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Abstract

Recent behavioral neuroscience research revealed that elementary reactive behavior can be improved in the case of cross-
modal sensory interactions thanks to underlying multisensory integration mechanisms. Can this benefit be generalized to
an ongoing coordination of movements under severe physical constraints? We choose a juggling task to examine this
question. A central issue well-known in juggling lies in establishing and maintaining a specific temporal coordination
among balls, hands, eyes and posture. Here, we tested whether providing additional timing information about the balls and
hands motions by using external sound and tactile periodic stimulations, the later presented at the wrists, improved the
behavior of jugglers. One specific combination of auditory and tactile metronome led to a decrease of the spatiotemporal
variability of the juggler’s performance: a simple sound associated to left and right tactile cues presented antiphase to each
other, which corresponded to the temporal pattern of hands movement in the juggling task. A contrario, no improvements
were obtained in the case of other auditory and tactile combinations. We even found a degraded performance when tactile
events were presented alone. The nervous system thus appears able to integrate in efficient way environmental information
brought by different sensory modalities, but only if the information specified matches specific features of the coordination
pattern. We discuss the possible implications of these results for the understanding of the neuronal integration process
implied in audio-tactile interaction in the context of complex voluntary movement, and considering the well-known gating
effect of movement on vibrotactile perception.
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Introduction

In everyday natural situations the combination or integration of

multiple senses is essential for an adapted goal directed behavior

[1–8]. The efficiency of multimodal integration is demonstrated by

the improvement of detection, reaction, and discrimination [9–

15]. Recently it was found that an added sound can interfere with

the opponent’s perception of the ball in tennis, showing that

multisensory integration may play a strategic role also in more

ecological settings [16]. Yet little is known about how cross-modal

environments can contribute to the ongoing coordination of limbs

in complex tasks [17–19]. In this study we examine multisensory

processes defined neither by detection or discrimination, nor by

behavioral reactions after the presentation of cross-modal stimuli,

but involved when perception and action come together in

ongoing coordination. The coordination of movements has a

pervasive functional role in elementary behaviors [20–23] (e.g.

grasping, reaching, pointing, upright standing, walking, chewing,

speech production, to name a few), in daily actions (see [24] for an

illustration), but also at the work place, in performing music and

arts, or in sports [25–27]. Such coordination typically involves

multiple joints, and requires dynamic and reciprocal information

exchanges between brain, body and the environment [22,23,28–

31]. Though intrinsically multisensory (i.e. combining vision,

audition, touch, and proprioception), interlimb coordination is in

many cases very dependent upon the use of vision. Here we are

interested in the advantage audio-tactile stimuli, which leave the

optical array invariant, may provide to specify, guide, and enhance

coordination. Despite the recent increase of interest for audio-

tactile multimodal integration its impact on behavior is still poorly

documented (for a review see [32]).

It is well known that detection of tactile events is reduced during

the execution of movements, a gating effect [33–36], which varies

during the time course of movement [37]. If the information

provided by external tactile events can hardly be detected when

movements are produced, then one may predict that audio-tactile

stimuli are not likely to improve coordination skills. However in

the present study the tactile detection was not achieved without a

functional relation to the movement produced; rather the stimuli

endorsed the role of carrying over relevant information to enhance

an ongoing coordination. Moreover vibrotactile stimuli have been

successfully used to direct attention in driving tasks [38].

Therefore, on the basis of these previous studies, the efficiency

of audio-tactile events to drive the coordination of movements

remains an open question.

We selected the so-called three balls cascade juggling trick, for

which the tactile suppression phenomena has recently being

demonstrated [39], as test case in the present study. The three
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balls cascade is among the simplest and the most studied juggling

tricks [40–43] and will be denoted juggling in the present paper.

Juggling represents a very challenging and high-dimensional

coordination problem. On the perception side, vision is cardinal

to dynamically couple the hands to the balls pattern [40,44,45]

and involves significant neural plasticity [46,47]. On the

movement side, juggling requires the patterning of precise and

fast hand movements [41,42]: the juggling pattern is periodic and

characterized by an invariant relative timing, where the throwing

action parameterizes the parabolic trajectories of the ball [43]. In

terms of coordination, juggling is mainly characterized by a 1:3

frequency ratio between the hand movement and a ball cycle

[41,42]. This notably entails forming and maintaining multi-

frequency relations among movements of hands, eyes and posture

[40,43–45,48–50]. Proficiency in juggling is readily identified by

co-variations among the trajectories of the hands and the limbs

combined with a decrease in variability of balls trajectories in time

and space [42,51,52], which contributed to depict learning to

juggle as the formation of a ‘‘spatial clock’’ [43].

