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Abstract

Although striatal dopamine neurotransmission is believed to be functionally linked to

the formation of the corticostriatal network, there has been little evidence for this

regulatory process in the human brain and its disruptions in neuropsychiatric disor-

ders. Here, we aimed to investigate associations of striatal dopamine transporter

(DAT) and D2 receptor availabilities with gray matter (GM) volumes in healthy

humans. Positron emission tomography images of D2 receptor (n = 34) and DAT

(n = 17) captured with the specific radioligands [11C]raclopride and [18F]FE-PE2I,

respectively, were acquired along with T1-weighted magnetic resonance imaging

data in our previous studies, and were re-analyzed in this work. We quantified the

binding potentials (BPND) of these radioligands in the limbic, executive, and sensori-

motor functional subregions of the striatum. Correlations between the radioligand

BPND and regional GM volume were then examined by voxel-based morphometry. In

line with the functional and anatomical connectivity, [11C]raclopride BPND in the lim-

bic striatum was positively correlated with volumes of the uncal/parahippocampal

gyrus and adjacent temporal areas. Similarly, we found positive correlations between

the BPND of this radioligand in the executive striatum and volumes of the prefrontal

cortices and their adjacent areas as well as between the BPND in the sensorimotor

striatum and volumes of the somatosensory and supplementary motor areas. By con-

trast, no significant correlation was found between [18F]FE-PE2I BPND and regional

GM volumes. Our results suggest unique structural and functional corticostriatal

associations involving D2 receptor in healthy humans, which might be partially inde-

pendent of the nigrostriatal pathway reflected by striatal DAT.
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1 | INTRODUCTION

There is growing evidence for reciprocal and functional relationships

between dopamine neurotransmission and the corticostriatal network.

Striatal dopamine release modulates corticostriatal plasticity

(Reynolds & Wickens, 2002), while repetitive transcranial magnetic

stimulation (rTMS) of the prefrontal (Strafella, Paus, Barrett, &

Dagher, 2001) and motor cortices (Strafella, Paus, Fraraccio, &

Dagher, 2003) can induce dopamine release in the human striatum.

In several neuropsychiatric diseases, including schizophrenia (Abi-

Dargham et al., 2000; Caravaggio, Borlido, Wilson, & Graff-

Guerrero, 2015; Kegeles et al., 2010; Yao et al., 2013), impairments in

both dopamine neurotransmission and the corticostriatal network are

manifested, along with alterations in brain morphology (Honea, Crow,

Passingham, & Mackay, 2005; Shepherd, Laurens, Matheson, Carr, &

Green, 2012). Until now, however, only a few positron emission

tomography (PET) studies have investigated the associations between

brain morphology and dopaminergic statuses in humans (Caravaggio

et al., 2017; Woodward et al., 2009), and their relationships in the

healthy versus diseased brains remain largely unresolved. In addition,

because dopamine neurons constitute cortico-subcortical networks,

rather than focusing on specific cortical or subcortical regions, it might

be more beneficial to focus on a wide range of such regions to clarify

the relationship between brain morphology and dopaminergic sta-

tuses in the striatum. However, these previous imaging studies were

limited to intercortical or intersubcortical analysis. Further, functional

and morphometric assays of the striatum are generally performed

based on its anatomical subdivisions, including the caudate, putamen,

and nucleus accumbens, but these structures are comprised of

cytoarchitectonically undifferentiated areas (Tziortzi et al., 2014).

Nonhuman nerve fiber tracing and human imaging studies have

shown that the striatum could be divided into three functional

subdivisions—the executive, sensorimotor, and limbic striatum—with

distinct distributions of their cortical inputs onto single striatal neu-

rons, forming monosynaptic contacts (Draganski et al., 2008;

Haber, 2003; Parent & Hazrati, 1995; Wall, De La Parra, Callaway, &

Kreitzer, 2013). Use of the connectivity-based functional striatal sub-

regions would be beneficial for a better understanding of such a rela-

tionship, which could reflect the corticostriatal network, although it

should be noted that several functionally related cortical areas send

partially overlapping projections to certain striatal areas (Alexander,

DeLong, & Strick, 1986). Indeed, a previous study with diffusion-

weighted magnetic resonance imaging (MRI) and PET has suggested

that regional differences in the striatal dopamine status could be eval-

uated in greater detail on the basis of connectivity-based functional

subdivision of the striatum (Tziortzi et al., 2014).

