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Stroke Based on Anatomical Knowledge

Xiaohua Qian,1 Yuan Lin,2 Yue Zhao,1 Xinyan Yue,3 Bingheng Lu,4 and Jing Wang4

1College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
2Division of Research and Innovations, Carestream Health, Inc., Rochester, NY 14615, USA
3Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun 130021, China
4Collaborative Innovation Center of High-End Manufacturing Equipment, Xi’an Jiaotong University, Xi’an 710054, China

Correspondence should be addressed to Bingheng Lu; bhlu@xjtu.edu.cn and Jing Wang; wjwjggg@gmail.com

Received 3 June 2016; Revised 23 August 2016; Accepted 15 December 2016; Published 7 February 2017

Academic Editor: Dariusz Mrozek

Copyright © 2017 Xiaohua Qian et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ventricle segmentation is a challenging technique for the development of detection system of ischemic stroke in computed
tomography (CT), as ischemic stroke regions are adjacent to the brain ventricle with similar intensity. To address this problem, we
developed an objective segmentation system of brain ventricle in CT.The intensity distribution of the ventricle was estimated based
on clustering technique, connectivity, and domain knowledge, and the initial ventricle segmentation results were then obtained. To
exclude the stroke regions from initial segmentation, a combined segmentation strategy was proposed, which is composed of three
different schemes: (1) the largest three-dimensional (3D) connected component was considered as the ventricular region; (2) the
big stroke areas were removed by the image difference methods based on searching optimal threshold values; (3) the small stroke
regionswere excluded by the adaptive template algorithm.Theproposedmethodwas evaluated on 50 cases of patients with ischemic
stroke. The mean Dice, sensitivity, specificity, and root mean squared error were 0.9447, 0.969, 0.998, and 0.219mm, respectively.
This system can offer a desirable performance.Therefore, the proposed system is expected to bring insights into clinic research and
the development of detection system of ischemic stroke in CT.

1. Introduction

Computed tomography (CT) is generally used to assess
patients with acute ischemic stroke in America, because of its
faster speed, the better contrast of bones and blood, and the
lower cost thanmagnetic resonance images (MRI).The ische-
mic stroke and cerebrospinal fluid (CSF) regions have a
similar appearance inCT images; thus, accurate ventricle seg-
mentation can significantly facilitate ischemic stroke region
localization and is an indispensable step for the develop-
ment of computer-aided detection (CAD) for acute ischemic
stroke.

Several state-of-the-art methods have been proposed to
segment ventricles inMRI [1], including active contour-based
methods [2–4], fuzzy schemes [5, 6], and probabilitymethods
[7, 8]. However, these methods may be inappropriate to work
on CT images, since there are lower contrast, higher noise
level, and larger slice thickness in brain CT images.

Only little literature on the segmentation of brain CT
images has been published. For example, Wei et al. proposed
a segmentation scheme based on 2D Otsu thresholding
approach [9]. Lee et al. applied the 𝑘-means and expectation
maximization clustering to segment CT images [10]. Another
method by Chen et al. was based on a Gaussian mixture
model [11]. Gupta et al. integrated the adaptive threshold,
connectivity, and domain knowledge to classify the cere-
brospinal fluid, white matter, and gray matter on CT images
[12]. These methods mentioned above were not designed
specifically for ventricle segmentation and were not validated
on the images with severe abnormalities. Chen et al. devel-
oped a ventricular segmentation system by combining low-
level segmentation and high-level template matching [13].
Similarity, Liu et al. proposed a model-guided segmentation
for ventricle region [14]. The two methods are both based
on the template or model scheme for ventricle extraction in
CT. Since these templates were yielded from the MRI brain
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image and registrationwas linear, the templates only provided
a rough mask for the ventricle segmentation. Therefore, it
is still challenging for these two methods to exclude stroke
regions from segmentation results. Qian et al. proposed a
level set model to segment CSF, but the result includes the
stroke regions [15]. This study will improve the methods and
extensively validate our previous work [16].

