

period, which is important for correct execution of the Anti-task. Duan et al. found that bilateral

optogenetic inactivation of SC during the delay period consistently decreased performance in the

Anti-task, but had no effect on the Pro-task (Figure 5A; Duan et al., 2021). The distribution of con-

nectivities inferred by EPI exhibited this same effect in simulation at high optogenetic strengths g,

which reduce the network activities xðtÞ by a factor 1� g (Figure 5B) (see Section ’Modeling optoge-

netic silencing’).

To examine how connectivity affects response to delay period inactivation, we grouped connec-

tivities of the EPI distribution along the continuum linking regimes 1 and 2 of Section ’EPI identifies

two regimes of rapid task switching’. ZðsWÞ is the set of EPI samples for which the closest mode was

z�ðsWÞ (see Section ’Mode identification with EPI’). In the following analyses, we examine how error,

and the influence of connectivity eigenvalue on Anti-error change along this continuum of connectiv-

ities. Obtaining the parameter samples for these analysis with the learned EPI distribution was more

than 20,000 times faster than a brute force approach (see Section ’Sample grouping by mode’).

The mean increase in Anti-error of the EPI distribution is closest to the experimentally measured

value of 7% at g ¼ 0:675 (Figure 5B, black dot). At this level of optogenetic strength, regime 1

exhibits an increase in Anti-error with delay period silencing (Figure 5C, left), while regime 2 does

not. In regime 1, greater ltask and ldiag decrease Anti-error (Figure 5C, right). In other words, stron-

ger task representations and diagonal amplification make the SC model more resilient to delay

period silencing in the Anti-task. This complements the finding from Duan et al., 2021 (Duan et al.,

2021) that ltask and ldiag improve Anti accuracy.

At roughly g ¼ 0:85 (Figure 5B, gray dot), the Anti-error saturates, while Pro-error remains at

zero. Following delay period inactivation at this optogenetic strength, there are strong similarities in

the responses of Pro- and Anti-trials during the choice period (Figure 5D, left). We interpreted these
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similarities to suggest that delay period inactivation at this saturated level flips the internal represen-

tation of task (from Anti to Pro) in the circuit model. A flipped task representation would explain

why the Anti-error saturates at 50%: the average Anti-accuracy in EPI inferred connectivities is 75%,

but average Anti accuracy would be 25% (100% - Ez pP½ �) if the internal representation of task is

flipped during the delay period.This hypothesis prescribes a model of Anti-accuracy during delay

period silencing of pA;opto ¼ 100%� pP, which is fit closely across both regimes of the EPI inferred

connectivities (Figure 5D, right). Similarities between Pro- and Anti-trial responses were not present
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Figure 5. Responses to optogenetic perturbation by connectivity regime. (A) Mean and standard error (bars)

across recording sessions of task error following delay period optogenetic inactivation in rats. (B) Mean and

standard deviation (bars) of task error induced by delay period inactivation of varying optogenetic strength g

across the EPI distribution. (C) (Left) Mean and standard error of Pro and Anti error from regime 1 to regime 2 at

g ¼ 0:675. (Right) Correlations of connectivity eigenvalues with Anti error from regime 1 to regime 2 at g ¼ 0:675.

(D) (Left) Mean and standard deviation (shading) of responses of the SC model at the mode of the EPI distribution

to delay period inactivation at g ¼ 0:85. Accuracy in Pro (top) and Anti (bottom) task is shown as a percentage.

(Right) Anti-accuracy following delay period inactivation at g ¼ 0:85 versus accuracy in the Pro-task across

connectivities in the EPI distribution.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. SC responses to delay period inactivation at Anti error saturating levels.

Figure supplement 2. SC responses to delay period inactivation at experiment matching levels.
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at the experiment-matching level of g ¼ 0:675 (Figure 5—figure supplement 2 left) and neither was

anticorrelation in pP and pA;opto (Figure 5—figure supplement 2 right).

In summary, the connectivity inferred by EPI to perform rapid task switching replicated results

from optogenetic silencing experiments. We found that at levels of optogenetic strength matching

experimental levels of Anti-error, only one regime actually exhibited the effect. This connectivity

regime is less resilient to optogenetic perturbation, and perhaps more biologically realistic. Finally,

we characterized the pathology in Anti-error that occurs in both regimes when optogenetic strength

is increased to high levels, leading to a mechanistic hypothesis that is experimentally testable. The

probabilistic tools afforded by EPI yielded this insight: we identified two regimes and the continuum

of connectivities between them by taking gradients of parameter probabilities in the EPI distribution,

we identified sensitivity dimensions by measuring the Hessian of the EPI distribution, and we

obtained many parameter samples at each step along the continuum at an efficient rate.

Discussion
In neuroscience, machine learning has primarily been used to reveal structure in neural datasets

(Paninski and Cunningham, 2018). Careful inference procedures are developed for these statistical

models allowing precise, quantitative reasoning, which clarifies the way data informs beliefs about

the model parameters. However, these statistical models often lack resemblance to the underlying

biology, making it unclear how to go from the structure revealed by these methods, to the neural

mechanisms giving rise to it. In contrast, theoretical neuroscience has primarily focused on careful

models of neural circuits and the production of emergent properties of computation, rather than

measuring structure in neural datasets. In this work, we improve upon parameter inference techni-

ques in theoretical neuroscience with emergent property inference, harnessing deep learning

towards parameter inference in neural circuit models (see Section ’Related approaches’).

Methodology for statistical inference in circuit models has evolved considerably in recent years.

Early work used rejection sampling techniques (Beaumont et al., 2002; Marjoram et al., 2003;

Sisson et al., 2007), but EPI and another recently developed methodology (Gonçalves et al., 2019)

employ deep learning to improve efficiency and provide flexible approximations. SNPE has been

used for posterior inference of parameters in circuit models conditioned upon exemplar data used

to represent computation, but it does not infer parameter distributions that only produce the com-

putation of interest like EPI (see Section ’Scaling inference of recurrent neural network connectivity

with EPI’). When strict control over the predictions of the inferred parameters is necessary, EPI uses

a constrained optimization technique (Loaiza-Ganem et al., 2017) (see Section ’Augmented

lagrangian optimization’) to make inference conditioned on the emergent property possible.

A key difference between EPI and SNPE, is that EPI uses gradients of the emergent property

throughout optimization. In Section ’Scaling inference of recurrent neural network connectivity with

EPI’, we showed that such gradients confer beneficial scaling properties, but a concern remains that

emergent property gradients may be too computationally intensive. Even in a case of close biophysi-

cal realism with an expensive emergent property gradient, EPI was run successfully on intermediate

hub frequency in a five-neuron subcircuit model of the STG (Section ’Motivating emergent property

inference of theoretical models’). However, conditioning on the pyloric rhythm (Marder and Selver-

ston, 1992) in a model of the pyloric subnetwork model (Prinz et al., 2004) proved to be prohibitive

with EPI. The pyloric subnetwork requires many time steps for simulation and many key emergent

property statistics (e.g. burst duration and phase gap) are not calculable or easily approximated with

differentiable functions. In such cases, SNPE, which does not require differentiability of the emergent

property, has proven useful (Gonçalves et al., 2019). In summary, choice of deep inference tech-

nique should consider emergent property complexity and differentiability, dimensionality of parame-

ter space, and the importance of constraining the model behavior predicted by the inferred

parameter distribution.

In this paper, we demonstrate the value of deep inference for parameter sensitivity analyses at

both the local and global level. With these techniques, flexible deep probability distributions are

optimized to capture global structure by approximating the full distribution of suitable parameters.

Importantly, the local structure of this deep probability distribution can be quantified at any parame-

ter choice, offering instant sensitivity measurements after fitting. For example, the global structure

captured by EPI revealed two distinct parameter regimes, which had different local structure
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quantified by the deep probability distribution (see Section ’Superior colliculus’). In comparison,

bayesian MCMC is considered a popular approach for capturing global parameter structure

(Girolami and Calderhead, 2011), but there is no variational approximation (the deep probability

distribution in EPI), so sensitivity information is not queryable and sampling remains slow after con-

vergence. Local sensitivity analyses (e.g. Raue et al., 2009) may be performed independently at indi-

vidual parameter samples, but these methods alone do not capture the full picture in nonlinear,

complex distributions. In contrast, deep inference yields a probability distribution that produces a

wholistic assessment of parameter sensitivity at the local and global level, which we used in this

study to make novel insights into a range of theoretical models. Together, the abilities to condition

upon emergent properties, the efficient inference algorithm, and the capacity for parameter sensitiv-

ity analyses make EPI a useful method for addressing inverse problems in theoretical neuroscience.

Code availability statement
All software written for this study is available at https://github.com/cunningham-lab/epi (copy

archived at swh:1:rev:38febae7035ca921334a616b0f396b3767bf18d4), Bittner, 2021.

Materials and methods

Emergent property inference (EPI)
Solving inverse problems is an important part of theoretical neuroscience, since we must understand

how neural circuit models and their parameter choices produce computations. Recently, research on

machine learning methodology for neuroscience has focused on finding latent structure in large-

scale neural datasets, while research in theoretical neuroscience generally focuses on developing

precise neural circuit models that can produce computations of interest. By quantifying computation

into an emergent property through statistics of the emergent activity of neural circuit models, we

can adapt the modern technique of deep probabilistic inference towards solving inverse problems in

theoretical neuroscience. Here, we introduce a novel method for statistical inference, which uses

deep networks to learn parameter distributions constrained to produce emergent properties of

computation.

Consider model parameterization z, which is a collection of scientifically meaningful variables that

govern the complex simulation of data x. For example (see Section ’Motivating emergent property

inference of theoretical models’), z may be the electrical conductance parameters of an STG subcir-

cuit, and x the evolving membrane potentials of the five neurons. In terms of statistical modeling,

this circuit model has an intractable likelihood pðx j zÞ, which is predicated by the stochastic differen-

tial equations that define the model. From a theoretical perspective, we are less concerned about

the likelihood of an exemplar dataset x, but rather the emergent property of intermediate hub fre-

quency (which implies a consistent dataset x).

