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A B S T R A C T   

Phase I oncology trials seek to acquire preliminary information on the safety of novel treatments. In current 
practice, most such trials employ rule-based designs that determine whether to escalate the dose using data from 
the current dose only. The most popular of these, the 3 þ 3, is simple and familiar but inflexible and inefficient. 
We propose a rule-based design that addresses these deficiencies. Our method, which we denote the cohort- 
sequence design, is defined by a sequence of J increasing cohort sizes n ¼ ðn1;…; nJÞ and corresponding critical 
values b ¼ ðb1;…; bJÞ. The idea is to begin with a small cohort size n1 and escalate through the planned doses, 
increasing the cohort size when we encounter toxicities. By selection of J and a safety threshold tuning parameter 
θ, one can create a design that will efficiently identify a target toxicity rate, potentially including a built-in dose- 
expansion cohort. We compared our designs to the 3 þ 3 under a range of toxicity scenarios, observing that our 
approach generally rapidly identifies an MTD without enrolling patients unnecessarily at low doses where both 
toxicity and response rates are likely to be low. We have implemented the design in the R package cohortsequence.   

1. Introduction 

We acquire preliminary information on the safety of a novel treat-
ment through the conduct of a phase I trial. Statisticians commonly 
formulate the objective of such a trial as the identification of the treat-
ment’s maximum tolerated dose (MTD) — that is, the dose that gives the 
highest acceptable rate of dose-limiting toxicities (DLTs). The typical 
design calls for enrolling subjects in dose cohorts, starting from a low 
dose that is believed to be safe and increasing after each cohort until 
encountering a designated level of toxicity. 

Most phase I trials employ rule-based designs that use data from only 
the current cohort to decide what the next step will be. The most popular 
such design is the 3 þ 3, a variant of the up-and-down rule [1–6]. Some 
alternatives to the 3 þ 3 include the A þ B design [4], which generalizes 
the cohort sizes in the 3 þ 3; the accelerated titration design, which 
starts with one-patient cohorts and reverts to the 3 þ 3 plan once tox-
icities appear [7]; and designs based on intervals around the target 
toxicity probability [8,9] such as the toxicity probability interval (TPI), 
modified TPI (mTPI), and Bayesian optimal interval design (BOIN), 
which use Bayesian criteria to select the next dose [3,5,10,11]. Yet 
despite the availability of these and other alternative designs, many with 
excellent statistical properties, as recently as 2009 nearly 97% of phase I 

trials used the 3 þ 3 [1]. More recent publications also note the limited 
use of innovative designs in clinical trial practice [12,13]. 

The 3 þ 3 design is simple and familiar but has notable defects: First, 
for commonly encountered toxicity profiles, the 3 þ 3 most often selects 
doses with DLT rates in the range 20%–25%, well below the typical 
nominal target of 30%–35% [14]. Second, most patients in a 3 þ 3 trial 
receive doses that give low rates of both toxicity and therapeutic effect; a 
more efficient design would escalate quickly past these to reach doses 
that are of greater interest. Third, the maximum number of patients that 
a 3 þ 3 enrolls at the final dose is 6, implying that it can obtain only 
limited information about toxicity and efficacy at the purported MTD. 
Thus it has become common to augment the phase I trial with a dos-
e-expansion cohort — an additional group of patients who receive 
treatment at the identified MTD. Often, the choice of sample size for this 
additional cohort is arbitrary [15], and in any event an expansion cohort 
is of no value if the trial mis-estimates the MTD. 

Our objective in this article is to describe a novel rule-based dose- 
finding design that avoids the problems of the 3 þ 3 while preserving, to 
the extent possible, its simplicity. Our method, which we denote the 
cohort-sequence design, permits tuning of the cohort sizes and critical 
values to reflect the targeted DLT rate. It improves efficiency by focusing 
enrollment at doses where toxicities are likely to occur, thereby creating 
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larger cohorts in the vicinity of the MTD and obviating the need to 
append an arbitrarily sized dose-expansion cohort. 

2. Methods 

2.1. Escalation plan for the cohort-sequence design 

The cohort-sequence design consists of a sequence of cohort sizes n ¼
ðn1;…; nJÞ and corresponding DLT critical values b ¼ ðb1;…; bJÞ that 
signal whether to escalate, de-escalate, or enroll more subjects at the 
current dose. The notion is to begin with a small cohort size n1 and 
escalate through the planned series of increasing doses D ¼ ðD1;…;DmÞ, 
raising the cohort size as we begin to encounter toxicities. Specifically, 
when enrolling subjects at dose Di with cohort size nj, the decision to 
escalate, add more at the current dose, or de-escalate hinges on whether 
the observed DLT count in the cohort falls below, equals, or exceeds the 
corresponding critical value bj. If the DLT count at dose Di exceeds bj, we 
stop treating the cohort at that dose to avoid excessive toxicities. A 
possible value for the sequence of cohort sizes would be n ¼
ð1;3; 5; 8;10Þ, with corresponding sequence of critical values b ¼
ð1;2; 3; 4;5Þ. 

