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Abstract
The efficiency of phenol degradation via Fenton reaction using mixture of heterogeneous

goethite catalyst with homogeneous ferrous ion was analyzed as a function of three inde-

pendent variables, initial concentration of phenol (60 to 100 mg /L), weight ratio of initial con-

centration of phenol to that of H2O2 (1: 6 to 1: 14) and, weight ratio of initial concentration of

goethite catalyst to that of H2O2 (1: 0.3 to 1: 0.7). More than 90 % of phenol removal and

more than 40% of TOC removal were achieved within 60 minutes of reaction. Two separate

models were developed using artificial neural networks to predict degradation percentage

by a combination of Fe3+ and Fe2+ catalyst. Five operational parameters were employed as

inputs while phenol degradation and TOC removal were considered as outputs of the devel-

oped models. Satisfactory agreement was observed between testing data and the predicted

values (R2
Phenol = 0.9214 and R2TOC= 0.9082).

Introduction
This can be achieved by in-depth investigation and implementing new treatment technologies.
Phenol, as a widely used organic contaminant, can be found in various industrial wastewaters
(i.e. petrochemical, paper-making, oil-refining, resin manufacturing, coking, and iron-
smelting). Biological process cannot remove aromatic compounds such as phenol and benzene
in many industrial effluents. Therefore, there is a growing interest in alternative treatment
methods for degradation of highly toxic industrial wastewaters [1]. Use of biological and chem-
ical process to treat phenol in wastewater to standard level (< 2ppm) is difficult due to its high
solubility and stability in water [2,3]. Currently, there is increasing focus on absolute oxidation
of organic compounds to nontoxic compounds. As a substitution of conventional processes,
advanced oxidation processes (AOPs) have been much investigated in an attempt to degrade
toxic compound completely. AOPs use catalytic and chemical photochemical methods to pro-
duce strong oxidizing radicals in acidic aquatic media. Fenton oxidation has been proven to be
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an efficient and powerful treatment process for mineralization of phenol compounds among
AOPs [4–7]. AOPs can be generalized into homogeneous and heterogeneous processes de-
pending on the physical state of the catalyst [2]. Hydrogen peroxide is the most widely used ox-
idant in AOPs. As hydrogen peroxide alone is not powerful enough in degradation of most
organic compounds, normally a combination of hydrogen peroxide and iron salts or ozone is
used for higher production of hydroxyl radical. The use of ferric ions with hydrogen peroxide
is referred to as Fenton-like reaction [8].

Combination of goethite and hydrogen peroxide as an oxidant has been found to be satisfac-
tory in oxidizing organic compounds for catalysis of goethite surface and ferrous ion genera-
tion. This Fenton-like process can be potentially used in treatment of toxic wastes as goethite is
easily available in soil and can be recycled [4,8,9]. Based on the study of Ming Chun Lu, it was
discovered that phenol degradation with goethite was slower and thus Fe2+ catalyst was used to
accelerate the process [10]. Such organic contaminant treatment is complex because the pro-
cess encompasses many numerical reactions influenced by a number of factors.

Modeling of these multivariate processes is comparatively complex [11–13]. Therefore, sim-
ple linear multivariate correlations are unable to solve these problems [14]. Previously pre-
sented works by some authors [11,13] on empirical mathematical modeling techniques have
provided reference on well-performing mathematical models that can predict industrial pro-
cess performance. The current knowledge base on waste water treatment is still limited, and
therefore, hybrid AI architecture for the diagnosis, prediction and control of a wastewater
treatment process could be employed to improve the operation of the treatment process.

Based on wide acceptance of ANNs application in engineering; artificial neural networks
(ANNs) were used in this work as a predictive model [15–17]. The advantages of ANN are i)
the mathematical description of the phenomena concerned in the process is not obligatory; ii)
less time is necessary for model development and iii) prediction is possible with limited num-
bers of experiments [13,18]. There are several types of artificial neural networks and two of
them are (i) multilayer feed-forward neural network trained by back propagation algorithm
that is widely used, and (ii) Kohonen self-organizing mapping [19]. The feed forward is the
most widely used method to map input-output relationship [20,21].

A number of research and review articles have been done on application of Artificial Neural
Networks (ANN) analysis in environmental engineering problems. Some recent examples in-
clude modeling of dye removal by photo-Fenton process [11,14,20,22,23], industrial wastewa-
ter [24–26], pharmaceutical compounds [13] and fuel additives [27] treatments. ANN have
also been notably appreciated for kinetic modeling [16] and automatic control system [28].

