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A B S T R A C T

Human-associated microbial communities are a complex mixture of bacterial species and diverse 
strains prevalent at varying abundances. Due to the inherent limitations of metagenomic as-
semblers and genome binning tools in recovering low-abundance species (<1 %) and strains, we 
lack comprehensive insight into these communities. Although many bioinformatics approaches 
are available for recovering metagenome-assembled genomes, their effectiveness in recovering 
low-abundance species and strains is often questioned. Moreover, each tool has its trade-offs, 
making selecting the right tools challenging. In this study, we investigated the combinatory ef-
fect of various assemblers and binning tools on the recovery of low-abundance species and strain- 
resolved genomes from real and simulated human metagenomes. We evaluated the performance 
of nine combinations of metagenome assemblers and genome binning tools for their potential to 
recover genomes of useable quality. Our results revealed that the metaSPAdes-MetaBAT2 com-
bination is highly effective in recovering low-abundance species, while MEGAHIT-MetaBAT2 
excels in recovering strain-resolved genomes. These findings highlight the significant variation 
in the performance of different combinations, even when aiming for the same objective. This 
suggests the profound impact of selecting the right assembler-binner combination for meta-
genome analyses. We believe this study will be a cornerstone for the scientific community, 
guiding the choice of tools by highlighting their complementary effects. Furthermore, it un-
derscores the potential of existing tools to address the current challenges in the field improving 
the recovery of information from metagenomes.

1. Introduction

Humans are colonized by trillions of microbes, representing a diverse and coexisting community of microorganisms [1]. These 
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communities, ranging from a complex gut microbiome to a simpler skin microbiome, play a crucial role in maintaining human health 
[2]. In recent years, genome-resolved metagenomics has emerged as a powerful approach to unveil the significant impact of the 
microbiome on human health and diseases [3]. These analyses are conducted using two key computational processes: metagenomic 
assembly and genome binning. Metagenomic assembly commonly requires specialized de Bruijn graph (DBG) based assemblers to 
recover information about the genomic context. Whereas the resulting contigs are disentangled by grouping them into separate bins 
(further referred to as metagenome-assembled genomes (MAGs)) using dedicated genome binning tools [4].

Recovery of MAGs facilitates the unprecedented analysis of genetic diversity among microbiomes, the identification of uncultur-
able bacterial species, and the unraveling of the etiology of complex diseases [5]. However, the recovered MAGs usually represent the 
most abundant taxa in the metagenomes [6]. Similarly, due to the inherent limitations of assemblers or genome binners, recovery of 
strains also becomes difficult [7]. Thus, there is a reasonable probability that a major proportion of information is usually lost from the 
metagenomes yielding limited insights [4]. This is particularly concerning considering the crucial role of low-abundance genomes in 
human health, for example, lactic acid bacteria constitute <1 % of the human gut microbiome [8]. Likewise, skin can be colonized by 
multiple strains of a species such as C. acnes, where individual pores contain a different clonal strain suggesting the spatial significance 
of strain variations [7].

Multiple bioinformatics tools have been developed to facilitate the metagenome assembly and binning process, but each has its 
limitations and challenges [9]. Therefore, selecting suitable assembly and binning tools remains crucial for optimal downstream 
analysis [6]. The choice of the right tool for genome-resolved analyses can be challenging, especially for less-experienced researchers, 
due to the numerous comparative studies on these tools [10–14]. These studies conclude that there is no optimal solution, and the 
selection of tools depends on the nature of the dataset and the research objectives [15]. They also deduced that the selection of any 
metagenomic tools presents trade-off effects. For instance, though MEGAHIT is a computationally efficient option, it achieves this 
efficiency at the cost of increased misassemblies and reduced contiguity relative to the MetaVelvet and metaSPAdes, respectively [15]. 
This makes MEGAHIT a good choice for resource-limited settings but not an optimal solution. Likewise, for recovering the genomes of 
low-abundance taxa, the choice of optimal assembler depends on whether the accuracy or genomic context is valued the most [16]. 
Furthermore, the Critical Assessment of Metagenome Interpretation (CAMI) challenge’s (https://data.cami-challenge.org/) Assess-
ment of Metagenome BinnERs (AMBER) benchmarked various MAG recovery methods in terms of global completeness and bin purity 
[17]. Similarly, a recent study used the AMBER approach to evaluate 15 different binning tools with a common metaSPAdes assembly 
[18]. However, to the best of our knowledge, no study has specifically tested assembler-binner combinations for the recovery of low 
abundance species or strain-resolved MAGs, despite their biological significance.

Considering the significant role of the right tools for optimal results, we hypothesized that pairing the assembler and binning tool in 
the right combination can facilitate the optimal recovery of information from the metagenomes. Therefore, this study aimed to 
evaluate various widely used assembler-binner combinations for their effectiveness in recovering low-abundance species or strain- 
resolved MAGs. We believe our findings will guide the scientific community in selecting the most appropriate combination for 
their specific objectives. Moreover, this study will serve as a cornerstone in showcasing the potential of various assembler-binner 
combinations. Additionally, our study will pave the way for a more precise and comprehensive recovery of information from meta-
genomes, ultimately enhancing our understanding of microbial communities and their roles in human health and disease.

