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Abstract

Introduction: Tendon is a composite material with a well-ordered hierarchi-

cal structure exhibiting viscoelastic properties designed to transfer force. It

is recognized that the incidence of tendon injury increases with age, sug-

gesting a deterioration in homeostatic mechanisms or reparative processes.

This review summarizes epigenetic mechanisms identified in ageing healthy

tendon.

Sources of data: We searched multiple databases to produce a systematic

review on the role of epigenetic mechanisms in tendon ageing.

Areas of agreement: Epigenetic mechanisms are important in predisposing

ageing tendon to injury.

Areas of controversy: The relative importance of epigenetic mechanisms are

unknown in terms of promoting healthy ageing. It is also unknown whether

these changes represent protective mechanisms to function or predispose

to pathology.

Growing point: Epigenetic markers in ageing tendon, which are under-

researched including genome-wide chromatin accessibility, should be inves-

tigated.

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
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Areas timely for developing research: Metanalysis through integration of

multiple datasets and platforms will enable a holistic understanding of the

epigenome in ageing and its relevance to disease.

Key words: tendon, ageing, epigenetics, histone modification, non-coding RNAs, DNA methylation

Tendinopathies are a significant cause of morbidity
in both human and animal species, accounting for
up to 50% of musculoskeletal injuries presented for
medical1 or veterinary2 attention. As ageing is a key
risk factor in the development of tendinopathy, it is
essential to understand the mechanism that predis-
poses failure. This review summarizes the literature
on the epigenetic mechanisms identified in ageing
healthy tendon to date.

The hierarchical structure of tendon has been
well defined (Fig. 1)3, and tendons have been
sub-classified into those which act to store and
return energy during locomotion (energy storing),
such as the Achilles tendon, and those which
are involved with maintaining body position
(positional). Although the basic tendon structure
is similar, there are recognized differences conferring
altered mechanical properties including ageing.4

Energy storing tendons are more prone to regular
high impact, and the transfer of force from muscle

to bone renders them more susceptible to micro tears
ultimately leading to tendinopathy.5

Studies of the extracellular matrix composition
of these two tendon types revealed elevated gly-
cosaminoglycans, increased abundance of cartilage
oligomeric matrix protein and a requirement for
lubricin and elastin in energy storing tendon,
enabling the energy storing tendon to retain its
‘spring’-like trait.6 However, in ageing, there is
evidence for protein alterations.7 The molecular
and cellular composition and mechanical prop-
erties of equine energy storing tendon have been
shown to alter with age, due to changes in the
collagenous matrix and non-collagenous matrix
properties.4,8–11

The interfascicular matrix (IFM) also demon-
strates age-related changes. This matrix compart-
ment, comprising a complex mixture of proteo-
glycans, interposed between tendon fascicles, is
less fatigue resistant with ageing in energy storing

Fig. 1 Schematic representation of the highly ordered structure of tendon tissue. This figure was made by Neil Marr, Royal

Veterinary College, London 2020 specifically for this review.
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tendons compared to positional tendon, further
supporting the notion that function and performance
are significantly affected by age.10 Additionally,
ageing is associated with an increase in IFM stiffness
within energy storing tendon, reducing the elasticity
of the tissue and enhancing the tendons susceptibility
to micro-damage.11,12 Further supporting evidence of
an age-related decline on the function of the energy-
storing tendon comes from proteomic analysis of the
IFM, suggesting that reduced protein turnover is a
hallmark of ageing.13,14

Age-related alterations in tendon cellular function
have also been identified ex vivo,7,15 with age-related
changes linked to an altered tenocyte proteome and
differential potential of progenitor cells to the tendon
lineage. The ability of mesenchymal stem cells
(MSC) to differentiate into functionally competent
tenocytes also alters with age. Peffers et al. identified
differential expression of 207 proteins between
human MSCs derived from old and young donors
when differentiated into tissue-engineered tendon
constructs.16 Bioinformatics analysis identified
energy and protein metabolism as the key pathways
associated with age-affected proteins. Equally,
equine tendon-derived differentiated tenocytes used
to produce tissue-engineered constructs demon-
strated distinct proteomes associated with donor
ageing.15 A transcriptomic meta-analysis study of
both tendon and tissue-engineered tendon constructs
demonstrated distinct differences in how ageing
affects males and females.17 As the incidence and
anatomical location of tendinopathy is known to be
influenced by sex,18 this difference in normal sex-
related ageing may be pivotal in understanding the
predisposition to, and therefore ability to prevent
disease.