What type of external periodic stimulations could improve the

performance at juggling?

Sensory stimulation can increase the robustness of elementary

coordination against internal biological noise or external pertur-

bation [23,53,54]. This increase in robustness was accompanied

by a decrease in variability of limbs trajectories, a phenomenon

referred to as ‘‘anchoring’’, which indicates higher stability of the

coordination pattern [55–58]. In the case of interlimb coordina-

tion, the stabilization effect was even more pronounced when the

frequency of the stimuli was twice the frequency of the movement

of the limbs [59]. Periodic stimuli carrying information about the

tempo provide global frequency information, but also local relative

timing information specifically defined by phase difference

[54,60]. As juggling is a rhythmical skill, such external timing

information should be beneficial to the juggler. However, a simple

auditory metronome failed to stabilize juggling [61], which

indicates that the multi-frequency nature of the juggling calls for

more than a mere metronome.

To provide the juggler with two metronomes without

overloading vision, we assumed that non-visual cross-modal

pairings matching the multi-frequency nature of juggling would

be the best stimuli to improve the stability of the coordination.

Accordingly, we focused our study on audio- tactile parings.

Previously important principles underlying the combination of

sensory cues from different modalities have been discovered,

notably that integration takes place according to a statistical

optimal rule [62]. However to the best of our knowledge, only

anecdotal evidence of an advantage of cross-modal stimuli over

uni-modal parings was provided for this class of multi-frequency

coordination in a bimanual task [63]. This corresponds to a case

where cross- modal pairing may be adequate because the task

requires segregation to move the hands at two distinct frequencies.

In the present study, our prediction that one can stabilize the

juggling coordination with adequate external sensory stimulations

was tested using periodic audio-tactile stimuli, respectively

presented at the ears and at the wrists, and providing specific

tempo. Because balls and hands frequencies are core to the

multiple component coordination in juggling, we chose to

associate each sensory modality to one of these main components.

The frequencies of the tactile metronome and of the auditory

metronome were thus scaled to match, respectively, the tempo of

the hands and the tempo of the balls. In one condition, the

metronome frequencies were multiplied by two to examine the

generalization of the parametric stabilization to an audio-tactile

pairing [59,64] (see also [65]). Finally, in one audio-tactile

condition, the tactile stimuli were presented alternatively at each

wrist, so to match the antiphase movement of the two hands in

juggling [23,53,54].

Methods

Participants
Seven right-handed students (five males, mean = 23.5 yr,

SD = 2.5 yr) from the Montpellier 1 University participated in

this study. Each participant signed an informed consent form

approved by the Institutional Review Board (IRB) of the

Montpellier 1 University (UFR STAPS).

Because of the very low natural variability of expert jugglers

[66] and because novices cannot juggle in a sustained fashion, we

ran a preliminary test to identify intermediate-level jugglers:

participants performed a three-ball cascade, while keeping feet

inside a 2 meters circle. They were deemed intermediate-level

jugglers if they could succeed for at least 20 seconds, but failed

before 60 seconds. Seven volunteers were selected out of thirteen

tested.

Apparatus
Data were collected using a Vicon 3D motion recording system

at a 100-Hz sampling rate. The system was calibrated according to

the manufacturer’s instructions prior to data collection. Two

reflective markers were taped on the dorsal head of the 3rd

metacarpal, to record the left and right hand movements. The

three balls were covered with reflective tape and defined as

markers, to record the movements of the balls.

Thanks to additional markers fixed on each shoulder, we had

able to follow the rotation and translation movement of the subject

in the environment during the task. To homogenize the set of

trials, we realized a projection of the data, first recorded in the lab

frame, into a new reference frame relative to the subject (center at

the top of the sternum – O , with antero-posterior –~xx, transversal

– ~yy, vertical axes – ~zz), fixed in time, and defined as the mean

position of the participant on the trial.

The vibrotactile metronome consisted in 80 ms square wave

pulses (vibration carrier frequency: 100 Hz). The stimulation was

delivered with a DC motor (weight: 42 g) strapped on the ventral

part of each wrist. Preliminary tests showed that the time to reach

100 Hz was less than 5 ms.

The auditory metronome consisted in 80 ms square wave pulses

(tone carrier frequency: 300 Hz) delivered to headphones fixed on

top of the auricles. Headphones also played white noise in order to

isolate the subject from the noise emitted by the vibrotactile

stimulation.