2. Materials and methods

2.1. Selection of metagenome assemblers and genome binning tools

For the recovery of MAGs from metagenomes of varying complexity, we selected the top three DBG-based de novo assemblers and 
three widely adopted genome binners for their efficiency with both high and low-complexity metagenomes as reported elsewhere, 
[14–19]. Specifically, we recruited MEGAHIT (v1.2.9) [20] metaSPAdes (v3.15.3) [21], and IDBA-UD (v1.1.3) [22] as assemblers and 
MetaBAT2 (v1.7) [23], MaxBin2.0 (v2.2.4) [24] and CONCOCT (v1.1) [25] as genome binners. This approach resulted in nine 
assembler-binner combinations: MEGAHIT-MetaBAT2, MEGAHIT-MaxBin2.0, MEGAHIT-CONCOCT, metaSPAdes-MetaBAT2, 
metaSPAdes-MaxBin2.0, metaSPAdes-CONCOCT, IDBA-UD-MetaBAT2, IDBA-UD-MaxBin2.0, and IDBA-UD-CONCOCT.

2.2. Metagenome dataset and preprocessing

For the assessment of the assembler-binner combinations, we utilized publicly accessible real and simulated datasets. The real 
metagenomes were recruited from the Human Microbiome Project Phase III (Supplementary Table 1). It included 70 gut and 30 
anterior nares samples (further referred to as skin samples), representing high- and low-complexity metagenomes, respectively. These 
metagenomes were retrieved from the NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra) using the prefetch (v3.0.2) and 
fasterq-dump (v3.0.2) tools from the SRA Toolkit (https://github.com/ncbi/sra-tools). We utilized the mOTUs2 reference MAGs, gold 
standard taxonomic, and relative abundance profiles [26] for simulating metagenomes using InSilicoSeq 2.0 [27]. Quality assessment 
of the raw FASTQ reads was conducted using FastQC (v0.12.1) (https://github.com/s-andrews/FastQC), followed by pre-processing 
with fastp (v0.23.2) [28]. This pre-processing included the removal of low-quality bases (Q < 20), adaptor sequences, and duplicate 
reads (using parameters: q, –detect_adapter_for_pe, and –dedup, respectively).
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2.3. De-novo metagenome assembly and assessment

High-quality FASTQ reads of real and simulated metagenomes were assembled de-novo via the KBase platform (https://www.kbase. 
us/) using a single-sample assembly approach. The assemblies were performed independently across the three assemblers with their 
default settings, except for a minimum contig length (2000 bp). The quality of metagenome assemblies was evaluated based on as-
sembly size, total number of contigs in the assembly, length of the largest contig, and N50. The pairwise statistical comparison of these 
results was performed in R studio (v4.3.0) using the Wilcoxon Rank Sum test [29]. However, we did not evaluate the assemblies for 
their accuracy and coverage as these aspects have already been comprehensively assessed in multiple studies [10,15,30–32].

2.4. Genome binning and quality assessment

To recover MAGs from the metagenomes across all the assembler-binner combinations, we independently binned the three types of 
metagenome assemblies using the single-sample approach across the selected genome binners with the default settings. Quality 
assessment of the recovered MAGs, in terms of completeness and contamination levels, was conducted using the lineage workflow 
(lineage_wf) from CheckM (v1.0.18) [33]. The recovered MAGs were classified into high, medium, or low by adopting the 
completeness and contamination thresholds as defined by Minimum Information about Metagenome-Assembled Genome (MIMAG) 
[34]. However, we did not consider the proportions of 5S, 16S, 23S rRNA, and tRNA during the quality evaluation. Consequently, a 
high-quality (HQ) MAG was defined to have a completeness level of >90 % and contamination <5 %. In contrast, medium-quality 
(MQ) MAGs were defined as those with completeness ≥50 % and contamination <10 %. Otherwise, the MAGs were classified as 

Fig. 1. Comparative performance analysis of assemblers across the defined metrics for real human gut metagenomes. (A) Assembly size 
produced by three assemblers. (B) Number of contigs contained in assemblies produced by the assemblers. (C) Maximum contig length generated by 
the assemblers. (D) N50 lengths of the assembly attained by different assemblers. Note: In the figure, asterisks represent the p-value as determined 
by the Wilcoxon rank sum test (* = p-value <0.1, ** = p-value <0.01, **** = p-value <0.0001).
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low quality (LQ). It is important to note that we excluded the evaluation of proportions related to 5S, 16S, 23S rRNA, and tRNA.