The ageing process affects many cellular home-
ostatic mechanisms14 such as proteostasis, gene
expression regulation, response to reactive oxygen
species (ROS)19 and, matrix remodeling, as well as
a loss of regenerative capacity of tendon stem cells
(TSCs). Table 1 shows emerging evidence for such
age-related changes in tendon tissue. While most
of these are tissue specific, many of these altered

mechanisms fall in line with the hallmarks of cellular
ageing.14

The effect of ageing on tendon tissue has
been investigated in rats,20 mice,21 horses4,9,11 and
humans.17,22,23 Whilst animal models using mice and
rats remain important to delineate the relationship
between contributory factors to tendinopathy, these
models have limitations. Rodent models lack the
comparable longevity, size to mass ratio as well as
the onset of the multifaceted degenerative changes
known to contribute human tendon pathology.
However, the parallels between human and equine
tendinopathy are interesting. Both demonstrate a
high prevalence that is positively associated with age-
ing and occupational/exercise status, with a tendency
for recurrent injury.24,25 Additionally, structural and
mechanical similarities between human and equine
tendon, coupled with the longevity and athletic
nature of horses, render equine tendon a useful
model for investigating age and exercise-related
impacts on human tendon integrity.

Currently, there is no ideal model to study the
effects of the many contributory factors associated
with age-related tendinopathy. Studies investigating
overload and strain facilitate how some of these
variables contribute to an altered phenotype but
fail to address the consequence of ageing. Currently,
the use of human tendon tissues in such investi-
gations is limited as they are difficult to procure.
Equally, by the time the tiossue is ready for any form
of biopsy/investigation, disease is usually advanced.
Healthy tissue without comorbidities is difficult to
obtain making this one of the more elusive tissues to
investigate thoroughly in humans.

Repair in tendinopathic tissue is closely associ-
ated with turnover of non-collagenous matrix pro-
teins, cytokines and growth factors, without increase
in production of stable long-lived collagenous matrix
structures.26,27 The interplay between transcriptional
regulation via genomic and epigenetic mechanisms
may shed light on the complicated network of events
that lead to appropriate tendon development and
maintenance allowing a better understanding of dys-
regulated elements.28 This information could then be
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Table 1 Known age-related changes in tendon tissue

Characteristic Species Tendon type Observed effect of age Reference

Intrafascicular matrix Equine Energy storing, SDFT Stiffness increases with age in energy storing
tendon.

80

Collagen fibril diameter Equine Energy storing, SDFT Reduces with age. 81

Collagen content Equine Energy storing SDFT Type III collagen increased in older group. 9

Altered fibril arrangement Murine Tail tendon Increases with age. 82

Glycosaminoglycans Equine Energy storing SDFT Increase with age in positional tendons. 4

Protein turnover Equine Energy storing SDFT Neopeptide number higher in young group. 24

Cellular
senescence-inhibited gene

Rat Energy storing,
Achilles Tendon

Reduced proliferation of tenocytes. Reduced
cellular senescence inhibited gene
reduced in old tenocytes.

27

Tendon stem cells Human Energy storing,
Achilles tendon

Pool size and functional capacity becomes
exhausted with age. Reduction in both
the number of TSCs, their self-renewal
and differentiation potential.

83

Inflammageing Equine Energy storing, SDFT Aged individuals exhibit a reduced capacity
to resolve inflammation.

84

ROS Human Supraspinatus tendon,
Rotator cuff

An increase in the expression of
peroxiredoxin, a thioredoxin peroxidase
with antioxidant properties suggests that
oxidative stress may be involved in the
pathogenesis of tendon degeneration.

85

SDFT; superficial digital flexor tendon, TSC; tendon stem cells, ROS; reactive oxygen species

utilized to determine whether age-related control of
expression contributes to tendinopathy.

The term ‘epigenetics’ was introduced by Wadding-
ton in 196829 and is defined as the ‘interactions
between genes and their products which bring phe-
notype into being’. Epigenetics therefore describes
alterations in the regulatory mechanisms of gene
expression without changes in the underlying
DNA sequence.30 Classically considered to con-
sist of chemical modifications to cytosine bases
within DNA, and the histone packaging proteins,
the discovery of microRNAs in the late 1990s
and subsequent elucidation of RNA interference
mechanisms added another class to this field.
Thus, by regulating accessibility to, and translation
of the primary genetic sequence, these processes
profoundly influence cellular, and therefore tissue
behavior during normal development, adaptation,
and pathological processes.