Conditions
We wanted to compare the effect of metronomes that differed in

modality (tactile, auditory or audio-tactile), frequency (simple or

double) and, in the case of simple frequency metronomes, in the

phasing of the stimuli (in-phase or anti-phase).

Running the full crossing of the three factors in a repeated

measure design would necessitate multiple sessions per participant.

As a consequence, we selected the most interesting metronome

conditions. Because metronomes that beat twice per movement

generally provide a better guidance [59], we selected such a double

frequency metronome in the three modalities (Multi. Doub., Tact.

Doub., Audio. Doub.). Then, to reproduce the natural relative

phase between the hands movement in juggling [23,53,54,67], we

added the simple audio-tactile metronome with anti-phase tactile

stimuli on each wrist (Multi. Anti.) and its in-phase counterpart

(Multi. Simp.). Finally, we included a baseline control condition

Sound-Touch Facilitation of Movement Coordination
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with no metronomes, to get a total of 6 experiment conditions

(Table 1).

More precisely, because the juggling is the assembly of two

frequencies within a single task [41,48,52], we set up the tactile

metronome to the hand frequency (Vhand) and the auditory

metronome to the ball frequency (Vball). Hand frequency was the

inverse of the average period of time between two consecutive

throws by the same hand. Ball frequency was defined as one-third

of hand frequency, because one hand takes care of three balls in

the selected juggling pattern [41]. In the multimodal conditions,

the phasing between the audio and the tactile stimuli corresponded

to the average phasing between the motion of one ball and the

motion of one hand along the vertical axis, that is, the two stimuli

were set with identical initial phases (see Figure 1, panel B).

Procedure
We used a repeated measures design, where each participant had

to juggle in each one of the 6 metronome conditions. The order of the

metronome conditions was randomized across participants. In each

metronome condition, participants had to perform a bloc of 5 trials.

The experimental session started with a preliminary trial to

record the preferred juggling frequency of each participant. Then,

during 10 minutes, the participant was familiarized with the 6

metronome conditions. After this familiarization, the participant

performed a block of 5 trials in each one of the 6 metronome

conditions, for a total of 30 experimental trials.

No instructions to synchronize with the stimuli were given, and

participants were instructed to start juggling after the metronome

started.

Table 1. Experimental conditions and characteristics of the metronomes.

Sensory Modality Structure Auditory frequency Tactile frequency (and phasing) Label

Audio-tactile Simple Vball Vhand (P= 0) Multi. Simp.

Audio-tactile Simple Vball Vhand (P= p) Multi. Anti.

Audio-tactile Double 2*Vball 2*Vhand (P= 0) Multi. Doub.

Tactile Double - 2*Vhand (P= 0) Tact. Doub.

Audio Double 2*Vball - Audio. Doub.

- - - - Control

The sensory modalities (multimodal – solid line frame – vs. tactile or auditory unimodal) and the metronome parameters have been manipulated. We distinguished
simple metronome from double metronome (dashed frame) for which the tactile and auditory metronome have been set equal to or twice the hands and balls
frequency respectively. In one of the simple, multimodal metronome, the vibrotactile stimuli were presented in antiphase at the wrists (Multi. Anti, P= p). Otherwise
P= 0 indicates that the vibrotactile stimuli were presented simultaneously.
doi:10.1371/journal.pone.0032308.t001

Figure 1. Representative juggling behavior in the frontal plane ~yy,~zzð Þ. (A) Motion of balls (solid line) and left hand movement (dashed line) in
the frontal plane are presented with the localization of throws and catches (respectively circles and squares). Please note that throws and catches
points and balls trajectories are not exactly coincident because the passive marker was placed on the back of the hand. (B) Representative time series
of position of one ball and of position of the left hand are respectively represented in solid and in dashed lines.
doi:10.1371/journal.pone.0032308.g001
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The task was to juggle as regularly as possible for the duration of

a trial: 20 to 30 s (in some conditions, two jugglers were only able

to complete 3 trials lasting more than 20 sec.).

For each participant individually, the frequencies of the

metronomes were set at her/his preferred hands frequency (or

twice the preferred frequency in the Doub. conditions).