ANNModeling for phenol degradation by Fenton process is new and there are limited rele-
vant studies. Therefore, this work aims to assess the prospect of ANNModeling in predicting
catalytic activity of goethite catalyst in phenol and TOC removal. Two artificial neural net-
works were developed and optimized in order to predict phenol and TOC. The procedure al-
lows us to consider parameter interdependencies and process unpredictability by encoding
relationships between input and output variables [15]. In this study, relationships between the
experimental variables (goethite catalyst, ferrous sulphate, hydrogen peroxide) and output vari-
ables, (TOC and phenol removal efficiency) were built through ANN. The last part of the study
was devoted to indicating the relative importance of each proportional parameter on ANN.

Material and Methods

Experimental
Phenol 95% had been provided by Ranks and Synergy Sdn, 35% technical-grade H2O2,
FeSO4.7H2O and H2SO4 98% had been supplied by Merck. The goethite particles (α-FeOOH),
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anhydrous NaOH, anhydrous sodium sulphite Na2SO3, sodium phosphate NaH2PO4 and Po-
tassium iodide (KI) employed in this work had been provided by Sigma Aldrich. The work was
conducted in batch in a conical flux of 250 ml with good stirring at an rpm of 300. Phenol was
added to distilled water to reach initial concentrations of 100 mg /L, 80 mg /L and 60 mg /L.
After attaining steady-state temperature (25°C), the goethite catalyst was added in a weight
ratio of 1: 20 to phenol concentration. After that, prescribed H2O2 and the required concentra-
tion of ferrous salt were added to the solution. The pH was adjusted with H2SO4 and NaOH
and was monitored with Eutech pH 300 meter with pH electrode and ATC probe. The range of
the initial amount of goethite catalyst loading and ferrous salt varied in three levels from 1.2 to
2 g/L and from 13.2 mg/L to 22.2 mg/L respectively. Each experiment lasted for 60 min. Nine
different cases were investigated in destructing phenol in solution. Table 1 shows the list of ex-
perimental conditions employed.

15 ml of solution was collected from the reactor at certain time intervals in the experiments.
The samples were treated with equal volume of a reaction stopping reagent (0.1 mol/L Na2SO3,
0.1 mol/L NaH2PO4, 0.1 mol/L KI and 0.5 mol/L NaOH) to terminate the oxidation process
and prepare them for analysis. Total Organic Carbon (TOC) and phenol concentration analysis
were done for each sample. Phenol concentration was monitored with HPLC (Shimadzu)
equipped with a LC-18 C18 column. The mobile phase was an isocratic mixture of water (con-
taining 0.4 mM of sulphuric acid), pumped at a rate of 1 mL/min with retention times of 30
min for phenol. Phenol was detected at wave length of 225 nm. TOC was measured with an
Aurora TOC-Analyzer. Solid particles were filtered with whatman syringe filters of 0.02 μm for
HPLC and TOC analysis. Phenol removal in Fentonic AOP treatment can be calculated as:

Phenol removal efficiency ¼ ½Phenol conc:�o � ½Phenol conc:�t
½Phenol conc:�o

ð1Þ

Where, [Phenol conc.]o is the initial concentration and [Phenol conc.]t is concentration at time
t. The TOC removal can be calculated as follows,

TOC removal efficiency ¼ ½TOC�o � ½TOC�t
½TOC�o

ð2Þ

Where, [TOC]o is the initial concentration and [TOC]t is concentration at time t.

Artificial Neural Networks Software
Artificial Neural Networks (ANN) is a computational system which follows the computational
abilities of biological systems. ANN creates a network consisting of multiple layers with

Table 1. Applied run conditions for phenol degradation.

Initial Phenol Conc. (mg/L) Initial FeSO4.7H2O Conc. (mg/L) Initial Goethite Conc. (g/L) Initial H2O2 Conc. (mg/L)

Case 1 100 22 2 600

Case 2 80 17.6 1.6 480

Case 3 60 13.2 1.2 360

Case 4 100 22 2 1000

Case 5 80 17.6 1.6 800

Case 6 60 13.2 1.2 600

Case 7 100 22 2 1400

Case 8 80 17.6 1.6 1120

Case 9 60 13.2 1.2 840

doi:10.1371/journal.pone.0119933.t001
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artificial neurons to determine the relationship between the experimental data. These neurons
are simple processing elements which transfer the received data to output through the simple
equation below [29]

Oi ¼ f
Xn

j¼1
wijIj þ bi ð3Þ

where Oi, f, wij, Ij, bi, and n refer to the output of the ith neuron, transfer function, synaptic
weight corresponding to jth synapse of ith neuron, jth input signal to the ith neuron, bias of the
ith neuron, and the number of input signals to the ith neuron, respectively. The neurons inside
the network are connected to each other by a direct communication link with associated
weight (wij).