Currently there is a paucity of information
regarding epigenetic changes associated with the

normal physiological process of ageing in tendon,
as research primarily focuses on changes occurring
with pathology. Many studies use injured Achilles or
rotator cuff tendon models and compare to healthy
tissue. Current literature aims to address age-related
pathologies in a derivative way, given the known
phenotypic similarities between injuried and aged
tissues. Pathological tendon of any age is used as a
proxy for healthy tendon, given the similarities of
repetitive strain, injury and inflammatory effects on
the tissue. No conclusive statements can be made
specifically regarding ageing due to the confounding
variables within these studies. Few studies investigate
epigenetics alone in healthy ageing tendon tissue
and the subsequent identification of the divergent
mechanisms underlying age-related degeneration.
Therefore, this review aims to summarize published
work from the last 10 years on epigenetic changes
identified in healthy ageing tendon. The implication
of epigenetic mechanisms on tendon inflammation
has been reviewed by Thankam et al.,31 but to the
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authors’ knowledge, this is the first review looking
at these mechanisms in tendon ageing.

Methods

The online databases PubMed and Google Scholar
were searched using the terms ‘microRNA’ and
its derivatives, ‘miR’ and ‘miRNA’; ‘long non-
coding RNA’ (lncRNA); ‘small nucleolar RNA’
(snoRNA); ‘non-coding RNA’, ‘pseudogene’, ‘ten-
don’, ‘tendinopathy’, ‘tendinosis’, ‘ageing’, ‘DNA
methylation’, ‘histone modification’ ‘ATAC-seq’ and
‘epigenetic’. Additionally, the search was restricted
to the period 2009–2020.

In conjunction with the terms ‘tendon’, ‘ageing’
and ‘epigenetic’, incorporation of search terms for
microRNA returned 2010 papers, ‘lncRNA’ 186
papers, ‘snoRNA’ 61 papers, and ‘pseudogene’
125 papers. After removal of review papers, book
chapters and articles not directly relevant to our
terms of reference, this reduced to seven (microR-
NAs), four (lncRNAs), two (snoRNAs) and two
(pseudogenes) papers. After accounting for papers
duplicated between classes, eight articles related to
non-coding RNAs remained eligible for inclusion in
this review (Table 2).

A total of 24 articles were retrieved when search-
ing for terms related to tendon epigenetics between
2009 and 2020. Search terms included; ‘tendon’ and
‘epigenetic’, ‘DNA methylation’ and ‘tendon ageing’,
‘Tendon histone modification’, ‘Tendon ATAC-seq
(Assay for Transposase-Accessible Chromatin using
sequencing)’. Herein, we will discuss the regulatory
properties of non-coding RNA, DNA methylation
and histone modifications in relation to tendon age-
ing based on the literature retrieved from the past
10 years.

Results and Discussion

Non-coding RNAs

The non-coding RNA (ncRNA) family is conven-
tionally subdivided into long (>200 nucleotides) and
short (<30 nucleotides) non-coding subgroups.

MicroRNAs

These are a subclass of the small non-coding RNA
(sncRNA) family and are the most extensively stud-
ied.32 Due to their involvement in the RNA inter-
ference (RNAi) pathway, miRNAs act as regulators
of gene expression, many being highly conserved
across species, indicating involvement in critical cel-
lular processes.33 They are characterized by their
size (21–25 nucleotides) and derivation from hair-
pin precursors by action of both intra-nuclear and
intra-cytoplasmic RNase III enzymes. There are sev-
eral pathways by which mature miRNAs can be
generated, but most of the more highly conserved
and abundantly expressed are believed to derive
from dedicated microRNA gene loci, with about
25% being processed from introns of protein coding
genes.33,34 The mature miRNA combines with an
Argonaute protein to form the functional multi-
protein RNA-induced silencing complex (RISC)33.
Additionally, it is now understood that snoRNAs
and transfer RNAs (tRNAs) can be processed by the
cytoplasmic RNase III enzyme Dicer into fragments
which associate with RISCs and function in a reg-
ulatory manner similar to miRNAs.35 MicroRNAs
mediate their effects through binding principally to
the 3′ untranslated region (3′ UTR) of their target
messenger RNA (mRNA) with variable, but imper-
fect complementarity, dictated by a special ‘seed’
sequence at the 5′ terminus. The result is prevention
of translation of the target into a functional pro-
tein.36 A significant minority of mammalian miRNAs
act by directing cleavage of their mRNA target,37 in
this respect behaving similar to plant miRNAs.

It is predicted that miRNAs influence expres-
sion of over 60% of human genes,38 each miRNA
potentially targeting multiple mRNAs,36 and a single
mRNA being targeted by multiple miRNAs.