In this work, emergent properties X are defined through the choice of emergent property statis-

tic f ðx; zÞ (which is a vector of one or more statistics), and its means m, and variances s2:

X :Ez;x f ðx;zÞ½ � ¼m;Varz;x f ðx;zÞ½ � ¼ s2: (12)

In general, an emergent property may be a collection of first-, second-, or higher-order moments

of a group of statistics, but this study focuses on the case written in Equation 12. In the STG exam-

ple, intermediate hub frequency is defined by mean and variance constraints on the statistic of hub

neuron frequency !hubðx;zÞ (Equations 2 and 3). Precisely, the emergent property statistics f ðx;zÞ
must have means m and variances s2 over the EPI distribution of parameters (z~quðzÞ) and the data

produced by those parameters (x~pðx j zÞ), where the inferred parameter distribution quðzÞ itself is

parameterized by deep network weights and biases u.

In EPI, a deep probability distribution quðzÞ is optimized to approximate the parameter distribu-

tion producing the emergent property X . In contrast to simpler classes of distributions like the

gaussian or mixture of gaussians, deep probability distributions are far more flexible and capable of

fitting rich structure (Rezende and Mohamed, 2015; Papamakarios et al., 2019a). In deep proba-

bility distributions, a simple random variable z0 ~ q0ðz0Þ (we choose an isotropic gaussian) is mapped
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deterministically via a sequence of deep neural network layers (g1, . gl) parameterized by weights

and biases u to the support of the distribution of interest:

z¼ guðz0Þ ¼ glð:::g1ðz0ÞÞ~quðzÞ: (13)

Such deep probability distributions embed the inferred distribution in a deep network. Once opti-

mized, this deep network representation of a distribution has remarkably useful properties: fast sam-

pling and probability evaluations. Importantly, fast probability evaluations confer fast gradient and

Hessian calculations as well.

Given this choice of circuit model and emergent property X , quðzÞ is optimized via the neural net-

work parameters u to find a maximally entropic distribution q�
u
within the deep variational family

Q ¼ quðzÞ : u 2 Qf g that produces the emergent property X :

quðz j XÞ ¼ q�
u
ðzÞ

qu2Q
argmax HðquðzÞÞ

s:t:X :Ez;x f ðx;zÞ½ � ¼m;Varz;x f ðx;zÞ½ � ¼ s2;
(14)

where HðquðzÞÞ ¼Ez � logquðzÞ½ � is entropy. By maximizing the entropy of the inferred distribution qu,

we select the most random distribution in family Q that satisfies the constraints of the emergent

property. Since entropy is maximized in Equation 14, EPI is equivalent to bayesian variational infer-

ence (see Section ’EPI as variational inference’), which is why we specify the inferred distribution of

EPI as conditioned upon emergent property X with the notation quðz j XÞ. To run this constrained

optimization, we use an augmented lagrangian objective, which is the standard approach for con-

strained optimization (Bertsekas, 2014), and the approach taken to fit Maximum Entropy Flow Net-

works (MEFNs) (Loaiza-Ganem et al., 2017). This procedure is detailed in Section ’Augmented

lagrangian optimization’ and the pseudocode in Algorithm ’Augmented lagrangian optimization’.

In the remainder of Section ’Emergent property inference (EPI)’, we will explain the finer details

and motivation of the EPI method. First, we explain related approaches and what EPI introduces to

this domain (Section ’Related approaches’). Second, we describe the special class of deep probabil-

ity distributions used in EPI called normalizing flows (Section ’Deep probability distributions and nor-

malizing flows’). Then, we establish the known relationship between maximum entropy distributions

and exponential families (Section ’Maximum entropy distributions and exponential families’). Next,

we explain the constrained optimization technique used to solve Equation 14 (Section ’Augmented

lagrangian optimization’). Then, we demonstrate the details of this optimization in a toy example

(Section ’Example: 2D LDS’). Finally, we explain how EPI is equivalent to variational inference (Sec-

tion ’EPI as variational inference’).

Related approaches
When bayesian inference problems lack conjugacy, scientists use approximate inference methods

like variational inference (VI) (Saul and Jordan, 1998) and Markov chain Monte Carlo (MCMC)

(Metropolis et al., 1953; Hastings, 1970). After optimization, variational methods return a parame-

terized posterior distribution, which we can analyze. Also, the variational approximation is often cho-

sen such that it permits fast sampling. In contrast MCMC methods only produce samples from the

approximated posterior distribution. No parameterized distribution is estimated, and additional

samples are always generated with the same sampling complexity. Inference in models defined by

systems of differential has been demonstrated with MCMC (Girolami and Calderhead, 2011),

although this approach requires tractable likelihoods. Advancements have introduced sampling

(Calderhead and Girolami, 2011), likelihood approximation (Golightly and Wilkinson, 2011), and

uncertainty quantification techniques (Chkrebtii et al., 2016) to make MCMC approaches more effi-

cient and expand the class of applicable models.

Simulation-based inference (Cranmer et al., 2020) is model parameter inference in the absence

of a tractable likelihood function. The most prevalent approach to simulation-based inference is

approximate bayesian computation (ABC) (Beaumont et al., 2002), in which satisfactory parameter

samples are kept from random prior sampling according to a rejection heuristic. The obtained set of

parameters do not have a probabilities, and further insight about the model must be gained from

examination of the parameter set and their generated activity. Methodological advances to ABC

methods have come through the use of Markov chain Monte Carlo (MCMC-ABC) (Marjoram et al.,
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2003) and sequential Monte Carlo (SMC-ABC) (Sisson et al., 2007) sampling techniques. SMC-ABC

is considered state-of-the-art ABC, yet this approach still struggles to scale in dimensionality

(Sisson et al., 2018; Figure 2). Still, this method has enjoyed much success in systems biology

(Liepe et al., 2014). Furthermore, once a parameter set has been obtained by SMC-ABC from a

finite set of particles, the SMC-ABC algorithm must be run again from scratch with a new population

of initialized particles to obtain additional samples.

For scientific model analysis, we seek a parameter distribution represented by an approximating

distribution as in variational inference (Saul and Jordan, 1998): a variational approximation that

once optimized yields fast analytic calculations and samples. For the reasons described above, ABC

and MCMC techniques are not suitable, because they only produce a set of parameter samples lack-

ing probabilities and have unchanging sampling rate. EPI infers parameters in circuit models using

the MEFN (Loaiza-Ganem et al., 2017) algorithm with a deep variational approximation. The deep

neural network of EPI (Figure 1E) defines the parametric form (with weights and biases as variational

parameters u) of the variational approximation of the inferred parameter distribution quðz j xÞ. The
EPI optimization is enabled using stochastic gradient techniques in the spirit of likelihood-free varia-

tional inference (Tran et al., 2017). The analytic relationship between EPI and variational inference is

explained in Section ’EPI as variational inference’.

We note that, during our preparation and early presentation of this work (Bittner et al., 2019a;

Bittner et al., 2019b), another work has arisen with broadly similar goals: bringing statistical infer-

ence to mechanistic models of neural circuits (Nonnenmacher et al., 2018; Michael et al., 2019;

Gonçalves et al., 2019). We are encouraged by this general problem being recognized by others in

the community, and we emphasize that these works offer complementary neuroscientific contribu-

tions (different theoretical models of focus) and use different technical methodologies (ours is built

on our prior work [Loaiza-Ganem et al., 2017], theirs similarly [Lueckmann et al., 2017]).

The method EPI differs from SNPE in some key ways. SNPE belongs to a ‘sequential’ class of

recently developed simulation-based inference methods in which two neural networks are used for

posterior inference. This first neural network is a deep probability distribution (normalizing flow)

used to estimate the posterior pðz j xÞ (SNPE) or the likelihood pðx j zÞ (sequential neural likelihood
(SNL) [Papamakarios et al., 2019b]). A recent approach uses an unconstrained neural network to

estimate the likelihood ratio (sequential neural ratio estimation (SNRE) [Hermans et al., 2020]). In

SNL and SNRE, MCMC sampling techniques are used to obtain samples from the approximated pos-

terior. This contrasts with EPI and SNPE, which use deep probability distributions to model parame-

ters, which facilitates immediate measurements of sample probability, gradient, or Hessian for

system analysis. The second neural network in this sequential class of methods is the amortizer. This

unconstrained deep network maps data x (or statistics f ðx; zÞ or model parameters z) to the weights

and biases of the first neural network. These methods are optimized on a conditional density (or

ratio) estimation objective. The data used to optimize this objective are generated via an adaptive

procedure, in which training data pairs (xi, zi) become sequentially closer to the true data and

posterior.

The approximating fidelity of the deep probability distribution in sequential approaches is opti-

mized to generalize across the training distribution of the conditioning variable. This generalization

property of the sequential methods can reduce the accuracy at the singular posterior of interest.

Whereas in EPI, the entire expressivity of the deep probability distribution is dedicated to learning a

single distribution as well as possible. The well-known inverse mapping problem of exponential fami-

lies (Wainwright and Jordan, 2008) prohibits an amortization-based approach in EPI, since EPI

learns an exponential family distribution parameterized by its mean (in contrast to its natural parame-

ter, see Section ’Maximum entropy distributions and exponential families’). However, we have shown

that the same two-network architecture of the sequential simulation-based inference methods can

be used for amortized inference in intractable exponential family posteriors when using their natural

parameterization (Bittner and Cunningham, 2019).