2.5. Taxonomic classification and low-abundance taxa

We determined the composition of real metagenomes and the relative abundances of taxa utilizing a read-based approach using 
Kaiju (v1.9.0) [35]. The relative abundance of species is calculated using the number of reads mapped to a specific taxon relative to the 
total number of reads classified in that metagenome. Reads were classified in greedy mode using default settings, with the RefSeq 
database as the reference. Here, species with <1 % abundance in at least 5 % of metagenome samples were defined as low abundance. 
Additionally, to evaluate the combinations’ potential to recover very low abundance taxa, we set the low abundance filter to 0.05 %. 
Next, for the taxonomic classification of the nine sets of MAGs recovered across the combinations from real as well as simulated 
metagenomes, we employed GTDB-Tk (v2.3.2) [36] with its database version r214 with default settings. Gold-standard relative 
abundance and phylotype profiles were used to compare results obtained for simulated MAGs.

2.6. Recovery of strain-resolved MAGs

To evaluate the potential of recovering strain-resolved MAGs across all the combinations, we used whole genome Average 
Nucleotide Identity (ANI) scores calculated using FASTANI [18]. These values were inferred from GTDB-Tk results obtained during the 
taxonomic classification of MAGs. Here strains were defined as the MAGs assigned to the same species and shared an ANI value that is 
>95 % and ≤99 % with the reference genome [37,38].

2.7. Evaluation criteria for the assessment of assembler-binner combinations

The performance of the nine assembler-binner combinations was evaluated based on the following criteria: (i) efficient recovery of 
microbial species from metagenomes, as assessed by the total number of recovered MAGs and the fraction of useable (HQ + MQ) 
MAGs. (ii) high-resolution genome binning measured by the ability to recover microbial species present at low abundance in meta-
genomes; and (iii) improved potential to recover strains from assemblies in terms of the number and quality of the recovered strains.

3. Results

3.1. De novo assembly across the metagenomes of varying complexities

Evaluation of the real metagenome assemblies revealed metaSPAdes producing a larger assembly length, a maximum size of the 
largest contig, and a higher N50 length, identifying it as the best assembler for gut metagenomes. In contrast, MEGAHIT produced 
comparable assemblies. However, IDBA-UD performed significantly worse than the other two assemblers, indicating that it was a less 
suitable option for assembling complex metagenomes such as the gut (Fig. 1A–D). When compared with MEGAHIT (77451.2 ±
29098.3 kbp), metaSPAdes produced a larger assembly length i.e. 86707.6 ± 34752.6 kbp with an insignificant statistical difference 
(p>0.05) as shown in Fig. 1A. Whereas, IDBA-UD performed the worst, with a total assembly length of 63477.2 ± 22156.1 kbp, which 
was significantly smaller than MEGAHIT (p<0.001) and metaSPAdes (p < 0.0001). In terms of contiguity, metaSPAdes outperformed 
by yielding a considerably larger maximum contig size and better N50 lengths with an average of 454.4 ± 144.5 kbp and 26.9 ± 10.9 
kbp respectively. MEGAHIT yielded comparably contiguous assembly with an average maximum contig size of 392.3 ± 118.9 kbp and 
an average N50 length of 24.1 ± 9.6 kbp. In contrast, IDBA-UD assemblies were the most fragmented and least contiguous. It was also 
the only assembler to generate an N50 length of less than 20 kbp, which was significantly lower than those produced by metaSPAdes 
(p<0.0001) and MEGAHIT (p<0.01). For the largest contig size, IDBA-UD underperformed, with a statistically significant difference 
of p<0.0001 compared to both assemblers (Fig. 1C–D and Supplementary Table 2). However, the differences in assembly metrics 
among the three assemblers were statistically insignificant for skin metagenomes. Our results indicated that MEGAHIT is the most 
optimal solution, metaSPAdes is the second, and IDBA-UD is the least efficient assembler for assembling skin metagenomes 
(Supplementary Figs. 1A–1D). These results underscore the differences in the compatibilities of different assemblers with datasets of 
varying complexities.

For the simulated metagenome, metaSPAdes demonstrated its superior performance achieving the largest assembly size (mean: 
200902.3 ± 11603.0 kbp), the maximum length of the largest contig (mean: 671.3 ± 148.7 kbp), and the highest N50 value (mean: 
25399.8 ± 3655.9 kbp). MEGAHIT ranked second with a mean assembly size of 177265.1 ± 12327.7 kbp, and a maximum contig size 
of 530.6 ± 150.8 kbp. Despite producing the smallest assembly and contig size, IDBA-UD outperformed MEGAHIT in N50 values, 
achieving an average of 22127.4 ± 2933.9 kbp compared to MEGAHIT’s 21905.9 ± 3380.9 kbp (Supplementary Table 3).