In this study, two separate ANN models were developed to map the effective inputs to tar-
gets. The considered input variables were H2O2, Fe

2+ initial concentration, phenol initial con-
centration and catalyst. The outputs of the models were time of phenol conversion and TOC.
For simplicity, the terms-phenol model and TOCmodel, were used throughout this report to
refer to each model. It has been proposed previously that having one or more hidden layers en-
ables the network to model most non-linear data behaviors [30,31]. Therefore, two multilayer
feed-forward ANNs with one hidden layer were developed for approximation. In both net-
works, sigmoid and linear transfer functions were considered for the hidden and output layers,
respectively. Both networks were trained using Levenberg-Marquardt back-propagation algo-
rithm. All ANN calculations were carried out using Matlab 6.5 with ANN toolbox for windows
which were run on a personal computer (Pentium IV 2800 MHz). The available data was ran-
domly split into three categories—train, test, and validation groups.

Results and Discussion

Phenol degradation with Fe3+ and Fe2+ catalyst
It has been denoted that use of goethite catalyst can be effective in diminution of organic com-
plexes [8,9,32]. Goethite and hydrogen peroxide can effectively oxidize organic compounds.
Hence, batch experiments were performed in conical bottles with 100 mg/L phenol and 2 g/L
goethite at initial pH 3 to examine the reductive oxidation effect of phenol by goethite. No deg-
radation was observed within 60 min by using goethite alone; but highly efficient degradation
was achieved with the use of ferrous sulphate. In a study of Ming-Chun Lu (1999), degradation
of chlorophenol using only goethite catalyst was observed within 3 to 4 hours [8]. When goe-
thite catalyst is used in Fenton oxidation, ferrous ions are produced from the reductive dissolu-
tion of goethite as shown below [8,33]

a� FeOOH þ 3Hþ þ e� $ Fe2þ þ 3H2O ð4Þ

Electron is generated from hydrogen peroxide from the equation below,

H2O2 ! 2Hþ þ O2 þ 2e� ð5Þ

Reaction 4 and 5 can be simplified to reaction 6,

a� FeOOH þ 2Hþ þ 1

2
H2O2 ! Fe2þ þ 1

2
O2 þ 2H2O ð6Þ

The degradation would follow the classic steps corresponding to the Homogeneous Fenton
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reactions, among which are:

Fe2þ þ H2O2 ! Fe3þ þ HO� þ HOo ð7Þ

Fe3þ þ H2O2 ! Fe2þ þ Hþ þ HO2 ð8Þ

The mechanism of phenol degradation can be explained by the above equations. Based on the
literature, oxidation of phenol with H2O2 in presence of Fe2+ catalyst occurs when there is elec-
trophilic attack by hydroxyl radical. A more complete mechanism can be found in work of au-
thors [1,34]. A simplified mechanism is shown in Fig. 1.

The degradation of phenol compound is complex. Phenol oxidation has been studied by
various authors as means of producing principal intermediates (e.g. benzoquinone and hydro-
quinone). However, there is little known about the sequence of intermediates formation. Thus,
Total Organic Carbon (TOC) is taken as a surrogate parameter of organic matter present in the
water and considered as a sum of contribution of the organic compounds.

Fig. 2 shows the experimental results in dimensionless concentrations vs. time for experi-
mental runs 90% phenol conversion [phenol: H2O2 = 1: 6 or 1: 10 or 1: 14] was observed in the
experiment. An increase in phenol degradation was attained with time on average. It is quite
notable that even though there was a significant decrease in phenol concentration in the solu-
tion with time, the same degradation rate was not observed for TOC of the solution. This
incidence can be related to noticeable increase in intermediate products (maleic acid, benzo-
quinone, hydroquinone etc) [35]. Choi J-S, Yoon S-S, Jang S-H, AhnW-S, investigated the ini-
tiation phase for phenol hydroxylation using Fe containing catalysts and the result depicted
that it occurred during the first 5–15 min [36], which was also the time required for reaction
(6) to (8) to take place. Hydroxylation progressed via a redox mechanism involving Fe (III)/ Fe
(II) redox pair [36].