Finally, one important differentiating factor between EPI and sequential simulation-based infer-

ence methods is that EPI leverages gradients rzf ðx; zÞ during optimization. These gradients can

improve convergence time and scalability, as we have shown on an example conditioning low-rank

RNN connectivity on the property of stable amplification (see Section ’Scaling inference of recurrent

neural network connectivity with EPI’). With EPI, we prove out the suggestion that a deep inference

technique can improve efficiency by leveraging these emergent property gradients when they are
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tractable. Sequential simulation-based inference techniques may be better suited for scientific prob-

lems where rzf ðx; zÞ is intractable or unavailable, like when there is a nondifferentiable emergent

property. However, the sequential simulation-based inference techniques cannot constrain the pre-

dictions of the inferred distribution in the manner of EPI.

Structural identifiability analysis involves the measurement of sensitivity and unidentifiabilities in

scientific models. Around a single parameter choice, one can measure the Jacobian. One approach

for this calculation that scales well is EAR (Karlsson et al., 2012). A popular efficient approach for

systems of ODEs has been neural ODE adjoint (Chen et al., 2018) and its stochastic adaptation

(Li et al., 2020). Casting identifiability as a statistical estimation problem, the profile likelihood works

via iterated optimization while holding parameters fixed (Raue et al., 2009). An exciting recent

method is capable of recovering the functional form of such unidentifiabilities away from a point by

following degenerate dimensions of the fisher information matrix (Raman et al., 2017). Global struc-

tural non-identifiabilities can be found for models with polynomial or rational dynamics equations

using DAISY (Pia Saccomani et al., 2003), or through mean optimal transformations (Hengl et al.,

2007). With EPI, we have all the benefits given by a statistical inference method plus the ability to

query the first- or second-order gradient of the probability of the inferred distribution at any chosen

parameter value. The second-order gradient of the log probability (the Hessian), which is directly

afforded by EPI distributions, produces quantified information about parametric sensitivity of the

emergent property in parameter space (see Section ’Emergent property inference via deep genera-

tive models’).

Deep probability distributions and normalizing flows
Deep probability distributions are comprised of multiple layers of fully connected neural networks

(Equation 13). When each neural network layer is restricted to be a bijective function, the sample

density can be calculated using the change of variables formula at each layer of the network. For

zi ¼ giðzi�1Þ,

pðziÞ ¼ pðg�1

i ðziÞÞ det
qg�1

i ðziÞ
qzi

�

�

�

�

�

�

�

�

¼ pðzi�1Þ det
qgiðzi�1Þ
qzi�1

�

�

�

�

�

�

�

�

�1

: (15)

However, this computation has cubic complexity in dimensionality for fully connected layers. By

restricting our layers to normalizing flows (Rezende and Mohamed, 2015; Papamakarios et al.,

2019a) – bijective functions with fast log determinant Jacobian computations, which confer a fast

calculation of the sample log probability. Fast log probability calculation confers efficient optimiza-

tion of the maximum entropy objective (see Section ’Augmented lagrangian optimization’).

We use the real NVP (Dinh et al., 2017) normalizing flow class, because its coupling architecture

confers both fast sampling (forward) and fast log probability evaluation (backward). Fast probability

evaluation facilitates fast gradient and Hessian evaluation of log probability throughout parameter

space. Glow permutations were used in between coupling stages (Kingma and Dhariwal, 2018).

This is in contrast to autoregressive architectures (Papamakarios et al., 2017; Kingma et al., 2016),

in which only one of the forward or backward passes can be efficient. In this work, normalizing flows

are used as flexible parameter distribution approximations quðzÞ having weights and biases u. We

specify the architecture used in each application by the number of real NVP affine coupling stages,

and the number of neural network layers and units per layer of the conditioning functions.

When calculating Hessians of log probabilities in deep probability distributions, it is important to

consider the normalizing flow architecture. With autoregressive architectures (Kingma et al., 2016;

Papamakarios et al., 2017), fast sampling and fast log probability evaluations are mutually exclu-

sive. That makes these architectures undesirable for EPI, where efficient sampling is important for

optimization, and log probability evaluation speed predicates the efficiency of gradient and Hessian

calculations. With real NVP coupling architectures, we get both fast sampling and fast Hessians mak-

ing both optimization and scientific analysis efficient.

Maximum entropy distributions and exponential families
The inferred distribution of EPI is a maximum entropy distribution, which have fundamental links to

exponential family distributions. A maximum entropy distribution of form:
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p�ðzÞ ¼
p2P

argmax HðpðzÞÞ

s:t:Ez~p TðzÞ½ � ¼mopt;
(16)

where TðzÞ is the sufficient statistics vector and mopt a vector of their mean values, will have probabil-

ity density in the exponential family:

p�ðzÞ / expðh>TðzÞÞ: (17)

The mappings between the mean parameterization mopt and the natural parameterization h are

formally hard to identify except in special cases (Wainwright and Jordan, 2008).

In this manuscript, emergent properties are defined by statistics f ðx; zÞ having a fixed mean m and

variance s2 as in Equation 12. The variance constraint is a second moment constraint on f ðx; zÞ:

Varz;x f ðx;zÞ½ � ¼Ez;x f ðx;zÞ�mð Þ2
h i

: (18)

As a general maximum entropy distribution (Equation 16), the sufficient statistics vector contains

both first and second order moments of f ðx;zÞ

TðzÞ ¼
Ex~pðx j zÞ f ðx;zÞ½ �

Ex~pðx j zÞ f ðx;zÞ�mð Þ2
h i

2

4

3

5; (19)

which are constrained to the chosen means and variances

mopt ¼
m

s2

� �

: (20)

Thus, mopt is used to denote the mean parameter of the maximum entropy distribution defined by

the emergent property (all constraints), while m is only the mean of f ðx;zÞ. The subscript ‘opt’ of mopt

is chosen since it contains all the constraint values to which the EPI optimization algorithm must

adhere.

Augmented lagrangian optimization
To optimize quðzÞ in Equation 14, the constrained maximum entropy optimization is executed using

the augmented lagrangian method. The following objective is minimized:

Lðu;hopt;cÞ ¼�HðquÞþh>
optRðuÞþ

c

2
jjRðuÞjj2 (21)

where there are average constraint violations

RðuÞ ¼Ez~quðzÞ TðzÞ�mopt

h i

; (22)

hopt 2R
m are the lagrange multipliers where m is the number of total constraints

m¼ jmoptj ¼ jTðzÞj ¼ 2jf ðx;zÞj; (23)

and c is the penalty coefficient. The mean parameter mopt and sufficient statistics TðzÞ are determined

by the means m and variances s2 of the emergent property statistics f ðx;zÞ defined in Equation 14.

Specifically, TðzÞ is a concatenation of the first and second moments (Equation 19) and mopt is a con-

catenation of their constraints m and s2 (Equation 20). (Although, note that this algorithm is written

for general TðzÞ and mopt to satisfy the more general class of emergent properties.) The lagrange

multipliers hopt are closely related to the natural parameters h of exponential families (see Section

’EPI as variational inference’). Weights and biases u of the deep probability distribution are opti-

mized according to Equation 21 using the Adam optimizer with learning rate 10�3 (Kingma and Ba,

2015).
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The gradient with respect to entropy HðquðzÞÞ can be expressed using the reparameterization

trick as an expectation of the negative log density of parameter samples z over the randomness in

the parameterless initial distribution q0ðz0):

HðquðzÞÞ ¼
Z

�quðzÞ logðquðzÞÞdz¼Ez~qu � logðquðzÞÞ½ � ¼Ez0 ~q0 � logðquðguðz0ÞÞÞ½ �: (24)

Thus, the gradient of the entropy of the deep probability distribution can be estimated as an

average of gradients with respect to the base distribution z0:

ruHðquðzÞÞ ¼Ez0 ~q0 �ru logðquðguðz0ÞÞÞ½ �: (25)

The gradients of the log density of the deep probability distribution are tractable through the use

of normalizing flows (see Section ’Deep probability distributions and normalizing flows’).

The full EPI optimization algorithm is detailed in Algorithm 1. The lagrangian parameters hopt are

initialized to zero and adapted following each augmented lagrangian epoch, which is a period of

optimization with fixed (hopt, c) for a given number of stochastic gradient descent (SGD) iterations. A

low value of c is used initially, and conditionally increased after each epoch based on constraint error

reduction. The penalty coefficient is updated based on the result of a hypothesis test regarding the

reduction in constraint violation. The p-value of E½jjRðukþ1Þjj�>gE jjRðukÞjj½ � is computed, and ckþ1 is

updated to bck with probability 1� p. The other update rule is

hopt;kþ1 ¼ hopt;k þ ck
1

n

Pn
i¼1

ðTðzðiÞÞ � moptÞ given a batch size n and zðiÞ ~ quðzÞ. Throughout the study,

g ¼ 0:25, while b was chosen to be either 2 or 4. The batch size of EPI also varied according to

application.

Algorithm 1. Emergent property inference

1 initialize u by fitting qu to an isotropic gaussian of mean minit and variance s2

init

2 initialize c0>0 and hopt;0 ¼ 0.
3 for Augmented lagrangian epoch k ¼ 1; :::; kmax do
4 for SGD iteration i ¼ 1; :::; imax do

5 Sample z
ð1Þ
0
; :::; z

ðnÞ
0

~ q0, get transformed variable zðjÞ ¼ guðzðjÞ0 Þ, j ¼ 1; :::; n

6 Update u by descending its stochastic gradient (using ADAM optimizer [Kingma and Ba, 2015]).

ruLðu;hopt;k; cÞ ¼ 1

n

X

n

j¼1

ru log quðzðjÞÞ þ
1

n

X

n

j¼1

ru T zðjÞ
� �

� mopt

� �

hopt;k

þck
2

n

X

n
2

j¼1

ru T zðjÞ
� �

� mopt

� �

� 2
n

X

n

j¼n
2
þ1

T zðjÞ
� �

� mopt

� �

7 end

8 Sample z
ð1Þ
0
; :::; z

ðnÞ
0

~ q0, get transformed variable zðjÞ ¼ guðzðjÞ0 Þ, j ¼ 1; :::; n

9 Update hopt;kþ1 ¼ hopt;k þ ck
1

n

Pn
j¼1

T zðjÞ
� �

� mopt

� �

.