Fig. 1 displays a flow chart for our design. Suppose that the current 
dose level is Di and that our current cohort size is nj with corresponding 
critical value bj. We enroll up to nj subjects at this dose and observe the 
number of DLTs as Xi. If Xi < bj, we deem the current dose to be safe, and 
we escalate and enroll the next cohort at dose Diþ1 with the same cohort 
size nj and critical value bj. If Xi > bj, we deem the current dose unsafe, 
and we enroll the next cohort at the next lower dose Di� 1 with the ter-
minal cohort size nJ and corresponding critical value bJ. If Xi ¼ bj, we 
deem the current dose as potentially, but not certainly, toxic, and we 
increase the cohort size to njþ1 and the corresponding critical value to 
bjþ1, enrolling additional subjects at this dose until the cohort is filled 
and we can again evaluate the safety data. The escalation/de-escalation 
continues in this way until a safe dose is achieved (Xi < bJ) after a de- 
escalation, or the trial de-escalates to the lowest dose. If we escalate to 
the highest dose Dm with cohort size nj, and observe Xm < bj, then we 
increase the cohort size to nJ and the critical value to bJ. We estimate the 
MTD as the highest safe dose evaluated. Alternatively, one can specify a 
total number of patients and stop when all have received treatment, 
again identifying the highest safe dose as the MTD. 

2.2. Identification of the critical value for a designated cohort size 

We select the pairs ðnj; bjÞ; j ¼ 1;…; J to represent a comparable level 
of certainty about the DLT rate at the given dose. That is, for each nj, the 
selected bj is one that identifies the current dose as safe, unsafe, or 
indeterminate, by a criterion that is common across cohort sizes. To 
accomplish this, we first select a safety threshold, denoted θ 2 ð0; 1Þ. The 
principle is that if we are reasonably sure that the DLT rate at dose Di is 
below θ, we escalate; if we are reasonably sure that the DLT rate at Di 
exceeds θ, we de-escalate; otherwise, we collect more data at Di. Having 
chosen θ, we can either compute the critical value bj from a selected 
cohort size nj, or vice versa. 

We first demonstrate the computation of bj from nj. We evaluate 
uncertainty about the toxicity level using Bayesian posterior probabili-
ties. At dose level Di, the number of DLTs Xi is binomial with parameters 
(Ni, τi), where Ni and τi ¼ τðDiÞ represent the cohort size and toxicity 
probability, respectively. We assume a Beta(1,4) prior for τi, which 
updates to Beta(1þ Xi, 4þ Ni � Xi) after Xi DLTs in Ni trials. We use this 
prior because it represents the situation where there are X ¼ 0 events in 
a previous N ¼ 3 patients starting from a uniform prior, which ap-
proximates the level of uncertainty that one would express before 
examining an untested dose level. As in the TPI and mTPI designs [3,5, 
10], we use the same prior for all dose levels because we have essentially 
no prior data at any dose level. 

Starting from a fixed nj, to determine the critical level bj we compute 
the posterior probability that τi exceeds the safety threshold θ, which we 
denote 

f ðXi;Ni; θÞ � Pr½τi > θjXi;Ni�:

We fix a threshold of 10% for this posterior probability. For example, 
if fðXi;Ni; θÞ is below 10%, then we deem the dose level safe for esca-
lation. If fðXi;Ni; θÞ is well above 10%, we de-escalate. If fðXi;Ni; θÞ is 
above 10% but fðXi � 1;Ni; θÞ is below 10%, we collect more data at the 
current dose. We select bj by identifying the value of Xi such that fðXi;Ni;

θÞ > 10% and fðXi � 1;Ni;θÞ � 10%. 

2.3. Identification of the cohort size for a designated critical value 

Alternatively, one can select a sequence of bj values and then 
calculate the corresponding cohort sizes nj. To avoid ambiguities, the bj 

Fig. 1. Flow chart for the cohort-sequence design.  
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values should constitute an increasing sequence; b ¼ ð1; 2;…; JÞ is a 
natural choice. We start by computing fðbj � 1; x; θÞ for x � bj, which 
decreases as x increases. Then nj is the smallest x such that fðbj � 1;x;θÞ
� 10%, and fðbj;x;θÞ > 10%. Fig. 2 illustrates the process of identifying 
the cohort size. 