A number of competing factors may possibly help acquire the best possible degradation and
mineralization rate. Firstly, hydroxyl radicals produced for phenol mineralization are available
with enhancement of total iron availability in the solution. The mechanism follows (equation
7) and (8). Secondly, the reaction between ferric ions and hydrogen peroxide that produces

Fig 1. Mechanism Description.

doi:10.1371/journal.pone.0119933.g001
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HO2 radical, which is comparatively much less reactive than hydroxyl radical, becomes vital at
a higher total iron concentration [37]. Besides, the scavenging reactions which become pre-
dominant in presence of high amount of hydrogen peroxide and catalyst, affect the degradation
and mineralization rate. In this study, phenol mineralization was not obtained in absence of
iron which can be supported by the fact that no degradation takes place when there is only hy-
drogen peroxide. The degradation and mineralization rate could be observed over time in
Fig. 3. Based on this figure, higher mineralization and degradation were observed for compara-
tively lower initial phenol concentration at the same ratio of phenol to hydrogen
peroxide concentration.

Effect of initial hydrogen peroxide concentration
Concentration of hydrogen peroxide is an important parameter for phenol degradation. Thus,
influence of amount of hydrogen peroxide was investigated. Different ratios of phenol: hydro-
gen peroxide was investigated for 100mg/L of phenol destruction. The ratio differed from

Fig 2. Degradation trend for all experimental conditions (a) Phenol conversion, (b) TOC removal.

doi:10.1371/journal.pone.0119933.g002
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1: 6 to 1: 14. Based on the result, it can be concluded that ratio of phenol: hydrogen peroxide of
1: 14 produced the best degradation and mineralization rate. Usually, the amount of H2O2

used is greater than the stoichometry amount necessary for complete mineralization of the ini-
tial organic compound [38]. One requires at least 506 mg /L of H2O2 in order to completely
mineralize 100 mg /L of phenol, but 85% mineralization was achieved by Huang C-P and
Huang, Yao-Hui with ratio of phenol to hydrogen peroxide of 1: 40 in mg /L [39]. Higher

Fig 3. Effect of initial phenol concentration on TOC removal and phenol oxidation at different Phenol conc.: Hydrogen peroxide conc. ratios (a),(d)
[Phenol]0: [H2O2] = 1: 6, (b),(e) [Phenol]0: [H2O2] = 1: 10 and (c), (f) [Phenol]0: [H2O2] = 1: 14.

doi:10.1371/journal.pone.0119933.g003
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removal of TOC is probably due to direct oxidation of phenol or its intermediates. Generally,
direct oxidation process of phenolic compounds to desired end products (carbon dioxide and
water) is very slow. Phenoxy radicals, polymer species, benzoquinone, muconic, maleic, formic,
oxalic acids have been reported as the intermediates formed in mineralization process of phe-
nol. In our research with application of goethite catalyst along with ferrous solution, the ratio
of hydrogen peroxide to initial phenol concentration was decreased to 1: 14 with> 90% phenol
removal in 60 min. No mineralization was observed within 150 min with goethite catalyst
alone. In the work of Zazo JA, Casas JA, Mohedano AF and Gilarranz MA, Rodiguez JJ ratio of
ferrous to hydrogen peroxide of 1: 500 mg /L resulted in less than 50% mineralization of phenol
with initial TOC of 76.6 mg /L [34].> 30% removal of TOC was achieved with addition of 2 g
/L goethite catalyst and ferrous salt in a weight ratio of 1: 0.22 per 100 mg /L of phenol in our
research in less than 100 min. It can be depicted from the observed result that, the kinetic rate
and mineralization greatly depend on initial concentration of hydrogen peroxide. The degrada-
tion rate of hydrogen peroxide maintains a linear correlation with mineralization of phenol.
Fig. 4 represents the degradation and mineralization trend for various ratios of initial phenol
concentration to hydrogen peroxide concentration.