Among the components of dopamine neurotransmission, several

animal studies have shown that stimulation of dopamine D2 receptors

promotes the outgrowth of neurites in cerebral cortical neurons

(Hasbi et al., 2009; Todd, 1992). In contrast, knockout mice of dopa-

mine transporters (DAT) showed little morphological changes (Zhang

et al., 2010). As for the relationship between dopamine D2 receptors

and DATs, animal studies showed reciprocal actions between them,

while there had been no comprehensive studies to examine the rela-

tionship in humans (Bolan et al., 2007; Chen et al., 2006; Courtney &

Ford, 2014; Lee et al., 2007). Based on these findings, we hypothe-

sized that brain morphology might be more related to availabilities of

D2 receptors than DATs, and that there might be some relationship

between availabilities of D2 receptors and DATs.

The aim of this study was (1) to examine the relationship between

regional gray matter (GM) volumes and availabilities of dopamine D2

receptors and DATs in the striatal subregions divided based on the

functional connectivity in healthy humans (Tziortzi et al., 2014) and

(2) to investigate the relationship between availabilities of dopamine

D2 receptors and those of DATs in the striatum.

2 | MATERIALS AND METHODS

2.1 | Subjects

We collected data from neuroimaging datasets in our two previous

clinical studies ([UMIN000008232] (Kimura et al., 2017),

[UMIN000007240]), which had been registered in the University Hos-

pital Medical Information Network Clinical Trials Registry. The partici-

pants were 34 nonsmoking male volunteers (age, 23 ± 1.9 years; body

mass index, 20.9 ± 1.9 kg/m2; mean ± SD). By a board-certified psy-

chiatrist, we confirmed that all subjects were free of both current and

past medical and neuropsychiatric illnesses based on their medical his-

tories and physical examinations, and also of current use of psychoac-

tive drug/medication.

This study was approved by the Institutional Review Board of the

National Institutes for Quantum and Radiological Science and Tech-

nology, Chiba, Japan, and was performed in accordance with the ethi-

cal standards established in the 1964 Declaration of Helsinki and its

later amendments. Written informed consent was obtained from all

subjects before their inclusion in the study.

2.2 | PET procedures

All subjects underwent a PET scan with [11C]raclopride, a D2/3 recep-

tor radioligand. Among them, 17 individuals (age, 22 ± 0.9 years) also

completed a PET scan with [18F]FE-PE2I, a DAT radioligand. Injection

doses of [11C]raclopride and [18F]FE-PE2I were 222.1 ± 15.5 MBq

and 185.3 ± 20.7 MBq, respectively, and molar activities of [11C]

raclopride and [18F]FE-PE2I were 210.0 ± 61.7 GBq/μmol and 410.5

± 319.1 GBq/μmol, respectively. With regard to the 17 subjects

undergoing both the PET scans with [11C]raclopride and [18F]FE-PE2I,

[18F]FE-PE2I PET scan was begun 2 hr after the start of [11C]

raclopride PET. PET images were acquired using a PET camera (SET-

3000GCT/X, Shimadzu, Kyoto, Japan), with the imaging session con-

sisting of 35 frames of increasing duration from 30 s to 5 min over

60 min for [11C]raclopride and 38 frames over 90 min for [18F]FE-

PE2I. Scatter correction was performed by a hybrid scatter correction

method based on acquisition with dual-energy window setting
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(Ishikawa et al., 2005). A 4-min transmission scan using a 137Cs line

source was obtained to correct for attenuation.

2.3 | MRI procedures and preprocessing

All MRI scans were performed with a 3-T MRI scanner (MAGNETOM

Verio, Siemens, Germany). 3D volumetric acquisition of a

T1-weighted gradient echo sequence produced a gapless series of

thin sagittal sections. The scan parameters for our participants were

either of the following sets: (1) TE, 9.2 ms; TR, 21 ms; flip angle, 30�;

and slice thickness, 1 mm (n = 17; subjects who completed both [11C]

raclopride and [18F]FE-PE2I PET; UMIN000008232; Kimura

et al., 2017); or (2) TE, 3.43 ms; TR, 2300 ms; flip angle, 30�; and slice

thickness, 1 mm (n = 17; subjects who completed [11C]raclopride PET

only) (UMIN000007240).