10 Update ckþ1>ck (see text for detail).
11 end

In general, c and hopt should start at values encouraging entropic growth early in optimization.

With each training epoch in which the update rule for c is invoked, the constraint satisfaction terms

are increasingly weighted, which generally results in decreased entropy (e.g. see Figure 1—figure

supplement 1C). This encourages the discovery of suitable regions of parameter space, and the sub-

sequent refinement of the distribution to produce the emergent property. The momentum parame-

ters of the Adam optimizer are reset at the end of each augmented lagrangian epoch, which

proceeds for imax iterations. In this work, we used a maximum number of augmented lagrangian

epochs kmax> ¼ 5.

Rather than starting optimization from some u drawn from a randomized distribution, we found

that initializing quðzÞ to approximate an isotropic gaussian distribution conferred more stable, consis-

tent optimization. The parameters of the gaussian initialization were chosen on an application-spe-

cific basis. Throughout the study, we chose isotropic Gaussian initializations with mean minit at the

center of the support of the distribution and some variance s2

init, except for one case, where an ini-

tialization informed by random search was used (see Section ’Stomatogastric ganglion’). Deep prob-

ability distributions were fit to these gaussian initializations using 10,000 iterations of stochastic
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gradient descent on the evidence lower bound (as in Bittner and Cunningham, 2019) with Adam

optimizer and a learning rate of 10�3.

To assess whether the EPI distribution quðzÞ produces the emergent property, we assess whether

each individual constraint on the means and variances of f ðx; zÞ is satisfied. We consider the EPI to

have converged when a null hypothesis test of constraint violations RðuÞi being zero is accepted for

all constraints i 2 f1; :::;mg at a significance threshold a ¼ 0:05. This significance threshold is adjusted

through Bonferroni correction according to the number of constraints m. The p-values for each con-

straint are calculated according to a two-tailed nonparametric test, where 200 estimations of the

sample mean RðuÞi are made using Ntest samples of z~ quðzÞ at the end of the augmented lagrangian

epoch. Of all kmax augmented lagrangian epochs, we select the EPI inferred distribution as that

which satisfies the convergence criteria and has greatest entropy.

When assessing the suitability of EPI for a particular modeling question, there are some important

technical considerations. First and foremost, as in any optimization problem, the defined emergent

property should always be appropriately conditioned (constraints should not have wildly different

units). Furthermore, if the program is underconstrained (not enough constraints), the distribution

grows (in entropy) unstably unless mapped to a finite support. If overconstrained, there is no param-

eter set producing the emergent property, and EPI optimization will fail (appropriately).

Example: 2D LDS
To gain intuition for EPI, consider a two-dimensional linear dynamical system (2D LDS) model (Fig-

ure 1—figure supplement 1A):

t
dx

dt
¼ Ax (26)

with

A¼ a1;1 a1;2

a2;1 a2;2

� �

: (27)

To run EPI with the dynamics matrix elements as the free parameters z¼ ½a1;1;a1;2;a2;1;a2;2� (fixing
t ¼ 1 s), the emergent property statistics f ðx;zÞ were chosen to contain parts of the primary eigen-

value of A, which predicate frequency, imagðl1Þ, and the growth/decay, realðl1Þ, of the system

f ðx;zÞ¼4 realðl1Þðx;zÞ
imagðl1Þðx;zÞ

� �

(28)

l1 is the eigenvalue of greatest real part when the imaginary component is zero, and alternatively

that of positive imaginary component when the eigenvalues are complex conjugate pairs. To learn

the distribution of real entries of A that produce a band of oscillating systems around 1 Hz, we for-

malized this emergent property as realðl1Þ having mean zero with variance 0:252, and the oscillation

frequency imagðl1Þ
2p

having mean 1 Hz with variance 0.1 Hz2:

X : Ez;x f ðx;zÞ½ �¼4Ez;x

realðl1Þðx;zÞ
imagðl1Þðx;zÞ

� �

¼ 0

2p

� �

¼4m

Varz;x f ðx;zÞ½ �¼4Varz;x
realðl1Þðx;zÞ
imagðl1Þðx;zÞ

� �

¼ 0:252

ðp
5
Þ2

" #

¼4s2:

(29)

To write the emergent property X in the form required for the augmented lagrangian optimiza-

tion (Section ’Augmented lagrangian optimization’), we concatenate these first and second moment

constraints into a vector of sufficient statistics TðzÞ and constraint values mopt.

Ez TðzÞ½ �¼4Ez

Ex~pðx j zÞ realðl1Þðx;zÞ½ �
Ex~pðx j zÞ imagðl1Þðx;zÞ½ �

Ex~pðx j zÞ ðrealðl1Þðx;zÞ� 0Þ2
h i

Ex~pðx j zÞ ðimagðl1Þðx;zÞ� 2pÞ2
h i

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

0

2p

0:252

ðp
5
Þ2

2

6

6

6

4

3

7

7

7

5

¼4mopt: (30)
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From now on in all scientific applications (Sections ’Stomatogastric ganglion’, ’Scaling EPI for sta-

ble amplification in RNNs’, ’Primary visual cortex’, ’Superior colliculus’), we specify how the EPI opti-

mization was setup by specifying f ðx;zÞ, m, and s2.

Unlike the models we presented in the main text, this model admits an analytical form for the

mean emergent property statistics given parameter z, since the eigenvalues can be calculated using

the quadratic formula:

l¼
ða1;1þa2;2

t Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða1;1þa2;2
t Þ2 þ 4ða1;2a2;1�a1;1a2;2

t Þ
q

2
: (31)

We study this example, because the inferred distribution is curved and multimodal, and we can

compare the result of EPI to analytically derived contours of the emergent property statistics.

Despite the simple analytic form of the emergent property statistics, the EPI distribution in this

example is not simply determined. Although Ez TðzÞ½ � is calculable directly via a closed form function,

the distribution q�
u
ðz j XÞ cannot be derived directly. This fact is due to the formally hard problem of

the backward mapping: finding the natural parameters h from the mean parameters m of an expo-

nential family distribution (Wainwright and Jordan, 2008). Instead, we used EPI to approximate this

distribution (Figure 1—figure supplement 1B). We used a real NVP normalizing flow architecture

three coupling layers and two-layer neural networks of 50 units per layer, mapped onto a support of

zi 2 �10; 10½ �. (see Section ’Deep probability distributions and normalizing flows’).

Even this relatively simple system has nontrivial (although intuitively sensible) structure in the

parameter distribution. To validate our method, we analytically derived the contours of the probabil-

ity density from the emergent property statistics and values. In the a1;1-a2;2 plane, the black line at

realðl1Þ ¼ a1;1þa2;2
2

¼ 0, dashed black line at the standard deviation realðl1Þ ¼ a1;1þa2;2
2

� 0:25, and the

dashed gray line at twice the standard deviation realðl1Þ ¼ a1;1þa2;2
2

� 0:5 follow the contour of proba-

bility density of the samples (Figure 1—figure supplement 2A). The distribution precisely reflects

the desired statistical constraints and model degeneracy in the sum of a1;1 and a2;2. Intuitively, the

parameters equivalent with respect to emergent property statistic realðl1Þ have similar log densities.

To explain the bimodality of the EPI distribution, we examined the imaginary component of l1.

When realðl1Þ ¼ a1;1 þ a2;2 ¼ 0 (which is the case on average in X ), we have

imagðl1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1;1a2;2�a1;2a2;1
t

q

; if a1,1a2,2 <a1,2a2,1

0 otherwise

(

: (32)

In Figure 1—figure supplement 2B, we plot the contours of imagðl1Þ where a1;1a2;2 is fixed to 0

at one standard deviation (p
5
, black dashed) and two standard deviations (2p

5
, gray dashed) from the

mean of 2p. This validates the curved multimodal structure of the inferred distribution learned

through EPI. Subtler combinations of model and emergent property will have more complexity, fur-

ther motivating the use of EPI for understanding these systems. As we expect, the distribution

results in samples of two-dimensional linear systems oscillating near 1 Hz (Figure 1—figure supple-

ment 3).

EPI as variational inference
In variational inference, a posterior approximation q�

u
is chosen from within some variational family Q

to be as close as possible to the posterior under the KL divergence criteria

q�
u
ðzÞ ¼

qu2Q
argmaxKLðquðzÞ j j pðz j xÞÞ: (33)

This KL divergence can be written in terms of entropy of the variational approximation:

KLðquðzÞ j j pðz j xÞÞ ¼Ez~qu logðquðzÞÞ½ ��Ez~qu logðpðz j xÞÞ½ � (34)

¼�HðquÞ�Ez~qu logðpðx j zÞÞþ logðpðzÞÞ� logðpðxÞÞ½ � (35)

Since the marginal distribution of the data pðxÞ (or ‘evidence’) is independent of u, variational
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inference is executed by optimizing the remaining expression. This is usually framed as maximizing

the evidence lower bound (ELBO)

qu2Q
argmaxKLðqu j j pðz j xÞÞ ¼

qu2Q
argmaxHðquÞþEz~qu logðpðx j zÞÞþ logðpðzÞÞ½ �: (36)

Now, we will show how the maximum entropy problem of EPI is equivalent to variational infer-

ence. In general, a maximum entropy problem (as in Equation 16) has an equivalent lagrange dual

form:

q2Q
argmax HðqðzÞÞ ()

q2Q
argmax HðqðzÞÞþh�>

Ez~q TðzÞ½ �;

s:t:Ez~q TðzÞ½ � ¼ 0
(37)

with lagrange multipliers h�. By moving the lagrange multipliers within the expectation

q� ¼
q2Q

argmaxHðqðzÞÞþEz~q h�>TðzÞ
� �

; (38)

inserting a logexpð�Þ within the expectation,

q� ¼
q2Q

argmaxHðqðzÞÞþEz~q logexp h�>TðzÞ
� �� �

; (39)

and finally choosing Tð�Þ to be likelihood averaged statistics as in EPI

q� ¼
q2Q

argmaxHðqðzÞÞþEz~q logexp h�>
Ex~pðx j zÞ f1ðx;zÞ½ �

:::

Ex~pðx j zÞ fmðx;zÞ½ �

2

6

4

3

7

5

0

B

@

1

C

A

2

6

4

3

7

5
; (40)

we can compare directly to the objective used in variational inference (Equation 36). We see that

EPI is exactly variational inference with an exponential family likelihood defined by sufficient statistics

TðzÞ ¼Ex~pðx j zÞ fðx;zÞ½ �, and where the natural parameter h� is predicated by the mean parameter

mopt. Equation 40 implies that EPI uses an improper (or uniform) prior, which is easily changed.