Data processing and analysis
The marker data were dual passed through a second-order

Butterworth filter (fourth-order) with a low-pass cutoff frequency

of 8 Hz prior to further data processing.

From the vertical velocity profiles of balls, we identified the

moments of throw and catch: a positive velocity peak denotes a

throw, and a negative velocity peak denotes a catch.

We then used the average period of time between two

consecutive throws by the same hand to compute the hand

frequency (Vhand).

We addressed the organization of the juggling by analyzing the

variability of the juggling pattern among the metronome

conditions. Variability was computed as the within-trial stan-

dard-deviation of the variables of interest, using directional

statistics for angular values [68]. The variables, listed in Table 2

and schematized in Figure 2, measured the performance in three

aspects of variability that are key to sustained juggling: timing,

bimanual coordination, and throw.

First, because the timing of balls events seems to be the focus of

control in intermediate and expert jugglers [52], we examined the

within-trial variability of ball flight duration. The ball flight time

(BFT) is the period between a throw and the consecutive catch by

the other hand (Table 2 and Figure 2). Variability in BFT is here

used as a global indicator of the stability of the coordination

involved to sustain juggling. We also investigated the within-trial

variability of the time spend with a ball in hand. The so-called K-

ratio (K) is the percentage of a cycle duration with the ball in hand

Table 2. Dependant variables.

Label Name Definition Computation

BFT Ball flight time Time duration between the throw of a ball
and its consecutive catch

Tcatch{Tthrow

K K-ratio Proportion of time with the hand loaded (TL - i.e.,
with ball in hand) in a juggling cycle

TL

TLzBFTð Þ with TL~Tthrow{Tcatch

DBT Distance between throws Euclidean distance between two consecutive points
of throws in the vertical plane

DBTy~LHythrow{RHythrow DBTz~LHzthrow{RHzthrow

ThVel Throw velocity Norm of the velocity vector at time of throw in the
plane of ball flight

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dBxthrow)2 z (dBythrow)2 z (dBzthrow)2

q

dTthrow

ThAngle Throw angle Angle of the velocity vector at time of throw
in the plane of ball flight tan{1 (dBzthrow)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(dBxthrow)2z(dBythrow)2
q

0
B@

1
CA

FSI Frequency synchronization
index

Difference between the hand frequency and
the metronome frequency

Vhand {Vmetronome

PSI Phase synchronization index Dispersion of the relative phase (mean(cos(Q)))2z(mean(sin(Q)))2

DT Dwell time Percentage of phase locking episodes dQ=dt

���
���ƒe

� �
|

1

Nsamples

with e a limit value and Nsamples the

number of values in a trial

We analyzed the within-trial standard-deviation of the dependant variables listed in this table. The first two variables (BTF, K) are used to assess the juggling
performance in time. The third variable (DBT) addresses the spatial aspects of the coordination between hands in the transversal axis (DBTy) and in the vertical axis
(DBTz). Two variables (ThVel, ThAngle) focus on the throwing, which is key to sustained juggling. Note that, though the juggling was performed in 3D space, ThAngle
refers to the elevation angle in the plane of ball flight. The three last variables (FSI, PSI, DT) were used to assess the synchronization of the participant with the
metronome. Hand frequency (Vhand) was the inverse of the average period of time between two consecutive throws by the same hand. The metronome frequency
(Vmetronome) was the inverse of the period of the metronome.
In the equations of the computation column : T is the time ; Hx, Hy, Hz are the coordinates of the hand ; Bx, By, Bz are the coordinates of the ball ; indices specify the
juggling events (i.e., catch, throw) ; d indicates the differential, so that dQthrow is the differential of Q at time of throw ; L/R refers to the left/right hand ; Q is the relative
phase between hand position along the vertical axis and the metronome.
doi:10.1371/journal.pone.0032308.t002

Figure 2. Juggling pattern in the frontal plane ~yy,~zzð Þ. Hand
trajectories are represented with a double line, and ball trajectories with
a single line. Ball trajectories are presented during ball flight time (BFT) :
the trajectory of a ball thrown by the left hand is drawn with a solid line,
the trajectory of a ball thrown by the right hand is drawn with a dashed
line (see Table 2 for variables details).
doi:10.1371/journal.pone.0032308.g002
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(Table 2). The K-ratio is a key variable in the temporal structure of

the juggling [43,55,61].

Second, we addressed the organization of the juggling in space

via the within-trial variability of the distance between two

consecutive throws in the vertical plane (DBTz, see Table 2).