Effect of Goethite catalyst and oxidant ratio
Phenol in concentration of 100 mg /L was degraded with various catalyst oxidant ratios to de-
termine the effect of goethite catalyst. A constant ratio of ferrous ion to initial phenol concen-
tration was maintained. However, different mineralization rates were observed with changes in
goethite and oxidant ratio. It was observed that the degradation rate increased by increasing
ratio from 1: 0.3 to 1: 0.7. However, surprisingly, the degradation rate decreased with more hy-
drogen peroxide. This can be explained from the fact that with increase in hydrogen peroxide
to Fe3+ catalyst ratio, more hydrogen peroxide is consumed in production of Fe2+ from Fe3+

compared to from mineralization of phenol. It can also be assumed that scavenging effect is
one of the causes for decreased degradation rate. [40,41]. In acidic condition, phenol minerali-
zation is more expeditious in the existence of ferrous sulphate. Generally, decrease in solution
pH usually leads to intermediates formation (i.e. carboxylic acid, oxalic acid and formic acid)
[39]. Fig. 5 shows phenol degradation and mineralization rate for different catalyst and
oxidant ratios.

Neural network modeling
Learning algorithms adjust values of weight and bias while designing a neural network. Select-
ing appropriate learning algorithm and transfer functions is vital for a reliable neural network.
Since there is not any reliable method to determine the optimum values, the best learning algo-
rithms and the associated transfer functions were determined by trial and error. Therefore, a
range of options were studied in order to choose the best algorithm and transfer functions.
Levenberg-Marquardt and Scaled Conjugate Gradient were considered as learning algorithms
while the training functions and the transfer functions of the layers varied according to the ap-
plied algorithm. It has been reported that 8–11 neurons in hidden layer would produce the
minimum value of mean square error (MSE) [42]. Therefore, number of hidden layer neurons
was maintained at 8 in the present study. Table 2 compares the efficiency of the built models in
difference scenarios. Mean square error (MSE) was used to determine the performance of the
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Fig 4. Effect of initial hydrogen peroxide concentration on TOC removal and phenol oxidation at different Phenol conc.(a),(d) [Phenol]0 = 100 mg /
L(b),(e) [Phenol]0 = 80 mg / L and (c), (f) [Phenol]0 = 60 mg / L.

doi:10.1371/journal.pone.0119933.g004
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Fig 5. Effect of initial catalyst and Hydrogen peroxide ratios on TOC removal and phenol oxidation (a),(d) [Phenol]0 = 100 mg / L, (b),(e) [Phenol]0 =
80 mg / L and (c), (f) [Phenol]0 = 60 mg / L.

doi:10.1371/journal.pone.0119933.g005
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developed networks. MSE was calculated based on the following equation:

MSE ¼ 1

N

XN

i¼1
ðTi � OiÞ2 ð9Þ

Each run was repeated three times to minimize the chance of random correlation due to
random initialization of the weights. Based on the values of the last two columns, Levenberg-
Marquardt algorithm with tansig and purelin transfer functions generated the most accurate
network for both models (R2

Phenol = 0.9214, R2
TOC = 0.9082). Therefore, this structure was

considered for further optimization. As for Phenol model, changing the learning algorithm
from Levenberg-Marquardt to Scaled Conjugate Gradient did affect the accuracy of predictions
significantly as long as the transfer functions of both layers were constant (R2

Phenol = 0.9154).
Similar update onto the network of TOC model produced a huge impact on the performance
of the model (R2

TOC = 0.6291). Regardless of the transfer functions used, TOC model showed
relatively poor performance when the weights of the network were adjusted by Scaled Conju-
gate Gradient. It was concluded that TOC model was much more sensitive to change in learn-
ing algorithm compared to Phenol model.

After identifying the algorithm and transfer functions, attention was focused on improving
the performance of models through updating the number of neurons in hidden layers. Number
of layers and number of transfer functions in each layer are the key parameters in determining

Table 2. Results of trial and error method to determine optimum learning algorithm and transfer functions.

Model Back-propagation algorithm Training function Transfer function R2 (test) MSE×103 (test)