3.2. Genome binning and recovery of useable MAGs

The total number of MAGs recovered from the real gut metagenomes using different combinations varied from 1178 to 4724. The 
highest number of MAGs was obtained using CONCOCT, followed by MetaBAT2 and MaxBin2.0, respectively. Our results demon-
strated that CONCOCT performed the best, recovering the highest number of MAGs (n = 4724 ± 15.2) from metaSPAdes assemblies, 
followed by MEGAHIT (n = 4535 ± 12.4), and IDBA-UD (n = 4272 ± 11.5). Contrarily, MetaBAT2 produced a total of 2256 ± 14.4 
MAGs with metaSPAdes assembly, followed by MEGAHIT (n = 2023 ± 11.9) and IDBA-UD (n = 1624 ± 10.0) assemblies. Conversely, 
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MaxBin2.0 yielded the lowest count, recovering a total of 1605 ± 10.5, 1508 ± 9.5, and 1178 ± 7.3 MAGs recovered from meta-
SPAdes, MEGAHIT, and IDBA-UD assemblies, respectively (Fig. 2, Supplementary Table 4).

Next, we deployed CheckM to estimate the quality of MAGs by assessing their completeness and contamination levels. For gut 
metagenomes, our analysis of genome completeness across the three binning tools revealed that MaxBin2 yielded the most complete 
MAGs with an average completeness of 71.1 ± 31.0 % using metaSPAdes, followed by IDBA-UD (69.4 ± 29.3 %) and MEGAHIT (67.5 
± 31.7 %) assemblies. Next in rank was MetaBAT2 which output the most complete MAGs with an average completeness ranging from 
52 to 57 % with all three assemblers. In contrast, CONCOCT demonstrated the lowest genome completeness across all assemblers, with 
an average completeness level below 30 % (Table 1 and Supplementary Table 5). We then categorized the recovered MAGs as HQ, MQ, 
and LQ according to the criteria defined in the Methods. The results showed that MetaBAT2 excelled by recovering a substantially 
higher proportion of nearly complete genomes. In contrast, CONCOCT, despite recovering the highest number of MAGs, failed to 
produce a significant proportion of useable genomes. Our results revealed that metaSPAdes-MetaBAT2 recovered the highest fraction 
of HQ + MQ MAGs i.e. 52.6 %, followed by MEGAHIT-MetaBAT2 with 51.1 %. IDBA-UD-MetaBAT2 was ranked third for recovering a 
proportion of 48.3 % useable MAGs. This proportion drastically decreased to 17%–22 % useable MAGs when the assemblies were 
binned using CONCOCT. On the other hand, the lowest fraction of LQ MAGs was also recovered by MetaBAT2 with metaSPAdes, 
MEGAHIT, and IDBA-UD assemblies respectively (Fig. 3, Supplementary Table 5).

A similar trend was observed for skin metagenomes, with CONCOCT producing the highest number of MAGs, followed by Meta-
BAT2 (Supplementary Figs. 2A–2B). These genome binners performed comparatively well using MEGAHIT assemblies. In contrast, 
MaxBin2 recovered the lowest number. However, despite producing the least number of MAGs, MaxBin2 achieved the highest average 
completeness from IDBA-UD assemblies. In contrast, CONCOCT produced the least complete genomes. Regarding the recovery of 
useable MAGs, metaSPAdes-MetaBAT2 recovered the highest proportion, followed by metaSPAdes-MaxBin2.0. Whereas the fraction of 
useable MAGs dropped to 4%–6% with CONCOCT (Supplementary Fig. 2C and Supplementary Table 6).

For simulating metagenomes, mOTUs2 used 320 human gut MAGs in different relative abundances. Recovering MAGs from these 
simulated samples using the nine combinations yielded 316 species. Out of these, the highest number was recovered by metaSPAdes- 
MetaBAT i.e. 305, followed by metaSPAdes-CONCOCT (n = 300) and MEGAHIT-CONCOCT (n = 294) respectively (Supplementary 
Tables 7 and 8). Considering the completeness and contamination of the recovered MAGs determined by CheckM, metaSPAdes- 
MaxBin2.0 outperformed by producing the most complete bins with an average of 81.4 ± 20.2 %, followed by MEGAHIT- 

Fig. 2. Total number of MAGs recovered from real gut metagenomes across the nine combinations.
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MaxBin2.0 (79.8 ± 22.2 %) and MEGAHIT-MetaBAT2 (78.2 ± 25.6 %) (Supplementary Table 8). The purest bins were generated by 
metaSPAdes-MetaBAT2 with an average contamination rate of 2.9 ± 13.5 %, followed by MEGAHIT-MetaBAT2 (3.0 ± 13.4 %). 
Regarding the MAGs’ quality, all the combinations recovered >70 % useable MAGs except for the IDBA-UD-MaxBin2.0 recovering only 
an average proportion of 66.7 %. The highest proportion was recovered by MEGAHIT-MetaBAT2 with an average of 82.5 %, followed 
by metaSPAdes-MetaBAT2 (80.5 %) and IDBA-UD-MetaBAT2 (77.0 %) respectively. Hence, MEGAHIT-MetaBAT2 can be considered 
the most efficient combination for simulated metagenomes since it presents a reasonable trade-off between the MAGs’ completeness 
and contamination levels while producing the highest proportions of useable MAGs.