Using targeted qRT-PCR analysis, Bardell et al.44

demonstrated upregulation of miRNAs -34b and -
181b, and downregulation of miRNAs -29a, -34a,
-199a, -199b in equine superficial digital flexor
tendon (SDFT). The miR-34 family has been shown
to be pro-apoptotic via suppression of sirtuin1
(SIRT1), and regulates the transforming growth
factor beta (TGF-β) signaling pathway, which is
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essential for TSC maintenance and differentia-
tion.39,40 SIRT1 is also a validated target of the miR-
181 family, which has extensive regulatory functions
in apoptosis and mitochondrial function, through
targeting B-cell lymphoma 2 apoptosis regulator
(Bcl-2) family proteins,41,42 ubiquitin-binding protein
p62 and Parkin.43 miR-181 also regulates inflam-
mation through interaction with the nuclear factor
kappa-light-chain-enhancer of activated B cells
(NFκB), tumor necrosis factor (TNF) and toll-like
receptor 4 (TLR-4) pathways.44,45Down regulation
of miR-29 has been associated with fibrosis in
multiple organs, regulating collagen production both
directly46 and indirectly, via the TGF-β signaling
pathway56. The miR-199 family regulates cell
survival and proliferation,47 targeting caveolin-2
and fibrosis48 Han et al41 described upregulation
of miRNA-217 (a regulator of cellular proliferation
and apoptosis) in rat Achilles tendon with ageing.
Unbiased RNA-seq interrogation of human Achilles
tendon by Peffers et al.33 identified significant
downregulation of another cellular proliferation-
associated miRNA, miRNA-1245a, with ageing.

As well as acting in an intracrine fashion, miR-
NAs also exert an endocrine-like function, being
secreted into the circulation as part of a miRNA
binding protein or high-density lipoprotein com-
plex, or as part of the micro-vesicle/exosome cargo.49

Changes to circulating miRNAs associated with age-
ing and senescence have been demonstrated,38,50–52

suggesting age-related changes in tendon function
may be an integral part of body-wide ageing pro-
cesses.

Small nucleolar RNAs

SnoRNAs act canonically as mediators of chemical
modification of ribosomal RNAs (rRNA). These 60–
220 nucleotide ncRNAs primarily located within
the nucleolus broadly divided into two functionally
distinct categories, C/D Box and H/ACA Box, snoR-
NAs facilitating methylation or pseudouridylation
of target RNA.53 Further processing of snoRNAs
can generate smaller fragments displaying miRNA-
like functions.54 RNA-sequencing analysis identified
the upregulation of snoRNA RNA variant U1

small nuclear 6 (RNVU1–6) and downregulation
of Y_RNA with ageing.23

Long non-coding RNAs

Characterized as ≥200 nucleotides in length,
lncRNAs have recently been implicated in reg-
ulation of transcriptional processing by several
methods.55 Proposed activity includes modification
of chromatin via recruitment of histone and DNA
methyl-transferases, influencing transcriptional
activators and repressors, and acting as miRNA
‘sponges’, thereby removing miRNA influence on
gene expression.55 Lu et al. reported that lncRNA
H19 plays a key role in tenogenic differentiation
by directly suppressing the action of miRNA29b-
3p, promoting activity of the TGF-β1 signaling
pathway.56 Although the authors investigated tendon
healing rather than ageing, impaired capacity of stem
cells to differentiate into functionally competent
tenocytes with ageing has been demonstrated.16

The TGF-β/SMAD2/3 pathway is reportedly the
most important pathway in development of limb
tendons, disruption of which results in extensive
loss of embryological tendon tissue. In the mature
tendon.56 The Dysregulation of this pathway by
non-coding RNAs may therefore limit the ability
of the TSC pool to respond to loss of differentiated
tenocytes from senescence or apoptosis, reducing
the functional cellular component of ageing tendon.
Peffers et al. identified altered lncRNAs with age
in human Achilles tendon. Of these, X (inactive)-
specific transcript (XIST) was one of the most
upregulated in ageing.23 The XIST gene is an example
of a pseudogene that has been ‘resurrected’ as a
lncRNA, having made the transition from protein
coding to non-coding regulatory gene.57