Hidden layer Output layer

Phenol Levenberg-Marquardt trainlm satlin purelin 0.3994 60.91

tansig 0.8933 9.4011

poslin purelin 0.8419 11.033

tansig 0.9119 8.892

tansig purelin 0.9214 7.661

tansig 0.7328 20.287

Scaled Conjugate Gradient trainscg purelin purelin 0.6891 24.438

tansig 0.8973 10.09

poslin purelin 0.7633 18.79

tansig 0.3966 59.38

tansig purelin 0.9154 7.89

tansig 0.7155 23.81

TOC Levenberg-Marquardt trainlm satlin purelin 0.8246 14.578

tansig 0.6957 23.743

poslin purelin 0.8707 12.02

tansig 0.7521 22.39

tansig purelin 0.9082 9.026

tansig 0.8139 17.123

Scaled Conjugate Gradient trainscg purelin purelin 0.7712 16.19

tansig 0.4206 54.18

poslin purelin 0.6891 24.438

tansig 0.8685 12.977

tansig purelin 0.6291 29.78

tansig 0.7678 19.21

doi:10.1371/journal.pone.0119933.t002
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the topology of a neural network. Optimization of the generated topology is a major challenge
in building ANNmodels. High number of neurons in the hidden layer (hidden neurons) may
cause the network to learn from the training data but fail to perform properly in the validation
part, a problem known as ‘overfitting’, while employing fewer neurons could waste a consider-
able training time in finding the optimal representation [43]. Different number of hidden neu-
rons creates different networks with different performances, and the optimum number is
selected based on comparison between the prediction errors of the created networks. In this
study, different topologies were created by varying the number of hidden neurons from 2 to 20.
Each topology was run three times and the average values were used to determine the accuracy
of the results. Error of networks is calculated by the (Equation 9).

Where N, T, O, and i refer to number of data sets, targets (experimental values), outputs
(model’s predictions), and index of data, respectively.

The network errors are plotted versus number of neurons in hidden layer for Phenol
(straight line) and TOC (dotted line) models in Fig. 6. As shown in Fig. 6, both models had the
least mean square error values when 10 nodes were used in their hidden layers. Fig. 7 depicts
the structure of a three-layer feed-forward back-propagation neural network consisting of ten
hidden neurons. The structure was almost the same for both models with the output variable
being the only difference. Fig. 7 is followed by Table 3 which lists the specifications of the
proposed models.

Performance of the proposed models was evaluated by comparing their predicted values
with the experimental values. Data of the test group was used for this purpose. Correlation co-
efficients of R2 = 0.976 and R2 = 0.968 were achieved for Phenol and TOC models, respectively,
which showed acceptable agreement between the outputs and the corresponding real values of
both model. Fig. 8 presents a graphical comparison between the experimental data obtained
after 20 minutes and the corresponding ANN predictions.

Sensitivity analysis
In this part of study sensitivity analysis (SA) was carried out to investigate the degree of impor-
tance of input parameters on the model outputs. The results of this analysis can provide useful

Fig 6. Effect of number of hidden neurons on network performance.

doi:10.1371/journal.pone.0119933.g006
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information on the sensitivity of input variables and their robustness, and therefore, can lead
to a better decision making process.

Weight matrix and PaD method are widely applied on ANNmodels to analysis the sensitiv-
ity of input parameters [46]. Both methods are used in this study to determine the degree of in-
fluence of each input variable on outputs.

Weight Matrix. By having ten nodes in the hidden layer, a total of 71 weights have been
calculated, out of which 60 weights are between input and hidden layers (5 weights associated

Fig 7. Optimum neural networks for Phenol and TOCmodels.

doi:10.1371/journal.pone.0119933.g007
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with 5 input variables plus one bias for each of the hidden neurons) and remaining 11 weights
are between hidden and output layers (10 weights associated with 10 nodes plus one bias). The
corresponding weights are listed in Table 4 (matrix of weights between input and hidden lay-
ers) and Table 5 (matrix of weights between hidden and output layers).

Studies on weight matrix are necessary for evaluating the relative importance of each input
variable on output variable. In this regard, the following equation which is based on the parti-
tioning of connecting weights was mainly used [47] in this study:

Ig ¼

Xm¼Nh

m¼1

jWih
gm jXNi

k¼1
jWih

km
j

 !
� jWho

mnj
 !

Xk¼Ni

m¼1

Xm¼Nh

m¼1

jWih
gm jXNi

k¼1
jWih

km
j

 !
� jWho

mnj
 !( ) ð10Þ

where Ig, Ni, Nh, W, i, h, o, k, m, and n, refer to the relative impact of the g-th input variable on
the output variable, number of input neurons, number of hidden neurons, connection weight,
input layer, hidden layer, output layer, input neuron number, hidden neuron number, and out-
put neuron number, respectively. Fig. 9 represents the relative importance of the input vari-
ables for both models.