This derivation of the equivalence between EPI and variational inference emphasizes why defining

a statistical inference program by its mean parameterization mopt is so useful. With EPI, one can

clearly define the emergent property X that the model of interest should produce through intuitive

selection of mopt for a given TðzÞ. Alternatively, figuring out the correct natural parameters h� for the

same TðzÞ that produces X is a formally hard problem.

Stomatogastric ganglion
In Section ’Motivating emergent property inference of theoretical models’ and ’Emergent property

inference via deep generative models’, we used EPI to infer conductance parameters in a model of

the stomatogastric ganglion (STG) (Gutierrez et al., 2013). This five-neuron circuit model represents

two subcircuits: that generating the pyloric rhythm (fast population) and that generating the gastric

mill rhythm (slow population). The additional neuron (the IC neuron of the STG) receives inhibitory

synaptic input from both subcircuits, and can couple to either rhythm dependent on modulatory con-

ditions. There is also a parametric regime in which this neuron fires at an intermediate frequency

between that of the fast and slow populations (Gutierrez et al., 2013), which we infer with EPI as a

motivational example. This model is not to be confused with an STG subcircuit model of the pyloric

rhythm (Marder and Selverston, 1992), which has been statistically inferred in other studies

(Prinz et al., 2004; Gonçalves et al., 2019).

STG model
We analyze how the parameters z ¼ ½gel; gsynA� govern the emergent phenomena of intermediate

hub frequency in a model of the stomatogastric ganglion (STG) (Gutierrez et al., 2013) shown in

Figure 1A with activity x ¼ xf1; xf2; xhub; xs1; xs2½ �, using the same hyperparameter choices as Gutierrez

et al. Each neuron’s membrane potential xaðtÞ for a 2 ff1; f2; hub; s1; s2g is the solution of the follow-

ing stochastic differential equation:
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Cm

dxa

dt
¼� hleakðx;zÞþ hCaðx;zÞþ hKðx;zÞþ hhypðx;zÞþ helecðx;zÞþ hsynðx;zÞ

� �

þ dB: (41)

The input current of each neuron is the sum of the leak, calcium, potassium, hyperpolarization,

electrical and synaptic currents. Each current component is a function of all membrane potentials

and the conductance parameters z. Finally, we include gaussian noise dB to the model of Gutierrez

et al. so that the model stochastic, although this is not required by EPI.

The capacitance of the cell membrane was set to Cm ¼ 1nF. Specifically, the currents are the dif-

ference in the neuron’s membrane potential and that current type’s reversal potential multiplied by

a conductance:

hleakðx;zÞ ¼ gleakðxa�VleakÞ (42)

helecðx;zÞ ¼ gelðxposta � xprea Þ (43)

hsynðx;zÞ ¼ gsynS
pre
¥
ðxposta �VsynÞ (44)

hCaðx;zÞ ¼ gCaM¥ðxa �VCaÞ (45)

hKðx;zÞ ¼ gKNðxa �VKÞ (46)

hhypðx;zÞ ¼ ghHðxa �VhypÞ: (47)

The reversal potentials were set to Vleak ¼�40mV , VCa ¼ 100mV , VK ¼�80mV , Vhyp ¼�20mV , and

Vsyn ¼�75mV . The other conductance parameters were fixed to gleak ¼ 1� 10
�4�S. gCa, gK , and ghyp

had different values based on fast, intermediate (hub) or slow neuron. The fast conductances had

values gCa ¼ 1:9� 10
�2, gK ¼ 3:9� 10

�2, and ghyp ¼ 2:5� 10
�2. The intermediate conductances had val-

ues gCa ¼ 1:7� 10
�2, gK ¼ 1:9� 10

�2, and ghyp ¼ 8:0� 10
�3. Finally, the slow conductances had values

gCa ¼ 8:5� 10
�3, gK ¼ 1:5� 10

�2, and ghyp ¼ 1:0� 10
�2.

Furthermore, the Calcium, Potassium, and hyperpolarization channels have time-dependent gat-

ing dynamics dependent on steady-state gating variables M¥, N¥ and H¥, respectively:

M¥ ¼ 0:5 1þ tanh
xa� v1

v2

� �� �

(48)

dN

dt
¼ lNðN¥�NÞ (49)

N¥ ¼ 0:5 1þ tanh
xa � v3

v4

� �� �

(50)

lN ¼fN cosh
xa � v3

2v4

� �

(51)

dH

dt
¼ H¥�Hð Þ

t h

(52)

H¥ ¼
1

1þ exp xaþv5
v6

� � (53)
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t h ¼ 272� �1499

1þ exp �xaþv7
v8

� �

0

@

1

A: (54)

where we set v1 ¼ 0mV , v2 ¼ 20mV , v3 ¼ 0mV , v4 ¼ 15mV , v5 ¼ 78:3mV , v6 ¼ 10:5mV , v7 ¼�42:2mV ,

v8 ¼ 87:3mV , v9 ¼ 5mV , and vth ¼�25mV .

Finally, there is a synaptic gating variable as well:

S¥ ¼
1

1þ exp vth�xa
v9

� � : (55)

When the dynamic gating variables are considered, this is actually a 15-dimensional nonlinear

dynamical system. The gaussian noise dB has variance ð1� 10
�12Þ2 A2, and introduces variability in

frequency at each parameterization z.

Hub frequency calculation
In order to measure the frequency of the hub neuron during EPI, the STG model was simulated for

T ¼ 300 time steps of dt ¼ 25ms. The chosen dt and T were the most computationally convenient

choices yielding accurate frequency measurement. We used a basis of complex exponentials with

frequencies from 0.0 to 1.0 Hz at 0.01 Hz resolution to measure frequency from simulated time

series

F¼ 0:0;0:01; :::;1:0½ �>: (56)

To measure spiking frequency, we processed simulated membrane potentials with a relu (spike

extraction) and low-pass filter with averaging window of size 20, then took the frequency with the

maximum absolute value of the complex exponential basis coefficients of the processed time-series.

The first 20 temporal samples of the simulation are ignored to account for initial transients.

To differentiate through the maximum frequency identification, we used a soft-argmax Let

Xa 2 CjFj be the complex exponential filter bank dot products with the signal xa 2 R
N , where

a 2 ff1; f2; hub; s1; s2g. The soft-argmax is then calculated using temperature parameter b ¼ 100

 a ¼ softmaxðb jXaj � iÞ; (57)

where i¼ ½0;1; :::;100�. The frequency is then calculated as

!a ¼ 0:01 aHz: (58)

Intermediate hub frequency, like all other emergent properties in this work, is defined by the

mean and variance of the emergent property statistics. In this case, we have one statistic, hub neu-

ron frequency, where the mean was chosen to be 0.55 Hz,(Equation 2) and variance was chosen to

be 0.0252 Hz2 (Equation 3).

EPI details for the STG model
EPI was run for the STG model using

f ðx;zÞ ¼ !hubðx;zÞ; (59)

m¼ 0:55½ �; (60)

and

s2 ¼ 0:0252
� �

(61)

(see Sections ’Maximum entropy distributions and exponential families’, ’Augmented lagrangian

optimization’, and example in Section ’Example: 2D LDS’). Throughout optimization, the augmented

lagrangian parameters h and c, were updated after each epoch of imax ¼ 5;000 iterations (see Section
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’Augmented lagrangian optimization’). The optimization converged after five epochs (Figure 1—fig-

ure supplement 4).

For EPI in Figure 1E, we used a real NVP architecture with three coupling layers and two-layer

neural networks of 25 units per layer. The normalizing flow architecture mapped z0 ~Nð0; IÞ to a sup-

port of z ¼ ½gel; gsynA� 2 ½4; 8� � ½0:01; 4�, initialized to a gaussian approximation of samples returned

by a preliminary ABC search. We did not include gsynA<0:01, for numerical stability. EPI optimization

was run with an augmented lagrangian coefficient of c0 ¼ 10
5, hyperparameter b ¼ 2, a batch size

n ¼ 400, and we simulated one xðiÞ per zðiÞ. The architecture converged with criteria Ntest ¼ 100.

Hessian sensitivity vectors
To quantify the second-order structure of the EPI distribution, we evaluated the Hessian of the log

probability q
2 log qðz j XÞ

qzz> . The eigenvector of this Hessian with most negative eigenvalue is defined as

the sensitivity dimension v1, and all subsequent eigenvectors are ordered by increasing eigenvalue.

These eigenvalues are quantifications of how fast the emergent property deteriorates via the param-

eter combination of their associated eigenvector. In Figure 1D, the sensitivity dimension v1 (solid)

and the second eigenvector of the Hessian v2 (dashed) are shown evaluated at the mode of the dis-

tribution. Since the Hessian eigenvectors have sign degeneracy, the visualized directions in 2-D

parameter space were chosen to have positive gsynA. The length of the arrows is inversely propor-

tional to the square root of the absolute value of their eigenvalues l1 ¼ �10:7 and l2 ¼ �3:22. For

the same magnitude perturbation away from the mode, intermediate hub frequency only diminishes

along the sensitivity dimension v1 (Figure 1E–F).