The significant difficulty of the accurate ventricle seg-
mentation is to deal with CT images of patients with
ischemic stroke. Some of the stroke regions and ventricles
are connected and have similar intensities. To address this
challenge, we developed an objective segmentation strategy
of brain ventricles in unenhanced CT with ischemic stroke.
We applied the following three schemes to exclude the stroke
regions from segmentation results:

(1) We took the largest three-dimensional (3D) con-
nected component in a preliminary segmentation as
the ventricular region, removing the lesion or other
regions without the 3D connectivity relationship with
the ventricle, since the initial segmentation result
contained not only the ventricle but also some non-
ventricular regions, such as lesion or CSF.

(2) The large stroke regions were removed by the image
differencemethod.The large stroke areas tend to close
the brain edge, and their intensities were generally
lower than that of the main parts of ventricles. Thus,
the stroke region can be extracted by the differ-
ence between segmentation results from two optimal
threshold values.

(3) The small stroke regions were removed by the adap-
tive template algorithm. The adaptive template was
directly generated from the corresponding image
itself based on the big intensity difference between the
main part of the ventricle and the brain parenchyma.
This template did not contain the whole ventricle but
did cover the main part of the ventricular region.
Thus, we applied this template to remove the small
lesions around the main part of the ventricle, which
was not subjected to the registration. Another effect
was that the exclusion of these small lesions might
break the connectivity relationship between the lesion
regions and the ventricular region in 3D space.

2. Materials and Methods

As shown in Figure 1, the automated ventricle segmentation
method is comprised of two phases, that is, alignment phase
(Section 2.2) and segmentation phase (Section 2.3). In the
alignment phase, the light curves/segment of the brain was
detected to determine the midsagittal line for each slice. We
then aligned the midsagittal line (MSL) with the vertical
line of each slice to achieve brain alignment. In the segmen-
tation phase, we first estimated the intensity range of the
ventricle region based on clustering technique, connectivity,
and domain knowledge. An image difference algorithm was
developed to identify and remove the large stroke regions in
the initial segmentation. The remaining small stroke region
was further excluded by an adaptive template of the ventricle.

Finally, the largest 3D connectivity of the segmented ventricle
was employed to refine the segmentation result.

2.1. Dataset. We tested the proposed method on 50 CT scans
of patients with ischemic stroke in this study. This dataset
was collected from Jilin University Medical Center using CT
scanners (Light Speed 16, GE Medical System) with an X-ray
tube voltage of 120 kVp. Each patient has 14 slices with the
thickness of 5mm in this study. The matrix size of each slice
is 512 × 512 pixels, and the pixel size is 0.426mm with a 16-
bit gray level.The 50 patients were composed of 29 males and
21 females, and their average age is 57 years with the range
between 41 years and 76 years. We established a reference
standard of ventricle for evaluation of segmentation result. A
medical physicist (XQ, eight years of experience) manually
delineated the ventricle boundaries for all the slices on an
LCD screen as the reference standard to assess the accuracy
of segmentation results.

2.2. Alignment of the Brain Image. Prior to the alignment of
brain image, the skull was stripped by a threshold method
since CT number of bone tissues are consistently higher than
brain tissues. Generally, the CT number of soft tissue is less
than 60 Hounsfield units (HU) (such as 1–12HU of ventricle,
25–38HU of white matter, and 35–60HU of gray matter),
while average CT intensity is 1000HU for bones. Thus, we
extracted the skull using a fixed threshold of 100HU. The
region inside the skull was considered as brain region and the
region outside the skull served as background.

After the extraction of the brain, the inclination angle and
position were corrected by aligning MSL with the vertical
centerline of each slice. The determination of MSL is a key
step in this alignment. Since the falx cerebri (i.e., narrow light
curve/segment) presents on about 30% images, we applied the
falx cerebri as a reference to identify the MSL. Therefore, we
utilized two steps to achieve alignment of the brain, including(1) detection of a light curve in the brain and (2) affine
transformation based on MSL.

2.2.1. Detection of Light Curves in Brain. Figure 2 shows the
schematic diagram of light curve detection. To accelerate
the detection, we defined a rectangle region of interest
(ROI), whose size was chosen to include the light curves
to be detected. We selected a smallest minimum bounding
rectangle of the brain area in the whole scan and then defined
the half width of this rectangle as the width of the ROI.
The height of the ROI was taken the default value of 512.
Figure 2(b) shows the rectangle ROI of the brain.