According to Fig. 9, H2O2 had the highest impact on outputs of both models. Moreover, the
calculated values listed in Fig. 9 show that all five input variables had considerable impacts on
the output of both models. Hence, none of the investigated parameters could be ignored in the
present modeling. The ANN models delivered a strong means of prediction with slight error
and the predictions was smooth, over the range of data sizes used in training and testing.

PaD method. In this part PaD method was considered for conducting SA on the finalized
ANNmodel. Satisfactory performance of this technique has been reported in previous studies
[46,48–50].

Table 3. Specifications of the proposedmodels.

Parameter Number/Type Details

Variable Maximum Minimum

Input 5 Phenol conc. (mg / L) 100 60

Fe2+ conc. (mg / L) 22 13.2

Catalyst (g/L) 2 0.6

H2O2 conc. (mg / L) 1400 360

Time (min) 60 1

Output 2 Phenol conversion (%) 102.621 -2.175

TOC conversion (%) 49.681 -5.9587

Architecture Feed-forward Connections between the units do not form a directed cycle [44]

Training algorithm Levenberg-Marquardt backpropagation Updates weight and bias values according to Levenberg-Marquardt
optimization [45]

Database Division (randomly)

Train Test Validation

70% 15% 15%

Epoch number 400

Hidden layer 1 Number of neurons 10

doi:10.1371/journal.pone.0119933.t003
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Fig 8. Comparison between experimental and neural networking results for TOC removal % and Phenol degradation % (a.) 20 min time interval,
(b.) 40 min time interval and (c.) 60 min time interval.

doi:10.1371/journal.pone.0119933.g008
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In this method sensitivity of the input variable is determined by the following equation [46]:

Si ¼
1

N

X
P

@Op
k

@XP
i

ð11Þ

Here, n, p, Op
k, X

p
i , correspond to the number of data variables, pattern number, the output

value for the pattern p, and the input value from pattern p, respectively. ok and oj can be calcu-
lated by the following formula:

oK ¼ f2
X

j
wkjoj

� �
ð12Þ

oj ¼ f1
X

i
wijxi

� �
ð13Þ

Where wkj, wij, oj, f1 and f2 refer to the weight between output neuron k and the hidden neuron
j, the weight between the input neuron i and hidden neuron j, the output of the hidden neuron
j, and the activation functions, respectively.

Combination of (Equation 12) and (13) and incorporation of them to (Equation 11) results
in (Equation 14):

Si ¼
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X
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 !X
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 !
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Since the activation functions are sigmoid:

f i ¼ f ð1� f Þ

Table 4. Matrix of weights between input and hidden layers.

Neuron Model N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Weights associated with Phenol Phenol -0.40796 1.2906 -1.2523 1.6452 -2.7691 1.4834 -0.34388 -3.1652 -1.6316 -2.9351

TOC 0.49664 -3.4066 -1.8139 2.1911 4.2199 0.8811 2.3809 -1.7433 1.996 -3.2118

Weights associated with H2O2 Phenol 4.3705 2.1813 -0.86459 2.6222 1.5193 -2.8122 2.2421 0.47327 -2.3254 -3.2886

TOC 4.8311 -3.8146 -2.6098 3.45661 -1.9155 3.25782 -2.6148 2.0078 0.96543 1.3433

Weights associated with
Catalyst

Phenol -0.80785 -3.7103 2.1372 -3.2521 4.7338 -1.1942 2.8819 2.1722 -2.306 -3.6056

TOC -0.84554 -1.73443 1.6905 1.7555 3.1096 -1.9576 0.8511 -3.5744 2.0447 -3.2319

Weights associated with Fe2 Phenol -0.81306 -3.5148 -2.5857 -2.3766 2.1828 5.6628 -6.3257 0.78139 -4.8593 -2.7868

TOC 0.3287 1.1877 -3.0211 -1.5307 -2.7966 -1.37557 -0.29791 -1.1433 1.49887 2.6487

Weights associated with Time Phenol -0.80989 -3.6098 -2.1892 -2.7754 3.3289 4.08733 -5.8867 1.4577 -3.7122 -3.011

TOC 2.0382 -1.5806 2.7365 -1.4677 -2.9001 0.78076 1.4311 -2.4719 4.1055 2.4249

Bias Phenol 1.9282 -1.3316 2.5132 -1.2361 -2.8601 0.56584 1.2038 -2.2529 3.9863 2.249

TOC -2.1066 3.191 -0.59987 1.6766 1.2266 1.81887 3.8832 2.2366 -2.5796 1.4298

doi:10.1371/journal.pone.0119933.t004

Table 5. Matrix of weights between hidden and output layers.