2.4. Selection of the number of cohort sizes 

The final element of the design is the number of cohort sizes, which 
we denote J. As a rule, for a fixed bj, the smaller the value of θ, the larger 
will be the corresponding nj. Therefore, for small values of θ it is pref-
erable to choose a smaller J, lest the total sample size be excessive. In the 
next subsection we demonstrate some feasible choices of θ and J. 

2.5. Example designs 

Flexibility of the design derives from the safety threshold θ. We note 
that one should think of θ as a tuning parameter and not a target DLT 
rate; in simulations (see Section 3 below), we show that θ typically ex-
ceeds the modal DLT rate by 10%–20%. For example, θ ¼ 0:25 leads to a 
low maximum DLT rate; θ ¼ 0:35 to a moderate rate; and θ ¼ 0:50 to a 
high rate. Thus a strategy for identifying a design is to simulate fre-
quency properties under a likely dose-response curve for a range of 
values of θ and J, selecting the pair that gives the desired target DLT rate 
with a feasible sample size. 

We use the notation CS(100θ; n1;…;nJ) to denote a cohort-sequence 
design using θ as the toxicity threshold and n1;…; nJ as the sequence of 
cohort sizes, assuming by default that b ¼ ð1; 2; …; JÞ. For cohort- 
sequence designs with high maximum acceptable DLT rate we set J ¼
5 and θ ¼ 0:5, which leads to cohort sizes n ¼ ð1;3; 5;8; 10Þ. We denote 
this design CS(50; 1,3,5,8,10), or henceforth CS(50). For moderate 
maximum acceptable DLT rate, we set J ¼ 2 and θ ¼ 0:35 and derive 
n ¼ ð2;6Þ, designated CS(35; 2,6). For low maximum acceptable DLT 
rate, we set θ ¼ 0:25 and J ¼ 2 and compute n ¼ ð5;11Þ, designated CS 
(25; 5,11). Alternatively, letting θ ¼ 0:4 and b ¼ ð1; 2;3Þ, the cohort 
sizes are n ¼ ð3; 6;9Þ, which is similar to the 3 þ 3 with an expansion 
cohort of size 3; we designate this design CS(40; 3,6,9). We present these 
n; b combinations in Table 1. 

With J > 5 or θ < 0:3, the possible total number of subjects in the 
study can exceed the sample sizes that are typical for phase I trials. On 
the other hand, with J < 5, one may not achieve the numbers of subjects 
at the candidate MTD that we typically observe in practice when θ is 
large. With J ¼ 5, the cohort size at the identified MTD is similar to the 
sizes of typical dose-expansion cohorts, making it unnecessary to enroll 
additional patients at those doses. 

We have implemented the cohort-sequence design in the R package 
cohortsequence, which computes fðXi;Ni; θÞ and can calculate bj from nj 
and vice versa. The package also provides a function to simulate the 
performance of a cohort-sequence design for a designated dose-response 
scenario. 

3. Simulation 

3.1. Design 

Ahn conducted simulations under four dose/toxicity scenarios to 
compare the 3 þ 3 with variants of the model-based continual reas-
sessment method (CRM) [16]. We have used the same scenarios, plus 
two others, to evaluate the frequency properties of cohort-sequence 
designs with θ 2 f0:25; 0:35; 0:4; 0:5g. In our additional scenarios, the 
toxicity rises abruptly to a high level, a situation not considered by Ahn. 
Our simulations terminate cohorts as soon as the number of DLTs is high 
enough to signal toxicity, a practice that improves efficiency and elim-
inates inadmissible toxicity. 

Our simulations also include the mTPI, BOIN, and CRM designs [3,5, 
10,11,17]. The mTPI is guided by the posterior probability of a 
pre-specified toxicity probability interval around the target toxicity, 
whereas the BOIN compares observed fractions of toxicities with 
boundaries derived from a pre-specified toxicity tolerance interval. The 
CRM design identifies the MTD by iteratively updating estimates of the 
dose-toxicity model and selecting the dose that gives the targeted 
toxicity rate. 

We evaluated the performance of eleven dose-escalation designs:  
1. The traditional 3 þ 3.  
2. The 3 þ 3 with an expansion cohort of size 3, with the stopping 

bound for safety in the expansion cohort set to 2 [15]; we denote 
this design as 3 þ 3@9,2. With this design, we de-escalate from 
an unsafe expansion cohort and enroll another until the final dose 
is safe.  

3. CS(40; 3,6,9): A cohort-sequence design that is similar to the 3 þ
3@9,2.  

4. CS(25; 5,11): Suitable for a low target DLT rate.  
5. CS(35; 2,6): Suitable for a moderate target DLT rate.  
6. CS(50; 1,3,5): Suitable for a higher target DLT rate with fewer 

patients.  
7. CS(50): Suitable for a higher target DLT and including a built-in 

expansion cohort.  
8. mTPI: The mTPI design with target toxicity of 30%, cohort size of 

3, maximum sample size being the rounded result from the 3 þ 3 
design for each corresponding scenario, and other parameters set 
at defaults [3].  