Pseudogenes

Pseudogenes are DNA sequences closely related to
actively transcribed genes, but that have typically lost
their protein coding function. This is either through
mutation, evolutionary processes such as duplica-
tion and divergence, or retro-transposition of mRNA
from the parent protein-coding gene that is sub-
sequently integrated back into the genome, where,
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lacking upstream regulatory regions, they become
functionally silent.57 Historically, these regions of
DNA were considered as remnants of redundant or
failed genes and consequently, non-functional ‘junk’.
However, it has now been shown that, where the
appropriate upstream machinery is present, pseu-
dogenes are actively transcribed. Because they pro-
duce mRNA in an antisense orientation, capable
of hybridizing with their complimentary paralogous
mRNAs, they consequently possess the ability to reg-
ulate gene expression.57 They show a degree of con-
servation between species, indicating positive selec-
tion pressure consistent with biological importance.
Furthermore, they are recognized to interact with the
RNA interference pathway, either through cleavage
of the transcript to generate large numbers of small
interfering RNAs, or by acting as miRNA decoys or
sponges, preventing miRNAs from interacting with
other functionally coding transcripts. Peffers et al.23

identified alteration of 12 pseudogenes in ageing
human Achilles tendon. These were all functionally
unannotated, but this study raises the possibility
that pseudogenes are a relevant epigenetic influence
in tendon ageing. It should be noted that the vast
majority of pseudogenes identified as differentially
expressed (DE) with ageing are unannotated and/or
poorly understood in terms of function, reflecting
the lack of research into these molecules and the
almost complete lack of research into their tendon-
specific functions.

DNA methylation

Ageing affects the DNA methylation status of nearly
all cells of all organs. Tendon tissue deteriorates in
a very specific manner compared to other tissues in
the body, suggesting a programmed mechanism is
altered due to ageing. DNA methylation can act as
a form of gene expression suppression through two
mechanisms; the deposition of the methyl group onto
the CpGs interferes with the binding of transcription
factors, or the methyl group can act as a ‘beacon’
for transcription factors, resulting in dynamic alter-
ation of gene expression (Fig. 2). These methylation
patterns and resultant effect on transcription have

been hypothesized to be linked to CpG density, and
display tissue type specificity. Studies have iden-
tified a tissue specific methylome. There is some
conservation of methylation deposition, with 2%
hypermethylated sites in 17 human tissues, 15%
hypomethylated sites located proximal to transcrip-
tion start sites.58 These tissue specific methylation
patterns could explain characteristic cellular phe-
notypes, and their relationship to cellular function,
since this directly affects the transcriptome.

DNA methylation, the addition of a methyl group
(–CH3) to a 5′ cytosine of a CpG dinucleotide
(mCpG), offers the cell epigenetic control void
of mutations. For this reason DNA methylation
has been associated with gene expression, with
a reported 60% of human genes and 40% of
tissue specific genes associated with CpG islands.59

However, DNA methylation does not occur at every
given CpG site, rather, the ‘pattern’ of methylation
alludes to a specific function. Therefore, (methylated
CpG) could represent a mechanism enabling the
phenotype of the cell, through selective repression
and expression of transcripts in a cell cycle in a
need-dependent manner. Such action is the result
of the mCpG cluster blocking the binding of
transcriptional apparatus or behaving as a beacon
for transcriptional machinery, thus dynamically
altering the expression of genes, solely dependent
on where the mCpGs are located along the gene.

With the advancement of high throughput DNA
technologies, terminology around CpG methylation
patterns has evolved. The CpG clusters can be iden-
tified as ‘islands’, ‘shores’, ‘seas’ and ‘shelves’.60 CpG
islands are defined as 1 kb regions of high CpG den-
sity, usually found near promoters; shores are within
the 2 kb sequence neighboring the islands with seas
and shelves being flanked further from shores, with
occurrence of CpGs decreasing in density the further
away from the island it is.60

The search for DNA methylation within the
parameters stated in the methods yielded the papers
in (Table 3). DNA methylation in healthy ageing
has been previously investigated in many tissues,
with results from this high throughput method of
genomic interrogation producing the ageing DNA



Epigenetic mechanism in tendon ageing, 2020, Vol. 135 99

Fig. 2 Schematic representing the aberrant DNA methylation signatures in ageing. A and B show changes in the

methylome at the nucleotide level. Loss of methylation marks are seen on a global level however, hyper-methylation

occurs specifically at promoter sites. C and D changes in the methylation of lysine residues on heterochromatin H3 and

H4 change the conformity of the nucleosome and alter the accessibility of transcriptional factors to DNA. D. Aged cells

contain a more hypomethylated histone tail. (E and F) Altered nucleosome compactness leads to abnormal chromatin

formation where chromatin are not stable, leading to aberrant gene expression. (F) Demonstrates ‘aged’ chromatin where

the tightly coiled chromatin (as seen in E) has lost its physiological compression. Image created with BioRender.com.

methylation clock.61 The majority of studies identi-
fied in this review focused on changes in diseased and
healthy tissue. While there are no published studies
interrogating ageing in tendon tissue and global
DNA methylation, the pathological link between
age-related aberrant systems in cancer, and the
known similarity of dysfunctional cellular processes
in ageing, could help identify the mechanism of
deterioration evident in tendon ageing.