Scaling EPI for stable amplification in RNNs
Rank-2 RNN model
We examined the scaling properties of EPI by learning connectivities of RNNs of increasing size that

exhibit stable amplification. Rank-2 RNN connectivity was modeled as W ¼ UV>, where

U ¼ U1 U2½ � þ g�ðWÞ, V ¼ V1 V2½ � þ g�ðVÞ, and �ðWÞ
i;j ; �

ðVÞ
i;j ~Nð0; 1Þ. This RNN model has dynamics

t _x¼�xþWx: (62)

In this analysis, we inferred connectivity parameterizations z¼ U>
1
;U>

2
;V>

1
;V>

2

� �>2 �1;1½ �ð4NÞ that

produced stable amplification using EPI, SMC-ABC (Sisson et al., 2007), and SNPE

(Gonçalves et al., 2019) (see Section Related methods).

Stable amplification
For this RNN model to be stable, all real eigenvalues of W must be less than 1: realðl1Þ<1, where l1

denotes the greatest real eigenvalue of W. For a stable RNN to amplify at least one input pattern,

the symmetric connectivity W s ¼ WþW>
2

must have an eigenvalue greater than 1: ls
1
>1, where ls is the

maximum eigenvalue of W s. These two conditions are necessary and sufficient for stable amplifica-

tion in RNNs (Bondanelli and Ostojic, 2020).

EPI details for RNNs
We defined the emergent property of stable amplification with means of these eigenvalues (0.5 and

1.5, respectively) that satisfy these conditions. To complete the emergent property definition, we

chose variances (0:252) about those means such that samples rarely violate the eigenvalue con-

straints. To write the emergent property of Equation 5 in terms of the EPI optimization, we have

f ðx;zÞ ¼ realðl1Þðx;zÞ
ls
1
ðx;zÞ

� �

; (63)

m¼ 0:5

1:5

� �

; (64)

and
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s2 ¼ 0:252

0:252

� �

(65)

(see Sections ’Maximum entropy distributions and exponential families’, ’Augmented lagrangian

optimization’, and example in Section ’Example: 2D LDS’). Gradients of maximum eigenvalues of

Hermitian matrices like W s are available with modern automatic differentiation tools. To differentiate

through the realðl1Þ, we solved the following equation for eigenvalues of rank-2 matrices using the

rank reduced matrix W r ¼ V>U

l� ¼
TrðW rÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðW rÞ2 � 4DetðW rÞ
q

2
: (66)

For EPI in Figure 2, we used a real NVP architecture with three coupling layers of affine transfor-

mations parameterized by two-layer neural networks of 100 units per layer. The initial distribution

was a standard isotropic gaussian z0 ~Nð0; IÞ mapped to the support of zi 2 ½�1;1�. We used an aug-

mented lagrangian coefficient of c0 ¼ 10
3, a batch size n¼ 200, b¼ 4, and we simulated one WðiÞ per

zðiÞ. We chose to use imax ¼ 500 iterations per augmented lagrangian epoch and emergent property

constraint convergence was evaluated at Ntest ¼ 200 (Figure 2B blue line, and Figure 2C–D blue). It

was fastest to initialize the EPI distribution on a Tesla V100 GPU, and then subsequently optimize it

on a CPU with 32 cores. EPI timing measurements accounted for this initialization period.

Methodological comparison
We compared EPI to two alternative simulation-based inference techniques, since the likelihood of

these eigenvalues given z is not available. Approximate bayesian computation (ABC)

(Beaumont et al., 2002) is a rejection sampling technique for obtaining sets of parameters z that

produce activity x close to some observed data x0. Sequential Monte Carlo approximate bayesian

computation (SMC-ABC) is the state-of-the-art ABC method, which leverages SMC techniques to

improve sampling speed. We ran SMC-ABC with the pyABC package (Klinger et al., 2018) to infer

RNNs with stable amplification: connectivities having eigenvalues within an �-defined l�2 distance of

x0 ¼
realðl1Þ

ls
1

� �

¼ 0:5

1:5

� �

: (67)

SMC-ABC was run with a uniform prior over z2 �1;1½ �ð4NÞ, a population size of 1000 particles with

simulations parallelized over 32 cores, and a multivariate normal transition model.

SNPE, the next approach in our comparison, is far more similar to EPI. Like EPI, SNPE treats

parameters in mechanistic models with deep probability distributions, yet the two learning algo-

rithms are categorically different. SNPE uses a two-network architecture to approximate the poste-

rior distribution of the model conditioned on observed data x0. The amortizing network maps

observations xi to the parameters of the deep probability distribution. The weights and biases of the

parameter network are optimized by sequentially augmenting the training data with additional pairs

(zi, xi) based on the most recent posterior approximation. This sequential procedure is important to

get training data zi to be closer to the true posterior, and xi to be closer to the observed data. For

the deep probability distribution architecture, we chose a masked autoregressive flow with affine

couplings (the default choice), three transforms, 50 hidden units, and a normalizing flow mapping to

the support as in EPI. This architectural choice closely tracked the size of the architecture used by

EPI (Figure 2—figure supplement 1). As in SMC-ABC, we ran SNPE with x0 ¼ �. All SNPE optimiza-

tions were run for a limit of 1.5 days, or until two consecutive rounds resulted in a validation log

probability lower than the maximum observed for that random seed. It was always faster to run

SNPE on a CPU with 32 cores rather than on a Tesla V100 GPU.

To compare the efficiency of these algorithms for inferring RNN connectivity distributions produc-

ing stable amplification, we develop a convergence criteria that can be used across methods. While

EPI has its own hypothesis testing convergence criteria for the emergent property, it would not

make sense to use this criteria on SNPE and SMC-ABC which do not constrain the means and varian-

ces of their predictions. Instead, we consider EPI and SNPE to have converged after completing its
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most recent optimization epoch (EPI) or round (SNPE) in which the distance jEz;x f ðx; zÞ½ � � mj
2
is less

than 0.5. We consider SMC-ABC to have converged once the population produces samples within

the � ¼ 0:5 ball ensuring stable amplification.

When assessing the scalability of SNPE, it is important to check that alternative hyperparamteriza-

tions could not yield better performance. Key hyperparameters of the SNPE optimization are the

number of simulations per round nround, the number of atoms used in the atomic proposals of the

SNPE-C algorithm (Greenberg, 2019), and the batch size n. To match EPI, we used a batch size of

n ¼ 200 for N< ¼ 25, however we found n ¼ 1; 000 to be helpful for SNPE in higher dimensions. While

nround ¼ 1; 000 yielded SNPE convergence for N< ¼ 25, we found that a substantial increase to

nround ¼ 25; 000 yielded more consistent convergence at N ¼ 50 (Figure 2—figure supplement 2A).

By increasing nround, we also necessarily increase the duration of each round. At N ¼ 100, we tried

two hyperparameter modifications. As suggested in Greenberg, 2019, we increased natom by an

order of magnitude to improve gradient quality, but this had little effect on the optimization (much

overlap between same random seeds) (Figure 2—figure supplement 2B). Finally, we increased

nround by an order of magnitude, which yielded convergence in one case, but no others. We found

no way to improve the convergence rate of SNPE without making more aggressive hyperparameter

choices requiring high numbers of simulations. In Figure 2C–D, we show samples from the random

seed resulting in emergent property convergence at greatest entropy (EPI), the random seed result-

ing in greatest validation log probability (SNPE), and the result of all converged random seeds

(SMC).

Effect of RNN parameters on EPI and SNPE inferred distributions
To clarify the difference in objectives of EPI and SNPE, we show their results on RNN models with

different numbers of neurons N and random strength g. The parameters inferred by EPI consistently

produces the same mean and variance of realðl1Þ and ls
1
, while those inferred by SNPE change

according to the model definition (Figure 2—figure supplement 3A). For N ¼ 2 and g ¼ 0:01, the

SNPE posterior has greater concentration in eigenvalues around x0 than at g ¼ 0:1, where the model

has greater randomness (Figure 2—figure supplement 3B top, orange). At both levels of g when

N ¼ 2, the posterior of SNPE has lower entropy than EPI at convergence (Figure 2—figure supple-

ment 3B top). However at N ¼ 10, SNPE results in a predictive distribution of more widely dispersed

eigenvalues (Figure 2—figure supplement 3A bottom), and an inferred posterior with greater

entropy than EPI (Figure 2—figure supplement 3B bottom). We highlight these differences not to

focus on an insightful trend, but to emphasize that these methods optimize different objectives with

different implications.

Note that SNPE converges when it’s validation log probability has saturated after several rounds

of optimization (Figure 2—figure supplement 3C), and that EPI converges after several epochs of

its own optimization to enforce the emergent property constraints (Figure 2—figure supplement

3D blue). Importantly, as SNPE optimizes its posterior approximation, the predictive means change,

and at convergence may be different than x0 (Figure 2—figure supplement 3D orange, left). It is

sensible to assume that predictions of a well-approximated SNPE posterior should closely reflect the

data on average (especially given a uniform prior and a low degree of stochasticity); however, this is

not a given. Furthermore, no aspect of the SNPE optimization controls the variance of the predic-

tions (Figure 2—figure supplement 3D orange, right).