9. mTPI2: Same as mTPI, but with target toxicity 35%.  
10. BOIN: The BOIN design with target toxicity 30%, cohort size 3, 

sample size same as mTPI, and other parameters at defaults [11].  
11. CRM: The CRM design with target toxicity 30%, cohort size 1, 

same sample size as mTPI. The prior distribution for DLT prob-
abilities is ð0:01;0:1; 0:2;…;0:8Þ for Scenarios 1–4, and 
ð0:01;0:4; 0:8Þ for Scenarios 5 and 6. 

We repeated the simulation 5000 times. When the lowest dose was 
rejected as toxic, the estimated MTD was designated as dose level 0. In 
this case, the number of patients treated at the estimated MTD is 0, and 
we do not enroll an expansion cohort. We compared performance of the 
designs using four criteria: Fig. 2. Flow chart for determining the cohort size based on specified DLTs (X), 

under safety threshold θ. 

Table 1 
Decision rules for cohort-sequence designs used in the simulation.  

DLT limit (bj)  Sequence of cohort sizes (n) 

CS(25; 5,11) CS(35; 2,6) CS(40; 3,6,9) CS(50) 

1 5 2 3 1 
2 11 6 6 3 
3   9 5 
4    8 
5    10       
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1. The proportion of times each dose was recommended as the MTD;  
2. the fraction of patients treated at each dose;  
3. the average number of patients enrolled; and  
4. the average proportion of patients experiencing a DLT. 

One can specify the MTD based on a target toxicity, then compare the 
ability of the designs to identify it; that is, any scenario can be re-used to 
reflect different target toxicities. An ideal design should have accurate 
estimation of the MTD (Criterion 1); better patient allocation (Criterion 
2); a small number of patients (Criterion 3); and a relatively large overall 
toxicity fraction (Criterion 4). We emphasize that Criterion 4 reflects 
efficiency, in the sense that a design that skips past safe (and ineffective) 
doses will give a higher overall toxicity rate than a design that lingers at 
low doses. On the other hand, a design that gives a high overall toxicity 
rate while treating many subjects at doses in excess of the MTD (i.e., not 
satisfying Criteria 1 and 2) is not desirable. 

Because BOIN and mTPI designs give similar results, henceforth we 
do not present BOIN data. 

3.2. Results 

Tables 2–5 display simulated frequency properties of the designs 
applied to Ahn’s scenarios, and Tables 6 and 7 display results from the 
additional scenarios. When the target toxicity is � 10%, the CS(25; 5,11) 
design gives the correct estimate most frequently. When the target 
toxicity is between 10% and 25%, the prediction accuracy for CS(35) is 
higher. When the target toxicity exceeds 25%, designs with θ ¼ 0:5 lead 
to correct estimates most often. Cohort-sequence designs generally treat 
lower fractions of subjects at low, safe doses. An exception is the CS(40; 
3,6,9), which closely mimics the behavior of 3 þ 3. 

The 3 þ 3@9,2 and CS(40; 3,6,9) designs require 4 to 6 more patients 
than the traditional 3 þ 3, with the extra patients constituting a built-in 
dose-expansion cohort. For cohort-sequence designs with θ ¼ 0:5, the 
average number of patients with J ¼ 3 is smaller than with J ¼ 5, 
although other frequency properties are similar. The CS(50; 1,3,5) in 
particular requires fewer patients than the 3 þ 3. CS(35; 2,6) performs 
similarly to 3 þ 3 in terms of MTD recommendation and patient allo-
cation, but it requires 3 fewer patients in toxicity Scenario 4 and 1 fewer 
patient in the other scenarios. 

With a higher value of the tuning parameter θ, the realized toxicity 
fraction is typically higher. Yet even for the CS(50) designs, which 
deliberately target higher toxicity rates, the fractions of subjects 

experiencing toxicity are less than 35% under all scenarios except for 
Scenario 5, where the lowest dose is too toxic. The toxicity percentages 
for the traditional 3 þ 3 design are similar to those for CS(35; 2,6) and 
CS(40; 3,6,9). 