Because two consecutive throws involve the two hands, these

variables render a global measure of the between-hand coordina-

tion in space.

Finally, we captured the organization of the throwing behavior

via the within-trial variability of the tossing: The tossing angle and

velocity fully determines the trajectories of a ball (ThAngle and

ThVel, see Table 2 and Figure 2).

Synchronization to metronome
Synchronization of the hands to the metronome should result in

systematic frequency relations (i.e., frequency locking) and, if the

coupling is strong enough, in systematic phase relations (i.e., phase

locking) between the hands and the metronome [69].

Frequency locking was easy to assess from a frequency

synchronization index (FSI) computed from the difference

between the observed hand frequency and the frequency of the

metronome (see Table 2).

Phase locking necessitated a more sophisticated approach. For

each hand, the instantaneous phase was estimated using the

Hilbert’s transform of the vertical positions time series [70]. The

periodic variability arising from the specific coordinates used to

extract the instantaneous phase [71,72] was reduced by the

method proposed by Kralemann et al. [73]. The relative phase

between a hand and the metronome was obtained by probing the

value of the hand’s phase at times of stimuli onsets, which is

tantamount to using the metronome as a stroboscope to read the

hand’s phase time-series. To measure the strength of the phase

synchronization, we computed a synchronization index PSI (see

[74], for a theoretical presentation). The value of PSI is zero in the

absence of synchronization, corresponding to a uniform distribu-

tion of relative phase. The value of PSI is one for perfect

synchronization, corresponding to a distribution concentrated

around a single peak [75]. This phase synchronization index is

formally analog to the dispersion of the relative phase distribution

[68] and was calculated using the following formulae:

PSI~ mean(cos(Q))½ �2z mean(sin(Q))½ �2,

where PSI is the phase synchronization index and w is the relative

phase between the position of the hand along the vertical axis and

the metronome.

Furthermore, we calculated the dwell time of the relative phase

([23], chap.4). The dwell time was introduced in the case of

intermittent phase locking [58], and can be used to assess

tendencies toward phase synchronization [76]. We calculated the

dwell time from the time series of the slope of the relative phase

(i.e., relative phase velocity). A slope close to zero corresponds to

an episode of stationary phase locking [19]. A tendency toward

synchrony is revealed by alternating episodes of large and small

values of the slope, which indicates episodes of change and dwell in

relative phase. The dwell time is the importance of the small slope

episodes expressed as a percentage of the total length of the trial:

the larger the dwell time the stronger the tendency to synchronize.

Operationally, to minimize the effect of noise after differencia-

tion of the relative phase, we smoothed the time series of slope

with a 4-points moving-average before calculating the proportion

of time spent in small-slope episodes (i.e., episodes where the

absolute value of relative phase velocity was lower than a limit

value). We tried four different limit values for a small-slope episode

(0.1, 0.15, 0.2, and 0.25 rd/s). The dwell time (DT) is the time

spent in small-slope episodes divided by the total duration of the

trial and multiplied by 100 to get a percentage.

Statistical analysis
To assess the significance of the effects of the metronomes on

the juggling performance, we analyzed the variability of the

juggling and, in a second step, focused on the synchronization to

the metronomes, in relation to the juggling performance.

All analyses of variance were complemented with Tukey HSD

tests for post-hoc mean comparisons, and we reported the raw F

values and degrees of freedom, but p values after Huynh-Feldt

correction for non spherical variance.

In all statistical analyses, the significance level was set at .05.

Effect of the metronomes on the variability of juggling

behavior. Participants clearly differed in their level of variability

in the control condition, which corresponded to differences in their

juggling experience, despite the inclusion test and criteria.

Accordingly, to improve the sensibility and reliability of our

analysis to distinguish the five metronomes conditions, we

subtracted for each subject his/her mean variability measured in

the control condition to the variability measured in the

metronomes conditions, and this for each given variable. Thus

in this part of the analysis all variables were baseline corrected.

To examine the effect the 5 metronome conditions on the

juggling performance, we ran a global analysis of variance with

repeated measures (ANOVA). Moreover, in order to test for

significance against the baseline level, we compared the juggling

performance under each metronome condition against the

hypothetical mean of zero, the latter corresponding to the

baseline level of variability, using a one sample t-test. As we

emphasized the sensitivity of the analysis, we did not use a

Bonferroni-Sidak correction [77,78] and kept the p value

threshold set at .05.