MRI data were processed and analyzed using statistical paramet-

ric mapping (SPM12, Wellcome Trust Centre for Neuroimaging,

London, UK) software, specifically using Diffeomorphic Anatomical

Registration Through Exponentiated Lie algebra (DARTEL) toolbox

running on Matlab R2018b (MathWorks, MA; Ashburner, 2007). In

the segmentation procedure, brain structures were classified into GM,

white matter (WM), and cerebrospinal fluid (CSF), which were resliced

into 1.5 � 1.5 � 1.5 mm voxels. We created a customized template

from the images of all participants. The GM images were spatially nor-

malized into the standardized Montreal Neurological Institute (MNI)

152 brain template. The voxel values of segmented and normalized

GM images were modulated by the Jacobian determinants obtained

from a nonlinear normalization step. In the smoothing procedure, a

Gaussian kernels filter was used to smoothen normalized images. The

kernel size of the Gaussian filter was set to 8 mm in full-width at half-

maximum (FWHM).

2.4 | Quantification of PET images

PET data processing was conducted using PMOD 3.8 (PMOD Tech-

nologies Ltd., Zurich, Switzerland).

All PET images were reconstructed using the filtered back-

projection method (Gaussian filter, kernel 5 mm; reconstructed in-

plane resolution 7.5 mm at FWHM; voxel size 2 � 2 � 2.6 mm).

Motion-corrected PET images were co-registered to corresponding

individual MR images. All PET images were spatially normalized to

MNI152 standard space, based on parameters for the transformation

of individual MR images into the template estimated by DARTEL

SPM12. The striatal and cerebellar ROIs along with normalized MRI

and PET images of a single subject are illustrated in Figure S1.

Quantitative analysis was then performed by applying a simplified

reference tissue model (SRTM; Alakurtti et al., 2015; Boileau et al., 2013;

Lammertsma & Hume, 1996; N. B. Urban et al., 2012) to the time course

of radioactivity concentrations in the striatal subregions using the cere-

bellar cortex as reference tissue. Availabilities of D2 receptors and DATs

were quantified as binding potentials relative to the nondisplaceable

tissue (BPND) of [11C]raclopride and [18F]FE-PE2I, respectively. A

connectivity-based probabilistic atlas of the striatum (Tziortzi

et al., 2014) was applied to the spatially normalized PET images to deter-

mine BPND values in the limbic, executive, and sensorimotor striatal sub-

regions. We used the atlas of the cerebellar lobules in MNI152 standard

space (Diedrichsen, Balsters, Flavell, Cussans, & Ramnani, 2009).

Additionally, we performed partial volume correction (PVC) using

the Müller-Gärtner approach (Müller-Gärtner et al., 1992), as in previ-

ous studies (Ito et al., 2014; Mecca et al., 2018; Mecca et al., 2020).

For each dynamic PET frame, GM voxels were corrected for spill-in

and spill-out of activity, assuming that activity in CSF was 0 and WM

activity was uniform and was estimated from each image time frame.

2.5 | Data analysis

2.5.1 | Correlations between local GM volume and
BPND of [11C]raclopride and [18F]FE-PE2I

We investigated correlations between the local GM volume and BPND

of [11C]raclopride and [18F]FE-PE2I in the three striatal subregions

while controlling for age, total brain volume, and MRI parameters,

using voxel-based morphometry (VBM) implemented in SPM12 run-

ning on Matlab R2018b (J. Ashburner & Friston, 2000). The statistical

significance threshold for VBM was set at p < .001/3 at peak levels,

which was corrected for the three striatal subregions. We performed

VBM analysis because VBM allows the investigation of GM regions of

the whole brain without bias, and thus might be more suitable for

exploratory studies.

We conducted the following additional analyses to examine

whether the associations between availabilities of D2 receptors and

brain morphology were explained by DAT or not. First, the regional

GM volume data (eigenvariates) were extracted from the above-

mentioned clusters significantly correlated with the BPND values of

[11C]raclopride in the 34 subjects. Namely, from our VBM results, we

extracted (1) eigenvariates from clusters significantly correlated with

the limbic striatal BPND of [11C]raclopride, (2) eigenvariates from clus-

ters significantly correlated with the executive striatal BPND of [11C]

raclopride, and (3) eigenvariates from clusters significantly correlated

with the sensorimotor striatal BPND of [11C]raclopride, respectively.