The CS(50) design allows for larger cohort sizes than the 3 þ 3, but 
the realized sample size is typically smaller than that of the 3 þ 3 with an 
expansion cohort of 3. Moreover, the fraction of toxicities is greater, and 
it assigns more patients at higher dose levels. Nevertheless, CS(50) 
effectively avoids extremely toxic doses, as subjects rarely reach doses 
with DLT rates in excess of 50%. The CS(25; 5,11) design enrolls subjects 
at these highly toxic doses only in Scenarios 3 and 4, where there is a 
jump from 25% DLTs to 80% DLTs in one dose elevation. The CS(50) 
designs enroll more patients at DLT rates above 50% in Scenario 5, 
where the lowest dose has toxicity probability of 45% 

When the target toxicity is 30%, the mTPI design outperforms CS(50) 
in Scenarios 1, 2, and 6, but requires larger sample size than CS(50; 
1,3,5) in the first two scenarios. We can reduce the total sample size of 
mTPI and BOIN to smaller numbers that are multiples of 3. However, in 
situations like Scenario 4 with low toxicities, having n < 15 prevents 
dose-escalation from ever reaching the target MTD. With a higher target 
toxicity of 35%, the mTPI design is less efficient and assigns fewer pa-
tients at the MTD than CS(50) designs. The mean number of patients 
under mTPI lies between those of CS(50; 1,3,5) and CS(50). Compared 
with the mTPI designs using a fixed cohort size, CS typically gives 
smaller cohort sizes at low-toxicity doses. In Scenarios 2–4, CS(50) as-
signs a higher fraction of patients at the MTD. Therefore, under a target 
toxicity of 30% and above, one can use CS(50) designs for more efficient 
dose assignments and better predictions. This applies except in situa-
tions like Scenario 5, where the lowest dose is already excessively toxic. 
In that situation, we need a conservative dose-finding design with lower 
θ. 

The CRM design performs similarly to mTPI in all the scenarios. The 
CS(50) designs are slightly better than the CRM in Scenarios 3 and 4. In 
Scenario 6, CS(50) designs are more aggressive. The total proportion of 
MTD estimation at dose 2 and 3 together are slightly higher than the 
result from the CRM design, but the overall toxicity is closer to 30%. The 
CRM design generally works well at estimating the target MTD. Yet our 
proposed design has similar performance (in Scenarios 1, 2, and 6) or 
even better (in Scenarios 3 and 4) in the simulation settings that we have 
examined. 

We note that the mTPI and CRM designs that we examined were 
tailored to identify doses with toxicity rates of 30%, and for that they are 

Table 2 
Comparison of phase I designs under dose-toxicity Scenario 1.  

Dose DLT rate Designs 

3 þ 3 3 þ 3@9,2 CS(40; 3,6,9) CS(25; 5,11) CS(35; 2,6) CS(50; 1,3,5) CS(50) mTPI mTPI2 CRM 

Proportion of recommended dose (MTD) dose levels (%) 
0  3 4 3 9 2 0 0 0 0 0 
1 0.05 10 17 10 26 9 2 2 1 1 1 
2 0.10 38 50 38 51 36 12 12 21 16 14 
3 0.25 31 22 32 13 33 19 23 45 44 40 
4 0.35 16 6 15 1 17 32 39 29 32 31 
5 0.50 2 0 2 0 3 28 22 3 6 12 
6 0.70 0 0 0 0 0 6 2 0 0 2 
7 0.80 0 0 0 0 0 1 0 0 0 0  

Proportion of patients treated (%) 
1 0.05 27 26 24 41 21 10 7 25 25 10 
2 0.10 31 34 32 38 29 15 14 31 31 18 
3 0.25 25 25 27 18 28 20 20 31 31 25 
4 0.35 13 11 14 3 16 23 27 11 11 23 
5 0.50 4 3 4 0 5 20 22 1 1 16 
6 0.70 0 0 0 0 1 9 8 0 0 3 
7 0.80 0 0 0 0 0 2 1 0 0 4  

Average number of patients 15.3 19.9 19.6 21.3 14.5 12.8 20.0 15.0 15.0 15.0 
Percent toxicity (%) 20.3 19.1 18.6 13.3 20.7 34.7 34.3 17.1 17.1 30.5  
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very effective. The 3 þ 3 design is not tailored for any particular target, 
but most often finds doses that give toxicities in the range 10%–30%. 
Our point is that appropriately chosen CS designs out-perform 3 þ 3 
essentially always, while being competitive with mTPI and CRM when 
seeking the same MTD. 

4. Application 

It is generally impossible to compare designs on a “live” data set, 
because any real data would have arisen under a design that dictated a 
sequence of dose assignments that another design would not replicate. 
To attempt a realistic comparison of designs, we generated DLT re-
sponses using a probit model estimated from the data of Simon et al. [7] 
The model assumes Yi ¼ logðdiÞ þ εi with εieNð0; σ2Þ, and registers a 

DLT if Yi > K. We estimated the parameters to be σ ¼ 1:092 and K ¼
8:78, which gave DLT probabilities of 1%, 5%, 14%, 32%, and 56% at 
doses 11, 13, 15, 17, and 19, respectively. For each subject, we gener-
ated a normal error εi and created a corresponding latent outcome under 
each dose di. In this way we created an ensemble of correlated data sets, 
one for each design. 