Entrainment to the metronomes. To globally address the

issue of synchronization, we analyzed the timing of the juggler’s

hand relative to the metronome beats, using an ANOVA with

repeated measures, as previously.

In a last step, being aware that mean frequency differences

between movements and the metronome presented (FSI) varied

between subjects, we further examined the phase synchronisation

to the metronomes in each participant individually. We ran a

within-participant statistical analysis using a surrogate approach to

distinguish true phase synchronization from values obtained by

chance. One type of synchronization, a weak synchronization, can

indeed be expressed by a correspondence between the mean

frequencies while phase synchronization is absent [22,69]. For

instance consider the fact that oscillatory movement may

comprise, except for perfectly harmonic movement, alternating

slow and fast evolution within a period. In such a case periodic

stimuli onsets would necessarily happen more often during the

slow parts, introducing a concentration of the relative phase

distribution, directly increasing the synchronization index and

dwell time. The phase synchronization variables would differ from

zero but this won’t indicate an underlying sensori-motor phase

synchronization process. In this case rejecting the presence of

phase synchronization requires a specific approach. We then

tested the hypothesis of phase synchronisation by comparing the

observed distributions of the synchronization index and dwell time

to surrogates distributions of the same quantities. The surrogates

were generated under the null hypothesis of values obtained by

chance in the absence of coupling to the metronome. To this end

we computed a relative phase between the movements recorded in

Sound-Touch Facilitation of Movement Coordination
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the control condition and a metronome generated from those used

in the other conditions. Moreover the time between the start of the

movement and the first stimulus onset was randomly drawn from a

Gaussian distribution, so as to get for the initial time shift a

duration between 0 and the actual period of the metronome used

for a given subject. By taking 1000 random initial period in

different runs we computed for each individual 1000 phase

synchronization indexes and dwell times (see appendix S1).

Because larger values indicate better synchronization in the

surrogate distributions obtained for each participant, we took the

95 percentiles as the threshold value to get a p value of 0.05 for

significant synchronization [79].

Finally, we analyzed the correlation between the synchroniza-

tion indexes and the variability of the juggling pattern, with the

prediction that better synchronization to the metronome would

render lower variability in the juggling pattern.

Results

Figure 1 A–B presents a representative sample of the recorded

data, which clearly demonstrates the variability in hands move-

ments, onsets of throws and catches, and in the ball’s trajectories.

Throwing movement
The first step in the analysis of the data was to examine whether

the temporal information carried out by the external metronome

affected the throwing action. The ANOVA applied on the

variability of the initial angle at throws (ThAngle) was inconclu-

sive.

The ANOVA on the variability of the velocity at throws (ThVel)

indicated an effect of the metronome condition (Figure 3; F4,

24 = 3.03, p = .037). It especially showed that the velocity

variability with the antiphase audio-tactile metronome (Multi.

Anti.) was smaller than the variability obtained with the unimodal

tactile metronome (Tact. Doub.).

In addition the t-test comparison showed a variability of the

velocity at throws in the unimodal tactile condition (Tact. Doub.)

significantly larger than zero (t30 = 2.13, p = .042).

Temporal organization of the juggling coordination
The ANOVA applied on the averages of variability of the K-

ratio was inconclusive.

The ANOVA on the variability of the balls flight time (BFT)

revealed a significant effect of the metronome condition (Figure 4;

F4, 24 = 3.60, p = .030). It evidenced a smaller variability of the

Figure 3. Variability of throw velocity (ThVel) for each metronome condition. The average variability for each individual in the control
condition defined the individual baseline variability, which was subtracted to the individual’s average variability in each metronome condition. Thus,
the zero corresponds to the baseline variability without metronome. Negative values indicates smaller variability than in the control condition. Error
bars represent inter-participant standard deviation. The grey bar indicates a significant increase in the variability of throw velocity in the Tact. Doub.
metronome condition.
doi:10.1371/journal.pone.0032308.g003
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BFT in the antiphase audio-tactile condition (Multi. Anti.) than in

the unimodal tactile condition (Tact. Doub.).

Spatial variability of the juggling coordination
The ANOVA on the variability of the vertical distance between

two consecutives throws (DBTz) also showed a significant effect of

the metronome condition (Figure 5; F4, 24 = 3.62, p = .019). The

antiphase audio-tactile condition (Multi. Anti.) decreased the

DBTz variability when compared to the in-phase audio-tactile

condition (Multi. Simp.). In addition, let us remark that post hoc

comparisons suggested, with a probability very close to the

threshold for significance (p = .051), that this variability was

smaller with the audio-tactile double metronome (Multi. Doub.)

than with the audio-tactile simple metronome (Multi. Simp.).