We performed a correlational analysis between the BPND values of

[11C]raclopride and the regional GM volume data (eigenvariates) for

each striatal subregion, respectively, in (1) all subjects (n = 34), and

(2) subjects undergoing both [11C]raclopride and [18F]FE-PE2I PET

scans (n = 17), respectively. Next, in these 17 subjects, we performed

a partial correlational analysis for the above correlations while control-

ling for the BPND values of [18F]FE-PE2I. Further, we performed a cor-

relational analysis between the BPND values of [18F]FE-PE2I and the

regional GM volume data (eigenvariates) for each striatal subregion in

subjects undergoing both [11C]raclopride and [18F]FE-PE2I PET scans

(n = 17). The statistical significance threshold was set at p < .05/3 in

these analyses. Data were analyzed by using the Statistical Package

for Social Sciences (SPSS) version 25 (SPSS, Inc., Chicago, IL).
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2.5.2 | Correlations between the BPND of [11C]
raclopride and [18F]FE-PE2I

We examined correlations between the BPND of [11C]raclopride and

[18F]FE-PE2I in each striatal subregion by correlational analysis, with a

statistical significance threshold of p < .05/3. Data were analyzed by

using SPSS.

3 | RESULTS

3.1 | Correlations between local GM volume and
BPND of [11C]raclopride

We found significant positive correlations of [11C]raclopride BPND in

the limbic striatum with GM volumes in a limbic area, including the

uncal/parahippocampal cortex [Brodmann's area (BA) 36], and adja-

cent temporal cortices (BA 20, 21, 38), along with the declive of the

cerebellum (Table 1 and Figure 1). Likewise, a significant positive cor-

relation was observed between [11C]raclopride BPND in the executive

striatum and GM volumes in regions associated with executive func-

tions, such as prefrontal (BA 8, 9, 10) cortices, and an area adjacent to

the prefrontal cortex (BA 6, 32), along with a parietal cortical region

(BA 40) (Table 1 and Figure 1b). Moreover, [11C]raclopride BPND in

the sensorimotor striatum was significantly and positively correlated

with GM volumes in regions associated with sensorimotor functions,

such as the supplemental motor (BA 6) and somatosensory (BA 40)

cortices and an area adjacent to the premotor cortex (BA 8, 9), as well

as the frontal pole (BA 10) and lingual (BA 18) gyri (Table 1 and

Figure 1c).

Results after applying PVC were as follows: there were positive

correlations between (1) [11C]raclopride BPND in the limbic striatum

and GM volumes in temporal cortices adjacent to the limbic area

(BA 20, 38), (2) [11C]raclopride BPND in the executive striatum and

GM volumes in medial frontal (BA 9) and postcentral (BA 3) cortices,

along with inferior temporal (BA 19) cortices, and (3) [11C]raclopride

BPND in the sensorimotor striatum and GM volumes in regions associ-

ated with sensorimotor functions, such as postcentral (BA 3) cortices,

as well as the cingulate (BA 24) and medial frontal (BA 10) cortices.

In all subjects, significant positive correlations were found

between the BPND values of [11C]raclopride and eigenvariates for the

limbic (p = .011, Pearson's r = .43), executive (p = .001, r = .53), and

sensorimotor (p = .001, r = .54) subregions of the striatum, respec-

tively (Figure 2).

In the 17 subjects undergoing PET scans with both [11C]

raclopride and [18F]FE-PE2I, significant positive correlations were

TABLE 1 Local maxima of positive correlations between [11C]raclopride BPND in the subregion of the striatum and regional GM volumes