3.3. Taxonomic classification and determining the recovery of low-abundance species

Recovering from the real metagenomes across the nine combinations, we subjected a total of 23,725 gut and 2195 skin MAGs to 
GTDB-Tk for taxonomic classification (Fig. 4A). This process successfully classified 51.7 % (n = 12,281) gut and 21.5 % (n = 473) skin 
MAGs at the species level (Supplementary Table 9). Comparative analysis of the taxonomic classification of the MAGs recovered across 
the combinations is illustrated in Fig. 4B. The taxonomic abundances of the classified MAGs (species) were estimated as described in 
Methods (Supplementary Tables 10–11). These results revealed that the combinations collectively recovered 43 low-abundance 
species from the gut and 5 from the skin metagenomes. Evaluating the effectiveness of the combinations in recovering these low- 
abundance species, our results demonstrated that the power of different metagenomic tools diminishes when it comes to the recov-
ery of low-abundance species (Fig. 4C). This finding was in line with the previously published findings [39]. We found that 
metaSPAdes-MetaBAT2 was able to recover the highest number of low abundance species i.e. 41 (95 %) from gut metagenomes, 
followed by MEGAHIT-CONCOCT and metaSPAdes-CONCOCT each recovering the second highest number i.e. 38 (88 %). Whereas 
IDBA-UD-MaxBin2.0 recovered the least number of low-abundance species i.e. 18 (41 %) (Fig. 5A).

Next, we sought the assessment of the potential of these combinations in recovering useable genomes for low-abundance species. 
To this end, we categorized species into three hypothetical levels based on their relative abundances: very low (0.05 %–0.49 %), low 
(0.5 %–0.99 %), and high (≥1 %). Ultimately, a combination striking a balance between the maximum proportion of useable MAGs and 
the highest number of recovered species in each category was considered the best. Assessing the quality of the MAGs corresponding to 
species at very low abundance, we found MEGAHIT-MaxBin2.0 outperforming by recovering the highest fraction i.e. 61.4 % of useable 
MAGs from real gut metagenomes followed by metaSPAdes-MaxBin2.0 with 58.9 % MAGs. For MAGs corresponding to low abundance 
species, metaSPAdes-CONCOCT appeared to be the most suitable option with a total of 69.0 % useable MAGs, followed by MEGAHIT- 
CONCOCT with a proportion of 67.3 %. Whereas all the designed combinations performed well for high-abundance species by 
recovering >55 % of useable MAGs. However, metaSPAdes-CONCOCT achieved the highest proportion of 62.6 % useable MAGs, 
followed by MEGAHIT-CONCOT with a fraction of 61.8 % (Fig. 5B and Supplementary Table 11).

For skin metagenomes, MEGAHIT-MetaBAT2 recovered the highest number i.e. 3 (75 %) of low abundance species, followed by 

Table 1 
Quality assessment of the MAGs recovered from the real gut metagenomes across the combinations.

No. Combinations MAGs Count Average Completeness (%) Average Contamination (%)

1 MEGAHIT-MaxBin2.0 59 ± 3.8 67.5 ± 31.7 9.3 ± 14.5
2 MEGAHIT-MetaBAT2 79 ± 4.4 55.1 ± 37.9 5.9 ± 23.6
3 MEGAHIT-CONCOCT 631 ± 18.0 25.2 ± 38.6 5.2 ± 23.5
4 metaSPAdes-MaxBin2.0 60 ± 4.2 71.1 ± 31.0 11.3 ± 18.0
5 metaSPAdes-MetaBAT2 83 ± 5.3 57.2 ± 37.6 5.8 ± 23.0
6 metaSPAdes-CONCOCT 622 ± 18.5 27.3 ± 39.7 0.6 ± 14.6
7 IDBA-UD-MaxBin2.0 49 ± 2.6 69.4 ± 29.4 11.9 ± 17.1
8 IDBA-UD-MetaBAT2 59 ± 3.4 52.2 ± 36.2 4.7 ± 17.7
9 IDBA-UD-CONCOCT 533 ± 18.0 21.8 ± 35.7 3.7 ± 17.1

Fig. 3. Number of MAGs classified as high, medium, or low quality as recovered from the real gut metagenomes across the combinations.