CT brain image has a high level of noise. The common
filtering may blur the weak edge, making detection of the
light curve difficult. The light curve has a slight angle with
the vertical direction; however, it is still regarded as vertical.
Thus, we designed a one-dimensional (7 × 1) Gaussian filter
with the variance of 2 to smooth the image along the vertical
direction, which can preserve the edge information of the
light curve in the horizontal direction as shown in Figure 2(c).

We then design a horizontal Laplacian detection mask,
that is, [0.5, 0, 1, 0, 0.5], to detect the light curve, since the
vertical strip included more edge points of the light curve
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Figure 1: Schematic framework for segmentation of the brain ventricle in CT of patients with ischemic stroke.

than other places. With the Laplacian image (Figure 2(c)),
we employed an adaptive threshold to yield an edge map, as
shown in Figure 2(d). We empirically set the threshold as the
average value with 2.5 multiple of the standard deviation of
the Laplacian image.

After that, we erased the small unconnected noise point
clouds in the edge map based on 3D connectivity. The noise
points in edge map may negatively affect the subsequent
3D fitting of the middle sagittal plane. However, the 3D
connected volume of these noise points is small; thus, we
can remove them with a threshold in 3D connected volume.
In our experiment, we applied thirty pixels as the threshold
to obtain the clean edge map of light curve (Figure 2(f)).
Figure 2(g) shows the 3D edge map of light curves.

2.2.2. Affine Transformation Based on MSL. To obtain the
precise MSL, we first fitted a middle sagittal plane in 3D
Euclidean space through a set of edge segments of light
curves using least-squares fitting approach. Let (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) be
a point of edge segments, which has totally 𝑀 points and

𝑖 = 1, 2, . . . ,𝑀. So, the optimum fitting plane can be achieved
by the following formulation as

(𝑎∗, 𝑏∗, 𝑐∗) = argmin
(𝑎,𝑏,𝑐)

𝑀∑
𝑖=1

(𝑧𝑖 − 𝑎𝑥𝑖 − 𝑏𝑦𝑖 + 𝑐)2 . (1)

TheMSL of each slice was defined as the intersection line
between the image and middle sagittal plane. Let 𝑧𝑖 denote
the 𝑖th slice of 3D image, and we can obtain the MSL of this
slice as

𝑎𝑥 − 𝑏𝑦 = 𝑧𝑖 − 𝑐. (2)

The determined MSL was shown in Figure 3(a). Finally,
we aligned the MSL of the brain with the vertical center line
of a slice using the affine transformation defined by

𝑥󸀠 = (𝑥 − 𝑥0) cos 𝜃 + (𝑦 − 𝑦0) sin 𝜃 + 𝑥0
𝑦󸀠 = (𝑥 − 𝑥0) sin 𝜃 + (𝑦 − 𝑦0) cos 𝜃 + 𝑦0, (3)

where (𝑥0, 𝑦0) is the center point of the vertical center line
of a slice and 𝜃 is the inclination angle between the MSL
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Figure 2: Diagram of light curve/segment detection: (a) original image without skull; (b) the ROI of the light curve; (c) the vertical filtered
ROI; (d) the Laplacian image; (e) the detected light curve; (f) denoising light curve; (g) 3D display of light curves: 𝑧-axis represents the slice
number; 𝑥- and 𝑦-axes denote the pixel number.

(a) (b) (c)

Figure 3: Alignment of the brain image: (a) original image with the midsagittal line (MSL, dashed line); (b) the vertical center line of a slice
with white color and the MSL; (c) aligned brain image.

and vertical center line. Figures 3(b) and 3(c) show that the
inclination angle and position of the brain were corrected.

2.3. Segmentation of the Ventricle. In the phase of ventricle
segmentation, we focused on excluding the stroke area in the
ventricle segmentation result. The flowchart was shown in
Figure 4.