Subregion of the striatum Brain region

Talairach
coordinates

p-value at the peak
level

p-value at the cluster
level

X Y Z Uncorrected FWE Uncorrected

Limbic Right middle temporal gyrus (BA 21) 42 6 �36 <.00033 .034 .014 421

Left inferior temporal gyrus (BA 20) �48 �4 �27 <.00033 .352 .149 126

Left cerebellum, posterior lobe, declive �28 �78 �22 <.00033 .396 .026 336

Right limbic lobe, uncus (BA 36) 26 �10 �33 <.00033 .516 .161 118

Left superior temporal gyrus (BA 38) �30 6 �39 <.00033 .64 .005 581

Executive Left medial frontal gyrus (BA 9) �16 32 27 <.00033 .029 .018 383

Right medial frontal gyrus (BA 6) 14 �4 54 <.00033 .214 .307 61

Right medial frontal gyrus (BA 10) 20 46 3 <.00033 .238 .249 78

Right inferior parietal lobule (BA 40) 40 �30 48 <.00033 .608 .025 339

Right inferior parietal lobule (BA 40) 51 �57 51 <.00033 .688 .243 80

Left anterior cingulate (BA 32) �20 44 8 <.00033 .764 .292 65

Left postcentral gyrus (BA 2) �40 �20 32 <.00033 .831 .285 67

Left medial frontal gyrus (BA 8) �9 33 45 <.00033 .881 .337 54

Sensorimotor Right medial frontal gyrus (BA 6) 12 �18 57 <.00033 .195 .069 208

Right medial frontal gyrus (BA 10) 18 46 4 <.00033 .241 .337 54

Left lingual gyrus (BA 18) �14 �74 �6 <.00033 .413 .167 114

Left medial frontal gyrus (BA 9) �18 30 27 <.00033 .502 .114 152

Right medial frontal gyrus (BA 8) 12 38 40 <.00033 .598 .274 70

Right postcentral gyrus (BA 40) 42 �30 50 <.00033 .656 .007 520

Note: Statistical significance threshold for VBM was set as p < .001/3 (uncorrected) at the peak level represented in bold. Voxel size 1.5 � 1.5 � 1.5 mm2.

Extent threshold: 50 voxels.

Abbreviations: BA, Brodmann's area; FWE, family-wise error.
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F IGURE 1 (a) Regions of gray matter positively correlated with [11C]raclopride BPND in the limbic striatum. (b) Regions of gray matter
positively correlated with [11C]raclopride BPND in the executive striatum. (c) Regions of gray matter positively correlated with [11C]raclopride
BPND in the sensorimotor striatum. The statistical significance threshold was set at p < .001/3 (uncorrected) at the peak levels, with a 50-voxel
extent threshold

F IGURE 2 (a) Scatter plot of [11C]raclopride BPND in the limbic striatum against regional gray matter (GM) volume data (eigenvariates;
n = 34). The GM volume data (eigenvariates) were extracted from the clusters significantly correlated with the limbic striatal BPND of [11C]
raclopride in our VBM results shown in Figure 1a. (b) Scatter plot of [11C]raclopride BPND in the executive striatum against regional GM volume
data (eigenvariates; n = 34). The GM volume data (eigenvariates) were extracted from the clusters significantly correlated with the executive
striatal BPND of [11C]raclopride in our VBM results shown in Figure 1b. (c) Scatter plot of [11C]raclopride BPND in the sensorimotor striatum
against regional GM volume data (eigenvariates) (n = 34). The GM volume data (eigenvariates) were extracted from the clusters significantly
correlated with the sensorimotor striatal BPND of [11C]raclopride in our VBM results shown in Figure 1c
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found between the BPND values of [11C]raclopride and the

eigenvariates for the executive (p = .003, r = .67) and sensorimotor

(p = .007, r = .62) subregions of the striatum, respectively, while a

correlation between these parameters for the limbic striatum showed

a trend toward significance (p = .116, r = .40) (Figure 2).

Partial correlational analyses also revealed significant positive cor-

relations between the BPND values of [11C]raclopride and the

eigenvariates for the executive (p = .001, r = .75) and sensorimotor

(p = .006, r = .66) subregions of the striatum, respectively, while a

correlation between these parameters for the limbic striatum showed

a trend toward significance (p = .067, r = .47).

On the other hand, there were no significant correlations

between the BPND values of [18F]FE-PE2I and the eigenvariates for

any of the striatal subregions (Figure 3).

3.2 | Correlations between local GM volume and
BPND of [18F]FE-PE2I

By contrast to the above VBM results using [11C]raclopride BPND, no

significant correlation was found between regional GM volume and

BPND of [18F]FE-PE2I.

3.3 | Correlations between the BPND of [11C]
raclopride and [18F]FE-PE2I

There were significant positive correlations between the BPND values

of [11C]raclopride and of [18F]FE-PE2I in the executive (p = .005,

r = .65) and sensorimotor (p = .014, r = .58) subregions of the

(a)

(c)

(b)

F IGURE 3 (a) Scatter plot of [18F]FE-PE2I BPND in the limbic striatum against regional gray matter (GM) volume data (eigenvariates; n = 34).
The GM volume data (eigenvariates) were extracted from the clusters significantly correlated with the limbic striatal BPND of [11C]raclopride in
our VBM results shown in Figure 1. (b) Scatter plot of [18F]FE-PE2I BPND in the executive striatum against regional GM volume data
(eigenvariates; n = 34). The GM volume data (eigenvariates) were extracted from the clusters significantly correlated with the executive striatal
BPND of [11C]raclopride in our VBM results shown in Figure 1b. (c) Scatter plot of [18F]FE-PE2I BPND in the sensorimotor striatum against regional
GM volume data (eigenvariates; n = 34). The GM volume data (eigenvariates) were extracted from the clusters significantly correlated with the
sensorimotor striatal BPND of [11C]raclopride in our VBM results shown in Figure 1c
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striatum, while no significant correlation was found between these

parameters in the limbic striatum (p = .18, r = .34).