Primary visual cortex
V1 model
E-I circuit models, rely on the assumption that inhibition can be studied as an indivisible unit, despite

ample experimental evidence showing that inhibition is instead composed of distinct elements

(Tremblay et al., 2016). In particular three types of genetically identified inhibitory cell-types – par-

valbumin (P), somatostatin (S), VIP (V) – compose 80% of GABAergic interneurons in V1

(Markram et al., 2004; Rudy et al., 2011; Tremblay et al., 2016), and follow specific connectivity

patterns (Figure 3A; Pfeffer et al., 2013), which lead to cell-type-specific computations

(Mossing et al., 2021; Palmigiano et al., 2020). Currently, how the subdivision of inhibitory cell-

types, shapes correlated variability by reconfiguring recurrent network dynamics is not understood.
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In the stochastic stabilized supralinear network (Hennequin et al., 2018), population rate

responses x to mean input h, recurrent input Wx and slow noise � are governed by

t
dx

dt
¼�xþfðWxþhþ �Þ; (68)

where fð�Þ ¼ �½ �2þ, and the noise is an Ornstein-Uhlenbeck process �~OUðt noise;sÞ

t noised�a ¼��adtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2t noise

p

~sadB (69)

with t noise ¼ 5ms>t ¼ 1ms. The noisy process is parameterized as

~sa ¼ sa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t

t noise

r

; (70)

so that s parameterizes the variance of the noisy input in the absence of recurrent connectivity

(W ¼ 0). As contrast c2 ½0;1� increases, input to the E- and P-populations increases relative to a base-

line input h¼ hb þ chc. Connectivity (Wfit) and input (hb;fit and hc;fit) parameters were fit using the

deterministic V1 circuit model (Palmigiano et al., 2020)

Wfit ¼

WEE WEP WES WEV

WPE WPP WPS WPV

WSE WSP WSS WSV

WVE WVP WVS WVV

2

6

6

6

4

3

7

7

7

5

¼

2:18 �1:19 �:594 �:229
1:66 �:651 �:680 �:242
:895 �5:22� 10

�3 �1:51� 10
�4 �:761

3:34 �2:31 �:254 �2:52� 10
�4

2

6

6

6

4

3

7

7

7

5

; (71)

hb;fit ¼

:416

:429

:491

:486

2

6

6

6

4

3

7

7

7

5

; (72)

and

hc;fit ¼

:359

:403

0

0

2

6

6

6

4

3

7

7

7

5

: (73)

To obtain rates on a realistic scale (100-fold greater), we map these fitted parameters to an equiv-

alence class

W ¼

WEE WEP WES WEV

WPE WPP WPS WPV

WSE WSP WSS WSV

WVE WVP WVS WVV

2

6

6

6

4

3

7

7

7

5

¼

:218 �:119 �:0594 �:0229
:166 �:0651 �:068 �:0242
:0895 �5:22� 10

�4 �1:51� 10
�5 �:0761

:334 �:231 �:0254 �2:52� 10
�5

2

6

6

6

4

3

7

7

7

5

; (74)

hb ¼

hb;E

hb;P

hb;S

hb;V

2

6

6

6

4

3

7

7

7

5

¼

4:16

4:29

4:91

4:86

2

6

6

6

4

3

7

7

7

5

; (75)

and

hc ¼

hc;E

hc;P

hc;S

hc;V

2

6

6

6

4

3

7

7

7

5

¼

3:59

4:03

0

0

2

6

6

6

4

3

7

7

7

5

: (76)

Circuit responses are simulated using T ¼ 200 time steps at dt¼ 0:5ms from an initial condition
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drawn from xð0Þ~U 10Hz;25Hz½ �. Standard deviation of the E-population sEðx;zÞ is calculated as the

square root of the temporal variance from tss ¼ 75ms to Tdt¼ 100ms

sEðx;zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Et>tss xEðtÞ�Et>tss xEðtÞ½ �ð Þ2
h i

r

: (77)

EPI details for the V1 model
To write the emergent properties of Equation 7 in terms of the EPI optimization, we have

f ðx;zÞ ¼ sEðx;zÞ; (78)

m¼ 5½ � (79)

(or m¼ 10½ �), and

s2 ¼ 1
2

� �

(80)

(see Sections ’Maximum entropy distributions and exponential families’, ’Augmented lagrangian

optimization’, and example in Section ’Example: 2D LDS’).

For EPI in Figure 3D–E and Figure 3—figure supplement 1, we used a real NVP architecture

with three coupling layers and two-layer neural networks of 50 units per layer. The normalizing flow

architecture mapped z0 ~Nð0; IÞ to a support of z ¼ ½sE;sP;sS;sV � 2 ½0:0; 0:5�4. EPI optimization was

run using three different random seeds for architecture initialization u with an augmented lagrangian

coefficient of c0 ¼ 10
�1, b ¼ 2, a batch size n ¼ 100, and simulated 100 trials to calculate average

sEðx; zÞ for each zðiÞ. We used imax ¼ 2; 000 iterations per epoch. The distributions shown are those of

the architectures converging with criteria Ntest ¼ 100 at greatest entropy across three random seeds.

Optimization details are shown in Figure 3—figure supplement 2. The sums of squares of each pair

of parameters are shown for each EPI distribution in Figure 3—figure supplement 3. The plots are

histograms of 500 samples from each EPI distribution from which the significance p-values of Section

’EPI reveals how recurrence with multiple inhibitory subtypes governs excitatory variability in a V1

model’ are determined.

Sensitivity analyses
In Figure 3E, we visualize the modes of quðz j XÞ throughout the sE-sP marginal. At each local mode

z�ðsPÞ, where sP is fixed, we calculated the Hessian and visualized the sensitivity dimension in the

direction of positive sE.

Testing for the paradoxical effect
The paradoxical effect occurs when a populations steady state rate is decreased (or increased) when

an increase (decrease) in current is applied to that population (Tsodyks et al., 1997). To see which,

if any, populations exhibited a paradoxical effect, we examined responses to changes in input to

individual neuron-type populations, where the initial condition was the steady state response to h

(Figure 3—figure supplement 4). Input magnitudes were chosen so that the effect is salient (0.002

for E and P, but 0.02 for S and V). Only the P-population exhibited the paradoxical effect at this con-

nectivity W and input h.

Primary visual cortex: Mathematical intuition and challenges
We write the original Equations 68 and 69 in the following way:

dx¼ 1

t
ð�xþ f ðWxþ hþ �ÞÞdt

d�¼� dt

t noise
�þ

ffiffiffi

2
p
ffiffiffiffiffiffiffiffiffiffiffi

t noise
p S�dW

(81)

where in this paper we chose S�, the covariance of the noise to be
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S� ¼ t noise

~sE 0 0 0

0 ~sP 0 0

0 0 ~sS 0

0 0 0 ~sV

2

6

6

6

4

3

7

7

7

5

(82)

where ~sa is the reparameterized standard deviation of the noise for population a from Equation 70.

We are interested in computing the covariance of the activity. For that, first we define

v ¼ !xþ hþ �, the total input to each cell type, and the matrix S, the negative

Jacobian S ¼ I � !f 0ðvÞ. Then, Equation 81 can be written as an 8-dimensional system. Linearizing

around the fixed point of the system without fluctuations, we find the equations that describe the

fluctuations of the input to each cell type:

d
dv

�

� �

¼�
S � t noise�t

t t noise
I

0
1

t noise
I

 !

dv

�

� �

dtþ
0

ffiffi

2
p
ffiffiffiffiffiffiffiffi

t noise
p S�

0

ffiffi

2
p
ffiffiffiffiffiffiffiffi

t noise
p S�

0

@

1

AdW (83)

where dW is a vector with the private noise of each variable. The dW term is multiplied by a non-

diagonal matrix, because the noise that the voltage receives is the exact same as the one that comes

from the OU process and not another process. The covariance of the inputs Lv ¼ hdvdvTi can be

found as the solution the following Lyapunov equation (Hennequin et al., 2018; Gardiner, 2009):

S � t noise�t
t t noise

I

0
1

t noise
I

 !

Lv Lc

LT
c L�

� �

þ Lv Lc

LT
c L�

� �

ST 0

� t noise�t
t t noise

I 1

t noise
I

 !

¼
2

t noise
L�

2

t noise
L�

2

t noise
L�

2

t noise
L�

 !

(84)

Where Lc ¼ hdvd�Ti can be eliminated by solving this block matrix multiplication:

SLv þLvS
T ¼ 2L�

t noise
þ t 2

noise � t 2

ðt t noiseÞ2
ð 1

t noise
Iþ SÞ�1L�þL�ð

1

t noise
Iþ STÞ�1

� �

(85)

The equation above is another Lyapunov Equation, now in 4 dimensions. In the simplest case in

which t noise ¼ t , the voltage is directly driven by white noise, and Lv can be expressed in powers of S

and ST . Because S satisfies its own polynomial equation (Cayley Hamilton theorem), there will be

four coefficients for the expansion of S and four for ST , resulting in 16 coefficients that define Lv for

a given S. Due to symmetry arguments (Gardiner, 2009), in this case the diagonal elements of the

covariance matrix of the voltage will have the form:

Lvii ¼
X

i¼fE;P;S;Vg
giðSÞs2

ii (86)

These coefficients giðSÞ are complicated functions of the Jacobian of the system. Although

expressions for these coefficients can be found explicitly, only numerical evaluation of those expres-

sions determine which components of the noisy input are going to strongly influence the variability

of excitatory population. Showing the generality of this dependence in more complicated noise sce-

narios (e.g. t noise>t as in Section ’EPI reveals how recurrence with multiple inhibitory subtypes gov-

erns excitatory variability in a V1 model’), is the focus of current research.