H. Qayyum et al.                                                                                                                                                                                                      Heliyon 11 (2025) e41938 

6 



Fig. 4. Taxonomic classification of the nine sets of MAGs recovered from the real gut metagenomes using combinations. (A) Average number of recovered MAGs to be classified against each 
combination. (B) Number of species identified corresponding to the MAGs recovered from different combinations. (C) Number of classified species recovered by each combination at varying abundances 
is presented here as quartiles. (*species were divided into four quartiles based on their relative abundance and the number of species recovered by each combination was calculated within each quartile).
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Fig. 5. Performance assessment of the combinations for recovering low-abundance species from the real gut metagenomes. (A) Species recovered by each combination. (B) Representation of 
quality of MAGs recovered by combinations corresponding to the low abundance species.
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metaSPAdes-MetaBAT2 and IDBA-UD-MetaBAT2, each recovering 2 species (50 %). However, the remaining combinations recovered 
only 1 species (25 %) each (Supplementary Fig. 3A). Regarding genome quality, our findings revealed that all the combinations 
performed similarly and could not recover any HQ MAG corresponding to the low-abundance species (Supplementary Fig. 3B). 
Meanwhile, for the high abundance category, the highest number of HQ MAGs was recovered by metaSPAdes-CONCOCT 
(Supplementary Table 12).

Assessment of the combinations for the recovery of 58 low-abundance species from simulated metagenomes once again highlighted 
the superior performance of metaSPAdes-MetaBAT2 which recovered 51 ± 1.0 species. This was closely followed by MEGAHIT- 
MetaBAT2 (n = 44 ± 2.5) and metaSPAdes-CONCOCT (n = 43 ± 4.9) species. In contrast, IDBA-UD-MaxBin2.0 recovered the few-
est low-abundance species (n = 17 ± 4.0) (Fig. 6A and Supplementary Tables 13–14). Interestingly, all combinations recovered species 
with relative abundance as low as 0.017 %. The evaluation of the genome quality of the recovered low-abundance species demon-
strated that metaSPAdes-CONCOCT produced the highest proportion of useable MAGs for very low-abundance species achieving 65.7 
% followed by metaSPAdes-MaxBin2.0 (65.5 %) and IDBA-UD-MetaBAT2 with 62.5 % (Fig. 6B and Supplementary Table 14). For low 
abundance levels, metaSPAdes-MetaBAT2 outperformed with 92.0 % of useable MAGs followed by metaSPAdes-MaxBin2.0 (80.0 %) 
(Fig. 6B). The least effective combinations for recovering very low and low abundance species were found to be IDBA-UD-CONCOCT 
and IDBA-MaxBin2.0.

3.4. Evaluating the combinations for their potential for strain-resolved MAG recovery

We comprehensively evaluated the combinations to assess their ability to recover strains from species with varying abundances 
within metagenomes of different complexities. For real metagenomes, our results demonstrated that the utilized assembler-binner 
combinations successfully recovered strain-resolved MAGs for species at as low as 0.06 % and as high as 28.7 % abundance within 
the gut metagenomes. In terms of the number of strains recovered, MEGAHIT-MetaBAT2 outperformed other combinations with a total 
of 244 strains of 54 gut species, followed by metaSPAdes-MetaBAT2 with 214 strains of 42 species and IDBA-UD-MetaBAT2 with 152 
strains of 35 species. In contrast, metaSPAdes-CONCOCT and IDBA-UD-CONCOCT recovered only 4 strains (each) from 2 to 3 species 
respectively (Fig. 7A–B and Supplementary Tables 15–16). MEGAHIT-MetaBAT2 and metaSPAdes-MetaBAT2 recovered the highest 
proportion of useable MAGs (Fig. 7C and Supplementary Table 16). In contrast, none of the strains were recovered for species present 
at low abundance in the skin metagenomes. However, the greatest number of strains were recovered by MEGAHIT-MetaBAT2, fol-
lowed by IDBA-UD-MetaBAT2. While MEGAHIT-MaxBin2.0 and IDBA-UD-CONCOCT were found least effective for recovering the 
fewest strains (Supplementary Figs. 4A–4C and Supplementary Table 17).

For the simulated dataset, with 10 strains for 5 species, the assembler-binner combinations collectively recovered 12 strains for 4 
species (Supplementary Table 18). The MEGAHIT-MetaBAT2 again performed best while recovering the maximum number of strains i. 

Fig. 6. Evaluation of the combinations for recovering low-abundance species from the simulated gut metagenomes. (A) Low abundance- 
species recovered by each combination. (B) Proportion of useable MAGs recovered across combinations corresponding to the low abundance species.
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Fig. 7. Performance comparison of combinations for recovering strain-resolved MAGs from the real gut metagenomes. (A) Number of strains recovered by each combination. (B) Species 
diversity captured by each combination to recover >10 strains. (C) Quality assessment of MAGs recovered for the strains by each combination.
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e. 6 from 3 species, followed by metaSPAdes-MetaBAT2 which recovered 4 strains from 2 species. Notably, MEGAHIT-MetaBAT2 
successfully recovered these strains from species with a relative abundance as low as 0.002. In contrast, IDBA-UD-MetaBAT2 recov-
ered the fewest strains, recovering only 2 strains from a single species at a relative abundance of 0.03. All other combinations remained 
unsuccessful in recovering any strains from the simulated dataset.