2.3.1. Parameter Estimation for the Ventricle. Prior to the
segmentation of ventricle, we estimated parameters of the
intensity distribution of the ventricle. We first applied the𝐾-
means algorithm (𝐾 = 2) on the 3D images for stratification
of the brain image and took the largest 3D connected
component of low-intensity category as the ventricle. Then,
an estimation method based on connectivity and domain

knowledge from the literature [8] was utilized to compute
the intensity distribution of different tissues. Specifically, we
tracked the slop of the histogram corresponding to the 3D
largest connected component in rough intensity range of
ventricle to determine a critical intensity, which serves as
an initial classifier of cerebral spinal fluid and white matter.
Thresholds of cerebral spinal fluid, white matter, and gray
matter are optimally derived to minimize spatial overlap
errors in different tissue types. In this study, ventricular
intensity range of [𝑉min 𝑉max] will be adopted to extract the
ventricular region.

2.3.2. Preliminary Segmentation for the Ventricle Based on
Estimated Parameters. 𝑉max, the estimatedmaximum of ven-
tricular intensity range, was applied as a threshold value for
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Figure 4: Flowchart of the exclusion of stroke area in the ventricular segmentation result.

preliminary segmentation of the ventricle. If the intensity
range of the stroke is greater than 𝑉max, the preliminary
segmentation is a good result. Whereas, if the intensity range
of the stroke is less than𝑉max, the segmentation result may be
unacceptable, since it may also contain some stroke regions.

Then, we utilized the 3D connectivity of the preliminary
segmentation result to obtain the largest volume as the initial
segmentation of the ventricle. The stroke regions or noise
areas without the 3D connectivity to the ventricle could be
excluded by this step. Figure 4(b) shows that the large stroke
regions are connected to the ventricle in the segmentation.

2.3.3. Detection of the Big Stroke Regions. Since big stroke
regions are mainly related to the anterior cerebral artery or
middle cerebral artery, these stroke regions are mostly closed
to the brain edge. Thus, we proposed a brain edge checking
algorithm to determinewhether the big stroke regions exist in

the segmentation result. An annular region of the brain edge
was defined to detect the objects. Assumed that theminimum
side length of the minimum bounding rectangle of the brain
was 𝐿min, the width of the annular region could be calculated
by 0.15 × 𝐿min to avoid some parts of the ventricle falling
within the annular region.Themask of the brain edge annular
region was shown in Figure 4(c). Thus, if the objective area
was greater than the threshold, we labeled it as the stroke
region. The threshold was empirically selected as 20 pixels to
allow the presence of noise.

2.3.4. Determination of the Big Stroke Regions. We proposed
an image difference technique based on the heuristic search-
ing algorithm to extract the big stroke regions, which were
successfully detected in the preliminary segmentation by
the edge checking method. This image difference technique
essentially applied the difference between two segmentation
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results by different threshold values for determining the
stroke regions. We first defined the critical threshold value
(i.e.,𝑇critical). If a threshold was greater than𝑇critical, the stroke
regions in the segmentation result of this threshold could
be detected by the edge analysis method; whereas, if the
threshold was smaller or equal to 𝑇critical, none stroke region
could be detected. We then obtained the stroke regions by

PA ≈ 𝑓 (𝑉max) − 𝑔 (𝑓 (𝑇critical)) , (4)

where 𝑓(∗) was the threshold method; 𝑔(∗) represented the
subsequent refine algorithms, such as morphology method;
and PA represented the stroke regions. So, we obtained the
ventricle areas:

𝑓 (𝑉max) − 𝑔 (PA) . (5)

The vital step in the image difference method is to
determine the critical threshold value 𝑇critical. We applied the
gold searching method and the edge checking method to
obtain the 𝑇critical in range [𝑉min 𝑉max].
2.3.5. Exclusion of the Small Stroke Regions. Some small
stroke regions may still present in the segmentation result
from the image difference approach. To address this problem,
we developed an adaptive template matching approach,
which applied the mask of the main part of the ventricle
to exclude the remaining small stroke regions. The template
was generated from each image. It did not contain the whole
ventricle but covers the main part of the ventricle.

Figure 5 shows a sectional view of the gray-scale map for
a brain image. The intensity difference between the ventricle
and brain parenchyma was around 20 intensity values, while
the transition area was only 6 to 7 pixels. Thus, we applied𝑉min as a threshold for ventricle segmentation and took the
3D largest connected region as the ventricle, as shown in
Figure 6(b). The ventricle segmentation, merely containing
the right and left lateral ventricles and without the 3rd and
4th ventricle, was adaptively selected as the templates. To
ensure that the template covers the ventricle, we conducted
somemorphological analysis, including closed operation and
expansion operation. The generated template was shown in
Figures 6(c) and 6(d).