4 | DISCUSSION

We have demonstrated positive correlations between dopamine D2/3

receptor radioligand BPND in the functional subregions of the striatum

and the GM volumes of regions that could be functionally and ana-

tomically connected to each of these striatal subdomains. Meanwhile,

no marked correlations were observed between DAT radioligand

BPND and regional GM volumes. Before and after applying the PVC,

generally there were no noticeable differences in the results (although

slight differences were found for the executive striatum).

To date, only a few studies have investigated the relationship

between brain morphology and the dopamine system in healthy

humans. A previous PET study has reported associations between cor-

tical thickness and dopamine release in striatal subregions; greater

amphetamine-induced changes in [11C]raclopride BPND were observed

in the ventral limbic striatum, and they were associated with thinner

frontal cortices (Jaworska et al., 2017). With regard to the relationship

between brain morphology and D2 receptor availability, there were

only two studies, and the findings were inconsistent (Caravaggio

et al., 2017; Woodward et al., 2009). Namely, one of these two PET

studies with [18F]fallypride has demonstrated a positive intraregional

correlation between D2/3 receptor availability and the GM volume

within the caudate, thalamus, and amygdala in healthy human brains

(Woodward et al., 2009). The other exploratory clinical PET study

with two D2/3 receptor radioligands, [11C]raclopride and [11C]-

(+)-PHNO, in healthy individuals reported that BPND of [11C]-

(+)-PHNO but not [11C]raclopride was positively correlated with the

local volume within anatomical striatal subregions except for the puta-

men (Caravaggio et al., 2017). Unlike those within-region analyses, the

present work explored the relationship between the morphology

across GM regions and the striatal dopamine system in healthy

humans. Furthermore, we focused on the connections from cortical

inputs and functionally distinct striatal subdivisions, leading to revela-

tion of the associations between the morphology and dopaminergic

components via the corticostriatal circuits. We did not find any signifi-

cant associations between GM volumes within the striatum and D2

receptor availabilities, unlike those previous studies (Caravaggio

et al., 2017; Woodward et al., 2009). Possible interpretations might be

due to the difference in radioligands, that is, [11C]raclopride in Cara-

vaggio et al. and our study vs. [11C]-(+)-PHNO in Caravaggio et al.

and [18F]fallypride in Woodward et al: differences in selectivity for D2

versus D3 receptors or in affinity for endogenous dopamine among

these radioligands (Gallezot et al., 2012; Mukherjee et al., 2002). Oth-

erwise, it might be due to differences in demographic data (e.g., male

ratio: 100% in our study, 53% in Woodward et al., 63% in Caravaggio

et al.; age: 23 ± 1.9 years in our study, 24 ± 5.5 in Woodward et al.,

39 ± 14.5 for [11C]raclopride and 39 ± 14.6 for [18F]fallypride in Cara-

vaggio et al.). In the current study, we targeted the GM volume among

several morphometric measures. As the present study was for

exploratory research, we did not investigate the relationship between

these dopamine neurotransmissions and functional/structural connec-

tivity. Future studies will be needed to examine the relationship

between dopamine neurotransmission, cortical thickness/surface

area/volume, and functional/structural connectivity in greater detail.