While DNA methylation studies specific to
ageing are rare some relating to tendinopathy
have been undertaken. Using direct methods to
identify DNA methylation and differential gene
expression in murine tendinopathy, decreased
promoter methylation at six locations was revealed.
Trella et al. identified CpG hypomethylation at
CpG islands in promoter regions linked to leprel,
foxf1, mmp25, igfbp6 and peg12. However, mRNA

BioRender.com
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transcript expression within the same tissue revealed
no significant changes in transcription for four of
the five genes, suggesting the association of DNA
methylation and gene expression have additional
levels of regulation.26 One study to date, related to
tendon ageing has investigated global methylome
and transcriptome using an unbiased approach.62

In tendon constructs derived from young and
old MSCs 50% of the top 20 DE CpGs were
neighboring transcription factor genes, the function
of which revealed the same expression profile in
the cellular proteins. The primary material for the
study was MSCs which themselves are poised for
differentiation. Thus, perhaps the prominence of
transcription factors in the results is part of the
molecular architecture of the precursor material.

Three studies identified used targeted approaches
to identify DE methylated CpGs associated with
genes of interest in patellar and the posterior, central
and anterior cuff tendons. Two of the studies used
diseased and healthy patellar tendon, from healthy
Caucasian male patients aged 19–41, to identify
changes in the epigenome in relation to tendinopa-
thy63,64 with each paper reporting a specific site;
Adamts4 CpG—2995 upstream of promoter64 and
the CpG +61 upstream of MMP11 first exon,63

these genes are known to translate to tendon specific
proteases, involved in the maintenance of proteo-
glycans and the extracellular matrix. While these
studies have shown that controlled analysis of the
DNA sequence using a targeted approach revealed
some changes in methylation at specific single CpG
sites, functional significance remains to be verified,
as no parallel gene expression analysis were under-
taken. Tendinopathic models have long been used as
proxies for aged tissue due to the similarity in the
rate of degeneration of the tissue in either instance.
With both conditions, ageing and injury, exhibiting
decreased optimal cellular function and impaired
reparatory mechanisms upon injury.65

The study of epigenetics on human tissue is com-
plex due to the nature of the deposition of these
marks. Age, gender, smoking status, environmental
factors, hereditary conditions all play a role in the
dynamic expression of all cells. Leal et al.66 2017

also investigated these factors. Their study identified
genes that were significantly altered, then the CpGs
associated with these genes could be modulated.
They identified differential methylation of matrix
metalloproteinase 1 (MMP1) promoter and tissue
inhibitor metalloproteinase 2 (TIMP2) CpG +49
downstream of the island with respect to gender,
with methylation increased and decreased respec-
tively for the genes. Further to this, smoking status
was significantly correlated with increased methyla-
tion of one CpG -400 bp of island of the MMP1,
and decreased methylation of CpG −19 of TIMP2
in the smoking group. This supplementary analysis
further supports the need for additional informa-
tion when planning such investigations to reveal the
interplay of different contributory elements on the
methylome, and transcriptome. While not overtly
addressing the ageing phenomena epigenetic changes
have been seen within tendon tissue as evidenced in
the above study. Ageing tendon tissue and its reduced
functionality suggests that investigation of this tis-
sue’s epigenome can elucidate novel areas of research
to underpin the mechanisms at play in ageing.

Histone modifications

Histones are large proteins that compact DNA in a
complex known as the nucleosome. Histones H2A,
H2B, H3 and H4 are found in duplicate within the
nucleosome and condense around 147 bp of DNA.67

Linker DNA can be found between each histone and
a H1 histone binds to the linker DNA and histones in
order to maintain the nucleosome and subsequently
the overall chromatin fibre.67 Modifications of his-
tones not only regulate the chromatin structure but
also recruit remodeling enzymes, which utilize the
energy derived from hydrolysis to reposition nucleo-
somes.67

Post-translational modification of histones allows
for dynamic opening/closing of the nucleosome
complex to allow/suppress transcriptional apparatus
access to the DNA. Histones have been found
to be expressed in different stages of the cell
cycle. H2A, H2B and H3 have been found to
be replication dependent and H3.3, H2A.Z cell
cycle dependent. Specifically, histones H3.3 and
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H2A.Z are found within regulatory regions and
promotor regions of genes, respectively. Histones
can be methylated, acetylated, and phosphorylated.67

Histone methylation, unlike histone acetylation
and phosphorylation, does not alter the charge of
the histone at the lysine residue. Methylation, via
histone lysine methyl transferases such as SUV39H1,
catalyzes methylation through transfer of methyl
group from S-adenosylmethionine68 to the lysines
ε-amino group.