Results appear in Table 8. All the methods estimate the MTD as either 
dose 15 (DLT rate 14%) or dose 17 (DLT rate 32%). The 3 þ 3 with no 
expansion cohort yields a moderate sample size, a small fraction of DLTs, 
and the lowest proportion of subjects at or near the ultimate MTD. The 3 
þ 3@9,2 and the similar CS(40; 3,6,9) give identical results; compared 
to the 3 þ 3, they have larger sample sizes, similar fractions of DLTs, and 
larger proportions of subjects treated at or near the MTD. CS(35; 2,6) 
and CS(50) give equal or larger proportions of DLTs than the 3þ3-type 

Table 3 
Comparison of phase I designs under dose-toxicity Scenario 2.  

Dose DLT rate Designs 

3 þ 3 3 þ 3@9,2 CS(40; 3,6,9) CS(25; 5,11) CS(35; 2,6) CS(50; 1,3,5) CS(50) mTPI mTPI2 CRM 

Proportion of recommended dose (MTD) dose levels (%) 
0  3 3 3 9 2 0 0 0 0 0 
1 0.05 10 13 9 24 8 2 2 1 0 0 
2 0.10 18 22 16 31 14 4 4 7 5 3 
3 0.15 21 24 19 23 22 6 6 20 21 9 
4 0.20 20 21 21 10 22 9 10 29 28 19 
5 0.25 18 13 20 3 19 17 21 28 28 32 
6 0.35 9 4 11 0 11 31 36 14 17 29 
7 0.50 2 0 1 0 2 26 20 1 2 8 
8 0.75 0 0 0 0 0 4 1 0 0 0 
9 0.90 0 0 0 0 0 0 0 0 0 0  

Proportion of patients treated (%)   
1 0.05 24 23 21 38 18 9 7 18 17 7 
2 0.10 23 23 22 31 21 10 8 23 23 7 
3 0.15 20 21 20 20 21 12 10 25 25 10 
4 0.20 15 16 17 8 18 13 12 20 20 17 
5 0.25 10 10 12 3 13 15 17 11 11 25 
6 0.35 5 5 6 0 7 17 22 4 4 20 
7 0.50 2 1 2 0 2 15 17 0 0 12 
8 0.75 0 0 0 0 0 6 5 0 0 3 
9 0.90 0 0 0 0 0 1 1 0 0 0  

Average number of patients 18.7 23.3 24.9 24.6 17.7 15.6 22.6 21.0 21.0 21.0 
Percent toxicity (%) 18.1 17.5 17.2 12.9 18.4 30.5 31.3 14.8 14.8 27.5  

Table 4 
Comparison of phase I designs under dose-toxicity Scenario 3.  

Dose DLT rate Designs 

3 þ 3 3 þ 3@9,2 CS(40; 3,6,9) CS(25; 5,11) CS(35; 2,6) CS(50; 1,3,5) CS(50) mTPI mTPI2 CRM 

Proportion of recommended dose (MTD) levels (%) 
0  10 11 9 26 7 0 2 0 0 0 
1 0.10 9 9 8 17 7 2 2 6 3 2 
2 0.10 8 9 7 15 7 2 2 7 10 5 
3 0.10 7 12 6 12 8 1 1 14 15 6 
4 0.10 30 39 31 23 32 13 13 26 20 21 
5 0.25 36 20 39 6 38 76 80 45 46 58 
6 0.80 0 0 0 0 0 4 0 1 6 8 
7 0.90 0 0 0 0 0 0 0 0 0 0             

Proportion of patients treated (%) 
1 0.10 29 28 26 47 23 11 9 27 27 11 
2 0.10 19 18 17 22 18 10 8 23 24 7 
3 0.10 16 15 15 14 16 11 8 20 20 8 
4 0.10 16 20 19 11 19 15 14 16 16 22 
5 0.25 15 16 19 5 19 33 46 11 11 38 
6 0.80 4 4 4 0 5 18 14 2 2 10 
7 0.90 0 0 0 0 0 2 2 0 0 4  

Average number of patients 18.2 22 23.5 24.0 17.2 13.3 19.0 18.0 18.0 18.0 
Percent toxicity (%) 20.0 19.4 18.7 17.5 19.2 30.1 29.1 13.2 13.2 26.2  
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designs, but also treat more patients at or near the estimated MTD. 
Notably, both CS(50) and CS(50; 1,3,5) enroll fewer subjects and esti-
mate the MTD as dose 17. CS(40; 3,6,9) has a low DLT proportion 
comparable to that of the 3 þ 3 design, but treats a larger fraction of 
subjects near the estimated MTD. These advantages come at the expense 

of a larger sample size. We set the sample size for mTPI and mTPI2 to n ¼
18 to emulate the 3 þ 3, to which they performed similarly. Setting the 
sample size for the CRM to be the same as for the 3 þ 3, it yields the 
highest proportion of patients treated at or near the MTD. 