After these steps, we linearly registered the template
with the corresponding segmentation.The objects within the
template served as the ventricle so that the remaining small
stroke areas could be excluded from the segmentation results.

2.3.6. Refinement of the Ventricular Segmentation. We
employed connected component labeling to the segmented
ventricle region.The largest volume served as the ventricular.
We then removed the calcification regions in the results and
smoothed the ventricular edges using the morphologically
closed operation.

2.4. Evaluation of the Segmentation Method. We applied four
measures, including Dice metric (Dice), root mean squared
error (RMSE), reliability (R)28, and correlation coefficient(𝑅), to assess the performance of the proposed segmentation
method. The four measures are defined as follows.
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Figure 5: A sectional view of the gray-scale map for brain image.

(1) Dice Metric. Let 𝑉𝑠 represent the automatically segmented
volume and 𝑉𝑟 represent the manual segmentation (i.e.,
reference standard). The Dice is defined as

Dice = 2𝑉𝑠 ∩ 𝑉𝑟𝑉𝑠 + 𝑉𝑟 . (6)

The value of Dice is between 0 and 1. Higher Dice indicates
better overlap between segmented volumes and the reference
standard.

(2) Root Mean Squared Error. The RMSE calculates the dis-
tance between the corresponding points on the automatically
segmented and reference boundaries, defined by

RMSE = ( 1𝑁
𝑁∑
𝑖=1

(𝑥𝑠,𝑖 − 𝑥𝑟,𝑖)2 + (𝑦𝑠,𝑖 − 𝑦𝑟,𝑖)2)
1/2

, (7)

where (𝑥𝑠,𝑖, 𝑦𝑠,𝑖) is a point on the segmented boundary and(𝑥𝑟,𝑖, 𝑦𝑟,𝑖) is the closest point to (𝑥𝑠,𝑖, 𝑦𝑠,𝑖) on the reference
boundary. The lower RMSE, the better performance.

(3) Reliability. The reliability function is used to assess the
reliability of segmentation method, defined as

R (𝑑)
= Number of volumes segmented with Dice > 𝑑

Total number of volumes
, (8)
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Figure 6: Generation of the template for ventricle: (a) original image; (b) initial segmentation result; (c) the generated template; (d) the
corresponding brain area in the template.

where 𝑑 ∈ [0, 1]. R(𝑑) represents the reliability in yielding
Dice 𝑑.
(4) Correlation Coefficient. 𝑅 between 𝑉𝑠 and 𝑉𝑟 is used to
assess the quality of a least-squares fitting, given by

𝑅
= 𝑛∑𝑛𝑖=1 𝑉𝑠,𝑖𝑉𝑟,𝑖 − ∑𝑛𝑖=1 𝑉𝑠,𝑖∑𝑛𝑖=1 𝑉𝑟,𝑖
(𝑛∑𝑛𝑖=1 𝑉2𝑠,𝑖 − (∑𝑛𝑖=1 𝑉𝑠,𝑖)2)1/2 (𝑛∑𝑛𝑖=1 𝑉2𝑟,𝑖 − (∑𝑛𝑖=1 𝑉𝑟,𝑖)2)1/2

. (9)

The value of 𝑅 ranges from 0, no match between the two
volumes, to 1, a perfect match.

3. Results

3.1. Qualitative Evaluation. Figure 7 displays the alignment
of three representative brain images. The original images
were shown in (a). (b) to (d) were the segmented light
curve/segment, determined midsagittal line, and the final

aligned result, respectively. Only a short light curve segment
was detected in the brain image of the first row; however,
our algorithm still accurately determined themidsagittal line,
which was attributable to 3D fitting of the middle sagittal
plane based on segmented light curve/segments. We can find
that our alignment algorithm yielded good performance.

Figure 8 shows the results of ventricle segmentation. The
original brain image, ventricle segmentation result, and refer-
ence standardwere shown in (a) to (c), respectively. Although
some stroke regions were attached to the ventricle in original
images, they were all excluded in the segmentation results.
This result means that our proposed segmentation method
can obtain satisfactory results on images with ischemic
stroke.