In consideration of the availabilities of D2 and D3 receptors and

affinities of [11C]raclopride for these target molecules, it is conceiv-

able that PET data with this radioligand is primarily indicative of the

D2 receptor availability in the striatum. Hence, the positive correlation

between [11C]raclopride BPND in the limbic, executive, and sensorimo-

tor striatal subregions and GM volumes of functionally connected cor-

tices could imply the roles of dopamine as a morphogen in the

formation and preservation of the cortical networks mediated by

striatal D2 receptors. Indeed, a previous in-vitro study demonstrated

that a D2 receptor agonist stimulated the outgrowth of neurites in

cerebral cortical neurons, whereas a D2 receptor antagonist abolished

it (Todd, 1992). Therefore, D2 receptors on presynaptic terminals of

the cortical inputs in the striatum are likely to retrogradely elicit the

generation and extension of neuritic processes, resulting in an

enlarged cortical morphology. A combined in-vitro neuronal culture

and in-vivo rat study also documented that the stimulation of dopa-

mine D1-D2 receptor heteromers increased brain-derived neuro-

trophic factor (BDNF) production and neuronal growth in the striatum

(Hasbi et al., 2009), raising the possibility that this dopamine-induced

BDNF increment backwardly promotes the outgrowth of neurites in

cortical neurons constituting the corticostriatal pathway. Because the

current study employed a cross-sectional design, a longitudinal mor-

phometric assay during treatment with a D2 receptor agonist would

be necessary for drawing a more decisive conclusion for these regula-

tory systems. Such investigations should preferably be conducted in

healthy subjects, but there would be difficulties in the long-term

administration of a D2 blocker in such individuals.

One of the possible explanations for the present results might be

that the number of cortical neurons projecting to the striatum deter-

mines the density of D2 receptors on their presynaptic terminals and

the opposite postsynaptic compartments of striatal projection neu-

rons. The nerve fiber and synaptic densities in the corticostriatal tract

may regulate the resilience of this network, although the striatal dopa-

minergic tone, which is functionally linked to the balance between

presynaptic and postsynaptic D2 receptors, could not greatly fluctu-

ate. However, interpretation of our results should be done with cau-

tion, as [11C]raclopride BPND does not solely reflect D2 receptor

density, but is also influenced by other factors such as endogenous

dopamine levels and receptor conformation. Our results of partial cor-

relational analyses suggested that the association between brain mor-

phology and D2 receptors was not explained by DAT availability. The

correlation between [11C]raclopride BPND in the limbic striatal subre-

gion and eigenvariates in the 17 subjects remained at a trend level sig-

nificance, presumably due to the small sample size, as the r value was

similar to the analysis of the whole sample (0.40 in 17 subjects

vs. 0.43 in 34 subjects).

In contrast to D2 receptors, we could not find significant correla-

tions of DAT availability with the GM volumes of any brain regions.
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DAT availability is believed to be associated with the density of the

nigrostriatal dopaminergic terminals (Hersch, Yi, Heilman, Edwards, &

Levey, 1997; Kimmel, Joyce, Carroll, & Kuhar, 2001), but baseline con-

centrations of synaptically released dopamine, which could act on the

corticostriatal nerves as a morphogen, may be stabilized in a manner

independent of this density in a healthy, homeostatic condition. In a

pathological circumstance causing profound changes in DAT availabil-

ity, abnormalities of tonic dopamine levels at the synaptic cleft may

occur, affecting the morphology of the connected cortical areas. In

fact, accumulating evidence suggests that reduced DAT radioligand

binding is cross-sectionally and longitudinally associated with cortical

atrophy in Parkinson's disease (PD; Sampedro, Marin-Lahoz,

Martinez-Horta, Pagonabarraga, & Kulisevsky, 2019; Ye et al., 2018).

The underlying condition of cortical atrophy in PD is considered to be

as follows. First, impairments of the nigrostriatal pathway give rise to

a loss of presynaptic terminals releasing dopamine. Then, the DAT

density in the striatum declines, leading to a decrement of the activa-

tion of D2 receptors and spoiling the corticostriatal circuits (Calabresi,

Pisani, Centonze, & Bernardi, 1997; Kreitzer & Malenka, 2007;

Petzinger et al., 2013; Picconi et al., 2003; Shen, Flajolet, Greengard, &

Surmeier, 2008).

The current study is the first to assess the relationships between

D2 receptors and DATs in functional striatal subdivisions. We found

positive correlations between the availabilities of these two compo-

nents in the executive and sensorimotor striatal subregions, presum-

ably reflecting a coupled change in the availabilities of presynaptic

and postsynaptic terminals derived from the corticostriatal and

nigrostriatal circuit neurons. Such coupling intensity could have

diversity among the three subregions, but these data should be con-

sidered as being preliminary in light of the relatively small sample

size in the present assays. Although the mechanism underlying the

reciprocal action between D2 receptor and DAT is not well clarified,

some relevant findings have been reported, as several in vitro and

in vivo studies have revealed that D2 receptor activation could

increase DAT mediated DA clearance and DAT cell-surface expres-

sion (Bolan et al., 2007; Cass & Gerhardt, 1994; Mayfield &

Zahniser, 2001; Meiergerd, Patterson, & Schenk, 1993); in a rat

study, D2 agonist and antagonist decreased and increased the half-

life of DAT in the striatum, respectively, suggesting that dopamine

might have influenced DAT turnover through D2 receptor (Kimmel

et al., 2001); another rat study showed that DAT might be regulated

by D2 receptor through a direct protein–protein interaction being

independent of D2 receptor activation (Lee et al., 2007). Conversely,

accumulating findings of in vitro studies suggest that DAT regulates

reuptake, spillover, and diffusion of extracellular dopamine, resulting

in activation of D2 receptor (Chen et al., 2006; Courtney &

Ford, 2014).