Collectively, these results demonstrated the adaptability of MetaBAT2 in recovering strain-resolved MAGs from the metagenomes 
of variable complexity. Furthermore, they highlight the ability of MEGAHIT-MetaBAT2 to recover the highest number of strain- 
resolved MAGs for a wide range of gut species, hence capturing maximum diversity.

4. Discussion

A comprehensive evaluation of metagenomic tools is crucial for optimizing data processing approaches and efficient interpretation 
of metagenomic data. De novo assembly is a key step for metagenomics data analysis and is adopted to recover MAGs and taxon bins 
from the metagenomes [40]. Many factors including uneven species abundances, uneven sequence coverage, high strain diversity, low 
recovery rates for taxa, and sequencing errors challenge metagenome assembly [41,42]. To address these challenges, many meta-
genomic assemblers and genome binners have been developed and employed in genome-resolved metagenomic studies. Previously, 
many studies have been conducted to evaluate the potential of these de novo assemblers and binning tools (independently) to produce 
high-quality metagenome assemblies and recover nearly complete MAGs from the real and simulated datasets [15,18,43–46]. These 
studies highlighted the variable performance of different assemblers and genome binners in achieving the same objectives, empha-
sizing that the choice of tools can profoundly impact results.

In this study, we hypothesized that the effectiveness of MAG recovery varies depending on the combination of assembler and 
binning tool used. Specifically, certain combinations are more effective than others in recovering low-abundance species and strain- 
resolved MAGs. By testing different assembler-binner combinations, we aimed to identify the pairs that optimize these recovery 
metrics, hypothesizing that specific combinations outperform others in achieving targeted objectives.

Subjecting the assemblies produced across the assemblers to the selected genome binning tools, revealed a profound impact of 
genome binner selection on the recovery rate of useable MAGs. For instance, MetaBAT2 demonstrated a significantly higher recovery 
rate of useable MAGs, around 50 % for both real (gut and skin) and simulated metagenomes. In contrast, CONCOCT achieved the 
lowest recovery rate of 20 % for the gut, 5 % for the skin, and approximately 66 % for simulated gut metagenomes. Despite CONCOCT 
being the only binner to bin all contigs and produce the highest number of MAGs, its recovery rate for nearly complete genomes 
remained low. Contrarily, MetaBAT2 recovered a lesser number of MAGs than CONCOCT, however, it should be noted that a good 
estimation of the number of bins is not sufficient to determine the efficiency of a genome binner [19]. On the other hand, though 
MaxBin2.0 recovered MAGs with the highest average completeness, this higher average was a trade-off with the ~30 % lesser number 
of MAGs produced as compared to the MetaBAT2. As a result, metaSPAdes-MetaBAT2 was declared as the most effective combination 
for recovering a higher fraction of nearly complete and draft MAGs, outperforming other combinations for both real and simulated 
metagenomes.

Assessment of the combinations for the recovery of low-abundance species revealed a significant trade-off between the recovery 
rate of low-abundance species and the proportion of recovered useable MAGs, concluding that the choice of the tools can greatly 
impact the results. It also demonstrated that the effectiveness of a combination is influenced by the nature and variability of the dataset 
being analyzed [47]. For instance, there was a consensus for metaSPAdes-MetaBAT2 recovering the highest number of low-abundance 
species from both real and simulated metagenomes. Whereas in terms of the MAGs quality, the highest proportion of useable MAGs for 
low and very low-abundance species within the real gut metagenomes was recovered by metaSPAdes-CONCOCT and 
MEGAHIT-MaxBin2.0 respectively. In contrast, metaSPAdes-MetaBAT2 and metaSPAdes-CONCOCT exhibited higher rates of useable 
MAGs for simulated gut metagenomes respectively. The least trade-off was presented by metaSPAdes-CONCOCT as it balances the 
recovery of the higher number of low-abundance species with a greater fraction of useable MAGs, hence, we declared it as the best 
approach for the recovery of such species from real metagenomes. Whereas metaSPAdes-MetaBAT2 can be the most suitable option for 
simulated metagenomes. This divergence suggests that CONCOCT can better handle heterogeneous coverage making it a suitable 
choice for the real metagenomic data. In contrast, MetaBAT2 excels in situations with uniform coverage and low complexity, common 
in simulations. Our results however remained limited in the identification of the best combination for the recovery of low-abundance 
species from skin metagenomes as the evaluated combinations performed similarly by exhibiting the same recovery rate of the useable 
MAGs.