3.2. Quantitative Evaluation Results. We quantitatively asse-
ssed the ventricle segmentation results using Dice, RMSE,
the reliability (R) and correlation coefficient (𝑅). The mean
Dice, sensitivity, specificity, and RMSE were 0.9447, 0.969,
0.998, and 0.219, respectively, as shown inTable 1.The analysis
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(a) (b) (c) (d)

Figure 7: Alignment performance: original image without skull (a); detected light curve/segment (b); determined midsagittal line with red
color for each slice based on 3D fitting of light curves (c); aligned brain image, where the white line shows the midline of the image (d).

Table 1: Quantitative performance evaluations (Dice, sensitivity, specificity, and RMSE) on 50 cases of patients with ischemic stroke regions.

Mean SD Min Max
Dice 0.945 0.036 0.801 0.985
Sensitivity 0.970 0.027 0.892 0.997
Specificity 0.998 0.00 0.996 0.999
RMSE (mm) 0.219 0.472 0.007 2.536

results of these metrics confirm the desirable performance of
our proposed method.

The proposedmethod produced a reliability ofR(0.85) =0.987 for ventricle segmentation, which means all these cases
have a good agreement (Dice > 0.85). Figure 9(a) plots R

as a function of 𝑑 (𝑑 ≥ 0.78) for the ventricle segmentation.
It further shows the acceptable performance of the proposed
method.

The correlation coefficients between automatic segmen-
tation result and reference standard are 0.994. The linear
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(a) (b) (c)

Figure 8: Performance of ventricle segmentation: original brain images (a); ventricle segmentation result outlined with red contours (b);
contours of the reference ventricle (c).

regression plotted in Figure 9(b), which indicates a close
correlation between the results of the proposed method and
the reference standard.

4. Discussion

The stroke regions on CT are often adjacent or connected to
the ventricle, and their intensities are similar, which makes
it highly difficult for accurate segmentation of the ventricle.
To achieve this goal, we developed a combined segmentation
strategy composed of connectivity, image difference method,
and adaptive template method that is developed to exclude
stroke regions from the ventricular segmentation result,
which constitutes the major strength of our segmentation
scheme.

Image difference method was used to extract the large
lesion regions. In this approach, the most critical step was to
search the critical threshold for obtaining the ventricular seg-
mentation result without stroke regions. This result served as
“benchmark ventricular mask,” and acted as the subtrahend
in the image difference method. However, the edge checking
method only worked well for the large stroke regions, so
this method was not able to efficiently detect the small
stroke areas when they presented in the segmentation result
from the critical threshold. If the benchmark ventricular
mask contains small stroke areas, these small stroke regions
would be left in the final segmentation results. Therefore, the
adaptive template method was developed to remove these
small stroke regions, which would further break up the
connectivity relationship between the lesion regions and the
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Figure 9: (a) The reliability of our method:R(0.85) = 0.987; (b) segmentation volumes of our method versus manual volumes: 𝑅 = 0.997.

ventricular region in 3D space. Finally, we took the largest 3
connected component in the segmentation as the ventricular
region to refine the results.

The limitation of this segmentation system is that some
small stroke region may still exist in the segmentation result,
due to the local property of the adaptive template, which
covers the main part of the ventricle. Differentiation of the
ventricle and stroke region is a challenging task. In the future,
we will combine the prior template of the ventricle and
adaptive template to exclude the stroke region in the initial
segmentation result. Besides, we will collect more data to
validate our proposed segmentation system.

5. Conclusion

The accurate ventricle segmentation is a critical step in the
development of CAD for acute ischemic stroke. Since ische-
mic stroke regions are generally adjacent to the brain ventricle
with similar intensity, it is a challenging task to segment ven-
tricle. In this study, we developed an objective segmentation
system of brain ventricle in CT. We proposed three different
schemes to exclude the stroke regions from initial segmen-
tation, which are the main contributions in this work. The
experiments illustrate the proposed segmentation method
that can obtain a good performance for segmentation of
ventricle in brainCT scanswith ischemic stroke,whichwould
significantly facilitate ischemic stroke region localization.
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