Table 5 
Comparison of phase I designs under dose-toxicity Scenario 4.  

Dose DLT rate Designs 

3 þ 3 3 þ 3@9,2 CS(40; 3,6,9) CS(25; 5,11) CS(35; 2,6) CS(50; 1,3,5) CS(50) mTPI mTPI2 CRM 

Proportion of recommended dose (MTD) dose levels (%) 
0  0 0 0 0 0 0 0 0 0 0 
1 0.01 0 0 0 0 0 0 0 0 0 0 
2 0.01 3 4 3 8 2 1 1 0 0 0 
3 0.05 10 17 9 26 10 2 2 2 2 1 
4 0.10 41 52 41 52 40 15 15 19 15 18 
5 0.25 46 26 47 13 48 79 82 76 70 70 
6 0.80 0 0 0 0 0 4 0 3 13 11 
7 0.90 0 0 0 0 0 0 0 0 0 0  

Proportion of patients treated (%) 
1 0.01 16 13 13 17 12 8 6 15 15 5 
2 0.01 16 14 15 19 13 9 6 15 15 2 
3 0.05 19 19 17 24 17 10 7 18 18 6 
4 0.10 22 27 25 26 24 15 15 22 22 24 
5 0.25 21 22 25 13 26 79 50 24 24 47 
6 0.80 6 5 4 1 7 4 15 7 7 11 
7 0.90 0 0 0 0 0 0 2 0 0 4  

Average number of patients 20.0 24.3 23.9 32.2 17.1 12.5 18.3 21.0 21.0 21.0 
Percent toxicity (%) 14.4 14.0 13.2 8.0 15.2 29.0 28.1 14.9 15.0 27.4  

Table 6 
Comparison of phase I designs under dose-toxicity Scenario 5.  

Dose DLT rate Designs 

3 þ 3 3 þ 3@9,2 CS(40; 3,6,9) CS(25; 5,11) CS(35; 2,6) CS(50; 1,3,5) CS(50) mTPI mTPI2 CRM 

Proportion of recommended dose (MTD) dose levels (%) 
0  83 96 88 99 82 40 49 26 12 0 
1 0.45 16 4 11 1 16 31 32 67 74 80 
2 0.55 1 0 1 0 2 17 13 6 14 18 
3 0.60 0 0 0 0 0 12 6 0 0 2  

Proportion of patients treated (%) 
1 0.45 90 91 94 99 87 59 64 91 91 75 
2 0.55 9 8 6 1 12 25 21 9 9 24 
3 0.60 1 1 0 0 2 17 15 0 0 1  

Average number of patients 4.7 5.1 5.0 3.3 5.1 7.0 12.5 5.7 5.7 6.0 
Percent toxicity (%) 59.9 60.4 59.9 62.3 58.1 59.6 60.8 46.0 46.0 47.5  

Table 7 
Comparison of phase I designs under dose-toxicity Scenario 6.  

Dose DLT rate Designs 

3 þ 3 3 þ 3@9,2 CS(40; 3,6,9) CS(25; 5,11) CS(35; 2,6) CS(50; 1,3,5) CS(50) mTPI mTPI2 CRM 

Proportion of recommended dose (MTD) dose levels (%) 
0  11 21 10 30 10 2 2 8 11 0 
1 0.10 50 59 52 61 48 17 18 28 16 23 
2 0.30 30 17 28 8 30 24 28 50 52 60 
3 0.40 10 3 10 1 13 57 52 14 21 17  

Proportion of patients treated (%) 
1 0.10 50 57 53 74 46 24 21 44 42 31 
2 0.30 35 32 33 23 36 28 25 45 44 56 
3 0.40 14 12 14 3 18 48 54 11 14 13  

Average number of patients 10.9 14.5 14.4 14.2 10.7 8.4 14.8 11.9 11.8 12.0 
Percent toxicity (%) 26.0 24.7 23.2 20.4 24.7 29.7 30.9 24.5 22.9 26.7  
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5. Discussion 

We have proposed a family of rule-based phase I designs that retains 
the simplicity of the 3 þ 3 while addressing its inflexibility and in-
efficiency. Unlike the 3 þ 3, which targets DLT rates in the range 20%– 
25%, with our approach one can select a design to reflect any targeted 
DLT rate by means of the tuning parameter θ. Simulations suggest that 
choosing θ to be 10%–20% higher than the target toxicity probability 
gives the best chance of having the target dose be the modal dose, 
although this varies by scenario. The choice of J, the maximum number 
of cohort sizes, largely controls the total number of patients enrolled. If 
the sample size available for the trial is comparable to those typically in 
use with 3 þ 3 designs, then J ¼ 2 works well for lower target toxicity 
rates, whereas J 2 f3;4; 5gworks well for target toxicity rates of 25% or 
higher. 