Superior colliculus
SC model
The ability to switch between two separate tasks throughout randomly interleaved trials, or ‘rapid

task switching,’ has been studied in rats, and midbrain superior colliculus (SC) has been show to play

an important in this computation (Duan et al., 2015). Neural recordings in SC exhibited two popula-

tions of neurons that simultaneously represented both task context (Pro or Anti) and motor response

(contralateral or ipsilateral to the recorded side), which led to the distinction of two functional clas-

ses: the Pro/Contra and Anti/Ipsi neurons (Duan et al., 2021). Given this evidence, Duan et al. pro-

posed a model with four functionally-defined neuron-type populations: two in each hemisphere

corresponding to the Pro/Contra and Anti/Ipsi populations. We study how the connectivity of this

neural circuit governs rapid task switching ability.
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The four populations of this model are denoted as left Pro (LP), left Anti (LA), right Pro (RP) and

right Anti (RA). Each unit has an activity (xa) and internal variable (ua) related by

xa ¼fðuaÞ ¼
1

2
tanh

ua� a

b

� �

þ 1

2

� �

; (87)

where a2 fLP;LA;RA;RPg, a¼ 0:05 and b¼ 0:5 control the position and shape of the nonlinearity.

We order the neural populations of x and u in the following manner

x¼

xLP

xLA

xRP

xRA

2

6

6

6

4

3

7

7

7

5

u¼

uLP

uLA

uRP

uRA

2

6

6

6

4

3

7

7

7

5

; (88)

which evolve according to

t
du

dt
¼�uþWxþhþ dB: (89)

with time constant t ¼ 0:09s, step size 24 ms and Gaussian noise dB of variance 0:22. These hyper-

parameter values are motivated by modeling choices and results from Duan et al., 2021.

The weight matrix has four parameters for self sW , vertical vW , horizontal hW, and diagonal dW

connections:

W ¼

sW vW hW dW

vW sW dW hW

hW dW sW vW

dW hW vW sW

2

6

6

6

4

3

7

7

7

5

: (90)

We study the role of parameters z¼ ½sW ;vW ;hW ;dW �> in rapid task switching.

The circuit receives four different inputs throughout each trial, which has a total length of 1.8 s.

h¼ hconstant þhP;biasþhruleþhchoice�periodþhlight: (91)

There is a constant input to every population,

hconstant ¼ Iconstant½1;1;1;1�>; (92)

a bias to the Pro populations

hP;bias ¼ IP;bias½1;0;1;0�>; (93)

rule-based input depending on the condition

hP;ruleðtÞ ¼ IP;rule½1;0;1;0�>; if t�1.2s

0; otherwise

(

(94)

hA;ruleðtÞ ¼
IA;rule½0;1;0;1�>; if t�1.2s

0; otherwise

(

; (95)

a choice-period input

hchoiceðtÞ ¼
Ichoice½1;1;1;1�>; if t >1.2s

0; otherwise

(

; (96)

and an input to the right or left-side depending on where the light stimulus is delivered
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hlightðtÞ ¼
Ilight½1;1;0;0�>; if 1.2s <t <1.5s and Left

Ilight½0;0;1;1�>; if 1.2s <t <1.5s and Right

0; otherwise

8

>

<

>

:

: (97)

The input parameterization was fixed to Iconstant ¼ 0:75, IP;bias ¼ 0:5, IP;rule ¼ 0:6, IA;rule ¼ 0:6,

Ichoice ¼ 0:25, and Ilight ¼ 0:5.

Task accuracy calculation
The accuracies of the Pro- and Anti-tasks are calculated as

pPðx;zÞ ¼Ex~pðx j zÞ dPðx;zÞ½ � (98)

and

pAðx;zÞ ¼Ex~pðx j zÞ dAðx;zÞ½ � (99)

where dPðx;zÞ and dAðx;zÞ calculate the decision made in each trial (approximately 1 for correct and

0 for incorrect choices). Specifically,

dPðx;zÞ ¼Q½xLPðt¼ 1:8sÞ� xRPðt¼ 1:8sÞ� (100)

in Pro-trials where the stimulus is on the left side, and Q approximates the Heaviside step function.

Similarly,

dAðx;zÞ ¼Q½xRPðt¼ 1:8sÞ� xLPðt¼ 1:8sÞ� (101)

in Anti-trials where the stimulus was on the left side. Our accuracy calculation only considers one

stimulus presentation (Left), since the model is left-right symmetric. The accuracy is averaged over

200 independent trials, and the Heaviside step function is approximated as

QðxÞ ¼ sigmoidðbQxÞ; (102)

where bQ ¼ 100.

EPI details for the SC model
To write the emergent properties of Equation 9 in terms of the EPI optimization, we have

f ðx;zÞ ¼ dPðx;zÞ
dAðx;zÞ

� �

(103)

m¼ :75

:75

� �

; (104)

and

s2 ¼ :0752

:0752

� �

(105)

(see Sections ’Maximum entropy distributions and exponential families’, ’Augmented lagrangian

optimization’, and example in Section ’Example: 2D LDS’).

Throughout optimization, the augmented lagrangian parameters h and c, were updated after

each epoch of imax ¼ 2; 000 iterations (see Section ’Augmented lagrangian optimization’). The optimi-

zation converged after ten epochs (Figure 4—figure supplement 4).

For EPI in Figure 4C, we used a real NVP architecture with three coupling layers of affine transfor-

mations parameterized by two-layer neural networks of 50 units per layer. The initial distribution was

a standard isotropic gaussian z0 ~Nð0; IÞ mapped to a support of zi 2 ½�5; 5�. We used an aug-

mented lagrangian coefficient of c0 ¼ 10
2, a batch size n ¼ 100, and b ¼ 2. The distribution was the

greatest EPI distribution to converge across five random seeds with criteria Ntest ¼ 25.
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The bend in the EPI distribution is not a spurious result of the EPI optimization. The structure dis-

covered by EPI matches the shape of the set of points returned from brute-force random sampling

(Figure 4—figure supplement 5A) These connectivities were sampled from a uniform distribution

over the range of each connectivity parameter, and all parameters producing accuracy in each task

within the range of 60% to 90% were kept. This set of connectivities will not match the distribution

of EPI exactly, since it is not conditioned on the emergent property. For example, the parameter set

returned by the brute-force search is biased toward lower accuracies (Figure 4—figure supplement

5B).

Mode identification with EPI
We found one mode of the EPI distribution for fixed values of sW from 1 to �1 in steps of 0.25. To

begin, we chose an initial parameter value from 500 parameter samples z~ quðz j XÞ that had closest

sW value to 1. We then optimized this estimate of the mode (for fixed sW) using probability gra-

dients of the deep probability distribution for 500 steps of gradient ascent with a learning rate of

5� 10
�3. The next mode (at sW ¼ 0:75) was found using the previous mode as the initialization. This

and all subsequent optimizations used 200 steps of gradient ascent with a learning rate of 1� 10
�3,

except at sW ¼ �1 where a learning rate of 5� 10
�4 was used. During all mode identification optimi-

zations, the learning rate was reduced by half (decay = 0.5) after every 100 iterations.

Sample grouping by mode
For the analyses in Figure 5C and Figure 5—figure supplement 1, we obtained parameters for

each step along the continuum between regimes 1 and 2 by sampling from the EPI distribution.

Each sample was assigned to the closest mode z�ðsWÞ. Sampling continued until 500 samples were

assigned to each mode, which took 2.67 s (5.34 ms/sample-per-mode). It took 9.59 min to obtain

just five samples for each mode with brute force sampling requiring accuracies between 60% and

90% in each task (115 s/sample-per-mode). This corresponds to a sampling speed increase of

roughly 21,500 once the EPI distribution has been learned.

Sensitivity analysis
At each mode, we measure the sensitivity dimension (that of most negative eigenvalue in the Hes-

sian of the EPI distribution) v1ðz�Þ. To resolve sign degeneracy in eigenvectors, we chose v1ðz�Þ to

have negative element in hW. This tells us what parameter combination rapid task switching is most

sensitive to at this parameter choice in the regime.

Connectivity eigendecomposition and processing modes
To understand the connectivity mechanisms governing task accuracy, we took the eigendecomposi-

tion of the connectivity matrices W ¼ QLQ�1, which results in the same eigenmodes qi for all W

parameterized by z (Figure 4—figure supplement 3A). These eigenvectors are always the same,

because the connectivity matrix is symmetric and the model also assumes symmetry across hemi-

spheres, but the eigenvalues of connectivity (or degree of eigenmode amplification) change with z.

These basis vectors have intuitive roles in processing for this task, and are accordingly named the all

eigenmode - all neurons co-fluctuate, side eigenmode - one side dominates the other, task eigen-

mode - the Pro or Anti-populations dominate the other, and diag mode - Pro- and Anti-populations

of opposite hemispheres dominate the opposite pair. Due to the parametric structure of the connec-

tivity matrix, the parameters z are a linear function of the eigenvalues l ¼ ½lall; lside; ltaskldiag�> associ-

ated with these eigenmodes.

z¼ Al (106)

A¼ 1

4

1 1 1 1

1 �1 �1 1

1 1 �1 �1

1 �1 1 �1

2

6

6

6

4

3

7

7

7

5

: (107)

We are interested in the effect of raising or lowering the amplification of each eigenmode in the
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connectivity matrix by perturbing individual eigenvalues l. To test this, we calculate the unit vector

of changes in the connectivity z that result from a change in the associated eigenvalues

va ¼
qz
qla

j qz
qla

j
2

; (108)

where

qz

qla
¼ Aea; (109)

and for example eall ¼ ½1;0;0;0�>. So va is the normalized column of A corresponding to eigenmode

a. The parameter dimension va (a2 fall; side; task;anddiagg) that increases the eigenvalue of connec-

tivity la is z-invariant (Equation 109) and va ? vb 6¼a. By perturbing z along va, we can examine how

model function changes by directly modulating the connectivity amplification of specific eigenmo-

des, which have interpretable roles in processing in each task.

Modeling optogenetic silencing
We tested whether the inferred SC model connectivities could reproduce experimental effects of

optogenetic inactivation in rats (Duan et al., 2021). During periods of simulated optogenetic inacti-

vation, activity was decreased proportional to the optogenetic strength g 2 ½0; 1�

xa ¼ ð1�gÞfðuaÞ: (110)

Delay period inactivation was from 0:8<t<1:2.
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