Our results showed that [11C]raclopride BPND in each striatal sub-

region was significantly correlated with GM volumes in regions associ-

ated with each function (i.e., limbic, executive, and sensorimotor) and

those adjacent areas. The parahippocampal gyrus, being correlated

with [11C]raclopride BPND in the limbic striatal subregion, is consid-

ered to be the primary hub of the default mode network in the medial

temporal lobe memory system during resting state (Ward et al., 2014).

The temporal cortices adjacent to the limbic system have been

reported to have a connection with the ventral-medial anterior cau-

date in nonhuman primates, although the connection between the

temporal lobe and striatum was limited in Tziortzi et al.'s diffusion-

weighted MRI study (Selemon & Goldman-Rakic, 1985; Tziortzi

et al., 2014). The prefrontal cortex, being correlated with [11C]

raclopride BPND values in the limbic striatal subregion, is known to

play a central role in organizing and controlling goal-directed thought

and behavior (Szczepanski & Knight, 2014). The supplementary motor

cortices and somatosensory cortices, being correlated with [11C]

raclopride BPND values in the sensorimotor striatal subregion, are

thought to be crucial in voluntary movement and linking between sen-

sory processing and movement production, respectively (Borich,

Brodie, Gray, Ionta, & Boyd, 2015; Nachev, Kennard, & Husain, 2008).

Our results suggest that dopamine D2 receptors in these striatal sub-

regions might be involved in the functioning of these brain regions,

respectively. On the other hand, [11C]raclopride BPND values in each

of the striatal subregions were also correlated with regions over-

lapping with other subregions. This might reflect integrating informa-

tion between functions with overlapping projections throughout the

striatum that enables reward-based and goal-directed behaviors, as

indicated previously (Tziortzi et al., 2014). The correlations between

BPND and the eigenvariates were not significantly different among the

three subregions when comparing the z-transformed correlation coef-

ficients by two-tailed t-tests (Pearson's r value range, .43–.54; p value

range, .57–.96 in the 34 subjects), suggesting that the strength of

associations between striatal dopamine D2 availability and related

brain regions might not be markedly different among them. However,

to clarify this issue in greater detail, further neuroimaging studies

combined with functional/structural connectivity measures will be

necessary.

Along with novel findings and implications, there are also some

possible limitations in this study. First, we investigated correlations

rather than causal relationships between dopamine neurotransmission

and brain morphology. Second, we should be careful in interpreting

the results because of the small sample size. Third, although the

Müller-Gärtner approach corrects the effects of spill-in and spill-out

of radioactivity between GM and WM and decreases the influence of

striatal brain volume on measured uptake, and our results with PVC

are generally consistent with the results without PVC, the Müller-

Gärtner approach could not correct the effects of spill-in and spill-out

within the three striatal subregions. Fourth, we did not perform a drug

screening test on the day of PET acquisition to completely exclude

the use of psychoactive substances that can influence D2 receptor

availabilities, although the absence of past and current drug use was

confirmed by an interview by a board-certified psychiatrist. Indeed,

intake of some psychoactive substances, such as alcohol and caffeine,

can influence D2 receptor availabilities (Nina BL Urban et al., 2010;

Volkow et al., 2015). Finally, the limited age range and sex of the par-

ticipants impeded assessments of the effect of these two parameters.

Accordingly, our results should be cautiously interpreted in view of

these technical issues.
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In conclusion, our results demonstrated differential involvements

of DATs and D2 receptors in the links between cortical morphology

and the striatal dopaminergic system via the functional connections.

The current findings also suggest unique structural and functional cor-

ticostriatal associations in healthy humans, which might be somewhat

independent of the nigrostriatal pathway. Similar PET and MRI

approaches will provide insights into the implication of the dopamine

transmission in the structures of connected regions in neuropsychiat-

ric disorders. It should be of particular significance to conduct these

assays in drug-naïve patients with schizophrenia, since aberrant GM

volumes and striatal dopaminergic statuses have been reported in this

illness (Haijma et al., 2013; Howes et al., 2012).
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