While the modifications themselves confer cellu-
lar control of expression, reversal of these modifica-
tions adds another layer of control. Demethylation
was first identified in the lysine specific demethylase
(LSD1), which required a protonated nitrogen, and
Flavin adenine dinucleotide (FAD) as a co-factor.
This demethylase could only de-methylate mono or
di-methylated lysine residues, with further investi-
gations it was found that combining LSD1 and co-
factors like Co-REST or androgen receptor, altered
the specificity and activity of the demethylase.
Trimethylated histone demethylases were identified
in 2006. These specific enzymes all contain a jumonji
catalytic domain, utilizing Fe and α-ketohlutatate as
co-factors.69

Investigating histone modifications in ageing ten-
don tissues could enable the identification of a tissue
specific reduction of such methyl transferases help-
ing us to further understand the mechanism behind
the reduced proliferative capacity. One study investi-
gated the effect of histone methyltransferases (G9a,
G9a like protein, PR domain of zinc finger protein
2 (PRDM2), SUV39H1, SUV39H2, SETDB1/ESET)
and their role in tenocyte differentiation.70 It was
demonstrated that, expression of tendon-specific
transcription factors such as Scleraxis, Mohawk,
Egr1, Six1, Six2 were significantly decreased in
G9a null tenocytes, as well as significantly reducing
proliferative capacity.70 Scleraxis is a transcriptional
activator of tenomodulin (Tnmd), a transmembrane
glycoprotein critical for tenocyte proliferation
and maturation.71 The study was conducted in
a murine tenocyte model where G9a Flox/flox
mice were produced and G9a was deleted using a
Cre-expressing adenovirus. Reduced proliferative

capacity is one of the hallmarks of ageing tissues,
with many theories suggesting senescence as a key
factor for this.27

Another study investigated stem cell differentia-
tion into tendon cells. Retionic Acid Receptor,6 was
identified as a mechanism of preserving the TSCs
from spontaneous differentiation.72 Webb et al.,
found that Scleraxis was one of the transcription
factors that was able to mediate this and found
arresting spontaneous differentiation could also
be reversed when removing the RAR antagonist
compounds. This is particularly of interest when
understanding the biologically relevant role of
Scleraxis (Scx) as a tendon specific differentia-
tion transcriptional regulator. Thus, the arrested
spontaneous differentiation in this study,72 as a
result of histone modifications through the medi-
ation of nuclear binding transcription factor Scx
demonstrates the dynamic nature of these regulatory
factors. Such studies further delineate the importance
of understanding the native histone code in ageing
tendon cells in order to identify areas in which
interventions may be most suitable.

The other study returned paper was a genetic
review of Friedreich Ataxia.73 The study demon-
strated that symptoms of the disease includes an
absence of tendon reflexes. Herein, histone deacety-
lase inhibitors were among the drugs currently used
to manage symptoms, within this review. The use
of histone modifying compounds currently being
trialed as disease modifying drugs in other tissues,
including tendon, is promising. However, no link was
observed between histone modifications and tendon
ageing specifically in this case. While there is little to
no information on the direct biological significance
of tendon ageing and histone modifications. Gene
expression and subsequent cellular phenotype are
directly mediated through a cell’s dynamic compact-
ness of its histones; such observations need to be
made in relation to the altered ageing tendon/teno-
cyte phenotype.

While there is little evidence of current research
into the effect of some types of epigenetics on
tendon ageing in other musculoskeletal tissues,
more research has been undertaken. These studies
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could have potential implications to tendon ageing
epigenetics. For example studies have investigated
changing environmental factors on muscle cells.74,75

Such investigations are required in tendon ageing
and disease as this could lead to novel findings
to aid in the determination of how these specific
epigenetic changes in ageing impact on tendon
disease, especially as changes in the histone code
can correlate to a change in the gene expression
profile. In muscle, DNA methylation was increased
in the myo-satellite cell population extracted from
elderly patients.76 Furthermore, exercise induced
histone acetylation of H3 in skeletal muscle
through the removal of HDAC in the nucleus.77

Exercise has also been shown to increase induced
Wnt/beta-catenin signaling through modification
of histones H3k4me2 and H3Ac, known gene
activation histones, and decreased modification of
gene suppressing histones H3K9me2.78