Neuron N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Weight (Phenol) -0.82118 0.10765 0.1383 0.44851 -0.04487 0.27667 -0.07889 0.10876 0.1533 0.67654

Bias 1.0029

Weight (TOC) -0.73409 -0.09307 -0.1198 -0.39833 -0.1055 0.07012 0.05876 0.0081 0.1055 0.39699

Bias 1.0033

doi:10.1371/journal.pone.0119933.t005
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And (Equation 14) can be updated to (Equation 15):

Si ¼
1

N

X
p
okð1� okÞ

X
j
wkjojð1� ojÞwij ð15Þ

Moreover, the relative contribution of input parameters can be calculated by computing the
sum of the squares of the partial derivatives:

SSDi ¼
X

P

@op
k

@xPi

� �2

ð16Þ

And contribution of each input parameter is given by:

Contributionofithvariable ¼ SSDi

Si SSDi

ð17Þ

Higher value of SSD indicates higher influence of the input variable on the output. Therefore,
input variables can be ranked according to their impact on the target. Fig. 10 presents the con-
tributions of the input variables based on PaD sensitivity analysis.

As it can be seen in Fig. 10, H2O2 is the most significant parameter on both targets while
Phenol is the least. The contribution values reported by PaD method are slightly different com-
pared to the ones obtained by weight matrix. Yet, both methods identify same
critical parameters.

Comparison with the previous models
In this section performance of the proposed ANNmodel is compared with the previous neural
networks developed in other studies. Table 6 compares the ANN models in literature with the
one designed in this study in terms of input/output parameters, magnitude of data set, and
prediction accuracy.

While general performance of the finalized neural network in this study is acceptable, it ex-
hibits lower R2 values compared to [11] [14] [20]. The main reason for this difference can be
the limited number of experimental data that was used to train networks in the current work.
High number of experimental sets (considered for training ANN) can positively influence the
ability of neural networks to understand behavior of the system under study and update their
learning parameters. As such, networks trained with 70% of 200 sets can provide more accurate
predictions compared to the ones trained with 70% of 30 sets. Nonetheless, the finalized ANN
model offers more accurate predictions compared to the models that were developed with al-
most similar number of training sets in references [22] and [23].

Fig 9. Relative importance of input variables on (a) Phenol conversionmodel, (b) TOC removal model.

doi:10.1371/journal.pone.0119933.g009
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Conclusions
The vital principle of this paper was to analyze effect of parameters in the process of phenol
degradation with Fe3+ and Fe2+ catalysts and application of ANN technique to model the pro-
cess. The conclusions of the work can be stated as below:

1. Phenol was successfully degraded by goethite with combination of Fe2+ catalyst and hydro-
gen peroxide. After 1 h of reaction, the maximum percentage of phenol degradation for the
number of experiments was more than 90% with maximum mineralization rate of over
40%. The results verified that this heterogeneous Fenton reaction is an efficient process for
the degradation of phenol in aqueous solution.

2. Simulations based on the ANNmodel were performed in order to estimate the behaviour of
the system under different operational conditions. In this paper, two models were developed
based on ANNs to predict the TOC removal percentage and phenol degradation percentage.
The proposed models consist three layers with ten neurons in the hidden layer, and were
optimized to predict TOC and phenol removal percentage with highest accuracy. The mod-
els provided good estimates for the TOC and phenol degradation, and showed that neural
network modelling could successfully reproduce experimental data and predict the behav-
iour of the process.

3. The use of ANN as statistical tool permitted to predict the Fentonic removal of TOC and
phenol. All of the studied parameters in this work (initial concentration of the phenol and
H2O2, initial catalyst and reaction time) have considerable effects on the degradation effi-
ciency and, as expected, the initial concentration of H2O2 with a relative importance of
23–24%, appeared to be the most influential parameter in the degradation process.

The ANNmodeling practice has several favorable features such as efficiency, generalization
and simplicity, which makes it an attractive choice for modeling complex systems, such as
wastewater treatment processes; which also has the potential to be used as an on-line automatic
control approach. This information is essential for the adequate scale-up and design of indus-
trial scale batch reactors for the treatment of organic contaminants in wastewaters.

Fig 10. Contribution of input parameters on outputs based on PaDmethod.

doi:10.1371/journal.pone.0119933.g010
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