Microbial strains play a crucial role in adaptation to the host, as they represent versions of a species that have evolved specific traits 
to thrive in specific conditions within the host environment. This adaptation allows strains to effectively interact with the host, 
influencing health and disease outcomes [48]. However, the implications of this variation remain underexplored due to the challenges 
in recovering strain-resolved MAGs from metagenomes [49]. While the whole genome shotgun approach facilitates the less perturbed 
views of strain diversity, it requires specialized computational tools to disentangle the strains from a metagenomic mix. Though 
various dedicated tools such as StrainGE [49] latent strain analysis (LSA) [50], and StrainEST [51] can successfully determine the 
strains present in metagenomes, they are limited to classification purposes only. Whereas the ability of typical MAG recovery ap-
proaches to distinguish genomes at the strain level is often questioned [52]. A comprehensive evaluation of the assembler-binner 
combinations to recover strains from the real and simulated dataset showed that MetaBAT2 outperformed other options in strain 
recovery across the three assemblers. However, MEGAHIT-MetaBAT2 captured the highest strain diversity and recovered a higher 
fraction of useable MAGs. Thus, we concluded that MEGAHIT-MetaBAT2 can be a good choice for the recovery of strain-resolved 
MAGs.
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Interestingly, species abundance did not influence the number of recovered strains or the recovery rate of HQ or MQ MAGs cor-
responding to strains. For example, in gut metagenomes, a low-abundance species like Phascolarctobacterium faecium (0.3 %) yielded 
many strains and a maximum number of useable genomes. Conversely, another low-abundance species, Sutterella wadsworthensis (0.9 
%), had the fewest HQ strains recovered. Whereas, for a highly abundant species, Bacteroides stercoris (28.7 %), combinations 
recovered the fewest MQ MAGs. Similarly, in skin metagenomes, Lawsonella clevelandensis, present at a moderate abundance (6.17 %), 
showed the highest strain and MQ MAGs recovery, whereas fewer strains were recovered for Dolosigranulum pigrum, which is prevalent 
at 49.6 %. In contrast, the least number of useable MAGs was recovered for Neisseria sp000186165, which had a relative abundance of 
less than 0.1 %.

Finally, we assessed the performance of different assemblers in combination with collectively refined bins using the bin-refinement 
module of MetaWRAP. This aimed to evaluate the impact of the integrated binning approach on the recovery of low-abundance species 
and microbial strains. As expected, these combinations yielded fewer low-abundance species and failed to recover any MAGs for 
species with an abundance of <0.12 % (Supplementary Table 19). This outcome can be attributed to the fact that the MetaWRAP filters 
out bins smaller than 50 kb in size [53], and low-abundance species are represented by fewer reads in metagenomic data, resulting in 
smaller genome bins. In contrast, the number of recovered microbial strains significantly declined across the assemblers 
(Supplementary Table 20). This reduction is explainable as the integrated binning approach prioritizes merging and refining bins to 
improve overall genome quality metrics. However, this process often merges closely related strains into composite bins and may not 
retain the strain-level diversity needed for the strain-resolved MAG recovery [53,54]. Hence, despite being beneficial for general bin 
refinement, the integrated approach is unsuitable for strain-level resolution.

Collectively, our findings highlighted a few important points to be considered. Firstly, tools present trade-off effects, and thus there 
is no one-size-fits-all solution. Depending upon the metagenomic dataset and objectives of the study, different tools may perform 
optimally. Secondly, tools can have complementary effects, where a tool may perform optimally in combination with one but not 
another. This study provides one such evidence. While we identified some of the best approaches using the existing tools, it is 
acknowledged that these tools are not yet performing at their best, and there is significant room for improvement. However, the 
demonstrated potential to recover low-abundance species and strain-resolved MAGs suggests that these combinations can be further 
optimized to address many current challenges.

Although this study contributes by evaluating the complementary effects of different assemblers and binning tools, providing 
insights for selecting the right tools for the scientific community, we acknowledge certain limitations. Firstly, the study tested a limited 
number of assemblers and genome-binning tools, leaving many other potential tools and combinations unexplored. Secondly, dif-
ferences in underlying databases for taxonomic classification can account for performance differences between combinations for 
simulated metagenomes. For instance, the gold standard taxonomic profile of the mOTUs2 dataset is based on the mOTUs2 database 
whereas, we utilized GTDB-Tk to classify the genomes influencing the number of classified species. Thirdly, we exclusively included 
DBG assemblers due to their wide acceptability in metagenomic analyses, but it would be valuable to test the performance of Overlap 
Layout Consensus assemblers too in combination with available binning tools.

5. Conclusions

Computational methods play a crucial role in metagenomic studies. Evaluating existing metagenomic analysis tools is essential to 
understand their advantages and limitations, thus aiding the optimization of metagenomic approaches. This study underscores the 
significant impact of various assembler-binner combinations on the recovery of MAGs for low-abundance species and strain-resolved 
MAGs. Despite inherent trade-offs associated with each tool, we have identified combinations that offer a balance of performance with 
minimal trade-offs. Specifically, the metaSPAdes-CONCOCT and metaSPAdes-MetaBAT2 combination was shown to be particularly 
effective for recovering low-abundance species from gut metagenomes, whereas the MEGAHIT-MetaBAT2 combination outperformed 
in recovering strain-resolved MAGs. Our findings are intended to guide the scientific community in selecting the most suitable 
combination for their specific objectives.
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