Conclusion and future perspectives

Epigenetic factors associated with normal age-
related changes in healthy tendon is an under-
researched area. The primary focus of many of the
studies returned under our search terms was the
influence of either mechanical loading or pathology
on differential expression of biomolecular markers.
Where age was reported, often it was a secondary
variable consequent to differing case and control
populations. The influence of age alone in these
studies cannot, therefore, be elucidated. The studies
in this review have still failed to determine the direct
relationship of ageing to tendon tissue function.
While some altered expression has been observed
when identifying a set of tenocyte specific genes,
ageing and functional implications have yet to be
determined. Global non-biased exploratory studies
need to be encouraged in order to interrogate tendon
ageing specifically.

Given the wide inter- and intra-species variation
in tendon structure and function, as well as between
sex variance in tendon homeostasis,17 further
work is required to investigate the influencers of

normal ageing in tendon. This is particularly true
in relation to the non-coding RNAs as this is a
rapidly expanding area and one which is still poorly
understood. Only when the normal situation is more
fully elucidated can the interplay of ageing, mechan-
ical loading and tendinopathy be understood in
context.

Prior work on age-related changes is limited
and often narrowly focused. With the advent of,
and increasing accessibility to, powerful unbiased
technologies, the potential to gain a far deeper and
broader understanding of mechanistic processes
involved in ageing has become a realistic possibility.
With the increasing proportion of ageing individuals
in the general population, this knowledge is vital in
the promotion of healthy ageing. Many epigenetic
studies to date have focused on very specific changes
in the epigenome, histone modification, DNA
methylation or miRNA expression, on the same
tissue type but harvested from alternative sources.
Emerging evidence suggests these investigations are
crucial to unpicking these regulatory pathways.
However, investigators should try to focus on
collecting this data from the same source to ensure a
robust epigenetic profile of the tissue in question.
While this is not feasible in many applications
where human tissue is required as source material,
emerging projects should ensure investigations
of such epigenetic interactions; DNAm/miRNA,
miRNA/mRNA, DNAm/histone modifications can
be properly characterized if the samples are the
same in each ‘pairing’. In terms of investigating
methylation of DNA/histones sample groups should
be as close as possible depending on what is being
investigates as age, gender, co-morbidities, weight,
activity level, and ethnicity could all play a part
in interpreting the results. When investigating the
DNA methylome of healthy human ageing tendon
tissue, gender played a role in masking DE epigenetic
marks.17 In many analyses of DNA methylation
studies, mixed gender groups have been employed
and the gender bias potentially removed through
removing the sex chromosomes. However, on a
biological level this remains to be proven as the
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correct way to conduct this analysis, mostly due
to the effects of a lifetime of sex-linked hormone-
driven epigenetic changes on the methylome. Such
changes may be modest but could enable a greater
understanding in disease related analysis, especially
in diseases, which affect one sex over another. In
recent studies of the DNA methylation state of
healthy and diseased human patellar tendinopathy,
age and gender matched groups were employed for
this reason.63,64

Histone modifications are deposited on the nucle-
osome in a need dependent manner as are DNA
methylation marks, these changes enable the cell to
express or repress relevant genes upon stimulation.
Age alters the efficiency of many cellular processes,
ultimately culminating in the functional decline of
many cellular mechanisms. Deposition of histone
marks is an example of such a mechanism, that
shows age related decline in other musculoskeletal
tissues, methylation of histones has been linked to
histone compression.79 Compactness of the nucleo-
some is a physical barrier that enables the cell to
control the expression of genes, with an open struc-
ture, the DNA is easily accessible to the transcrip-
tional machinery. Loss of histone modifications that
control the heterochromatin structure could result in
the altered transcriptome of ageing tendon tissue as
identified in.23

With the advent of high throughput technologies
yielding evermore data, epigenetics and indeed age-
ing are both phenomena that can be addressed in
tissues such as the tendon. While studies on tendon
tissue ageing have demonstrated altered transcrip-
tome and proteome, the next area of investigation
should rigorously determine tendon ageing epignet-
ics. This could be undertaken through investigat-
ing histone modifications of healthy aged samples,
in order to deduce if conformational changes are
responsible for altered function in ageing tendon,
by way of the accessibility of the DNA to trans-
lational machinery through tertiary histone confor-
mation. Alternatively, epigenetic modifications can
also be investigated to identify whether alterations to
the DNA or altered expression of small non-coding
RNA are the mediators of internal cellular processes,

through the direction of translational apparatus or
inhibition of it.

Data availability statement

No new data were generated or analyzed in support
of this review.
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