When the target toxicity is between 10% and 25%, CS(35; 2,6) is a 
practical choice. When the target toxicity exceeds 25%, we recommend 
CS(50; 1,3,5) for a smaller total sample size or CS(50; 1,3,5,8,10) when 
more patients are available. Using a large final cohort increases sample 
size requirements but eliminates the need for an add-on dose-expansion 
cohort. 

The novelty of our design is that one can specify a sequence of cohort 
sizes, allowing for fast escalation at low doses and more enrollment close 
to the potential MTD. The possibility of specifying more than two cohort 
sizes sets our design apart from typical rule-based designs, where the 
cohort size is restricted to A þ B or a multiple of a smaller cohort size. 

The cohort-sequence design improves efficiency by escalating 
rapidly through the lower, safer doses and increasing cohort sizes 
adaptively when one begins to encounter toxicities. Consequently, it 
generally enrolls more patients in the vicinity of the estimated MTD and 
incurs higher overall DLT rates. Thus it avoids the wasteful assignment 
of subjects to doses that are likely to be safe and ineffective. In this way 
the cohort-sequence design paints a clearer picture of the drug’s toxicity 
profile and increases the chance of clinical responses. 

Our design effectively generalizes the 3 þ 3; the CS(40; 3,6,9) 
version is comparable to the 3 þ 3@9,2, which is a 3 þ 3 with added 
dose-expansion cohort. Unsurprisingly, these two designs and the 3 þ 3 
perform comparably on most metrics, except that the 3 þ 3 enrolls fewer 
patients because it lacks a built-in expansion cohort. The CS(35; 2,6) 
also performs similarly to the 3 þ 3, with slightly fewer patients. 

We have examined our design only in conventional scenarios where 
toxicity is nondecreasing with dose. Some contemporary cancer treat-
ments, such as immunotherapy, can exhibit non-monotone dose-toxicity 
curves. In such cases, one may prefer a method that optimizes response 
rate subject to a maximum acceptable toxicity. Yet in a trial whose main 
aim is to study safety, the imperative is to identify, and pull back from, 
toxic doses. We therefore believe that there is a continuing role for 
traditional designs that operate on this principle, even in trials where a 
non-monotone toxicity curve is possible. 

Although the critical values of the cohort-sequence design reflect 
Bayesian notions of parameter uncertainty, unlike the model-based de-
signs it estimates the MTD based only on information from patients 
treated at the identified MTD. An alternative, hybrid approach that uses 
all the data would be to run the study with a rule-based design and then 

estimate a model (such as the logistic) for the dose-response data, 
designating as MTD the dose whose predicted DLT rate is closest to, but 
does not exceed, the target rate. 

In the last quarter-century, much statistical research has focused on 
model-based designs such as the CRM, in which one assumes an un-
derlying parametric dose-response model and uses the accumulated data 
to estimate parameters and, thereby, the MTD [1,2,12,17–21]. Some 
pharmaceutical companies now use such designs routinely, often in 
“bucket” trials or phase I/II designs. The large majority of phase I cancer 
trials, however, continue to employ rule-based designs, primarily the 3 
þ 3 [13]. This reluctance to adopt the newer methods may reflect 
several factors: The cost and complexity of implementing the 
model-based methods; lack of familiarity with them; or simply a 
conviction that “better is the enemy of good enough” [22]. 

Model-based designs such as the CRM aim to identify the dose that 
delivers a target DLT rate [17]. By assuming an underlying 
dose-response model, all the data come into play at every decision point. 
These designs are accurate and efficient, provided only that the assumed 
model is roughly correct. Some implementations of model-based designs 
are resource-intensive, as they demand potentially a complete reanalysis 
of the data and re-evaluation of the dosing scheme at the time of 
enrollment of each new patient [12,22]. We emphasize that it is not the 
computations — which are now routine — that slow things down. The 
problem is the need to decide how to proceed at every interim analysis, 
which can easily consume more statistician and clinician time than 
many institutions are able and willing to allocate. That rule-based de-
signs automate these decisions may explain their continued popularity. 
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