Finally, t-tests showed that the variability of DBTz reached in

the antiphase audio-tactile condition (Multi. Anti.) was signifi-

cantly smaller than the zero baseline level corresponding to the

control condition (t30 = 22.24, p = .033).

Entrainment to the metronome
The ANOVA on the frequency synchronization index (FSI) was

not conclusive.

In addition, neither the ANOVA on the phase synchronization

index (PSI) nor the ANOVA on the dwell times (DT) showed a

significant effect of the metronome conditions.

However, as the differences between the actual average hand

frequency and the metronome frequency varied between partic-

ipants, this may have overridden the detection of differences in

phase synchronization between metronomes conditions. The

individual statistical analysis based on surrogates didn’t revealed

significant phase synchronization neither for the PSI, nor for the

DT, except for the DT in one participant and this in all conditions

but the Audio Double condition.

This confirmed that phase synchronization between the hands

and the metronome was not present in the various metronomes

conditions and that only a frequency relationship was maintained.

Finally a Pearson’s correlation analysis indicated that the

variability of the juggling pattern increased with the FSI. This

was evidenced for BFT (R2 = 12%, p = .037), ThVel (R2 = 25%,

p = .002), and DBTz (R2 = 56%, p = 1026). Moreover, we found

that the frequency difference (FSI) affected the variability of DBTz

in the case of the antiphase audio-tactile metronome (R2 = 40%,

p = 2*1024) more than in the other conditions (R2 = 12% to 28%,

.002,p,.051; see Table 3).

Figure 4. Variability of ball flight time (BFT) for each metronome condition. Zero corresponds to the baseline variability without
metronome, and the error bars represent inter-participant standard deviation. The lack of grey bars indicate no significant difference from baseline
variability: the metronomes did not influence significantly the BFT.
doi:10.1371/journal.pone.0032308.g004
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Discussion

Our goal was to examine whether auditory and tactile

metronomes, presented together or separately, can influence the

behavioral variability of a challenging inter-limb coordination.

The question addressed here is that of multimodal integration, and

its potentially useful role to convey information from the

environment to enhance an ongoing coordination. Recently,

rhythmic neuronal mechanisms underlying audio-tactile cross-

sensory interactions shed a new light on multimodal integration. It

was shown that somatosensory input in auditory cortex reset the

phase of ongoing auditory cortical oscillations which subsequently

enhanced the auditory response [80]. Whether similar mecha-

nisms may account for the present findings is certainly speculative,

but it suggests that rhythmic paradigms involving interlimb

coordination may provide a new look to the understanding of

multimodal integration phenomena, departing from concepts of

simple redundancy [81] or statistical rules [62]. We below discuss

how the multiple timing information provided by the audio-tactile

metronomes might be integrated to influence the stability of

coordination patterns in juggling.

A tactile metronome can destabilize sensorimotor
coordination

We found that a tactile metronome, presented synchronously at

the wrists, increased the variability of the velocity at the throws

when compared to the baseline variability measured in the

absence of a metronome (Tact Doub in Figure 3). This detrimental

effect of the tactile metronome on a local component of the

Figure 5. Variability of the vertical distance between consecutives throws (DBTz) for each metronome condition. Zero corresponds to
the baseline variability without metronome, and the error bars represent inter-participant standard deviation. The grey bar indicates a significant
decrease in the variability of the vertical distance between consecutives throws in the Multi. Anti. metronome condition.
doi:10.1371/journal.pone.0032308.g005

Table 3. Correlation scores between the vertical distance
variability (DBTz) and the relation to the metronomes (FSI).

Multi. Simp. Multi. Anti. Multi. Doub. Tact. Doub. Audio. Doub.

R2 0.288 0.391 0.209 0.230 0.125

p .010 2*1024 .002 .006 .051

These relate the variability of the vertical distance between left and right
consecutive throws (DBTz) and the differences between the frequency of hands
movement and the frequency of metronomes (FSI).
doi:10.1371/journal.pone.0032308.t003
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juggling coordination, namely individual hand movement, can be

interpreted as arising from the well known gating effect that results

in tactile suppression, which was also shown in juggling [39].

Alternatively, it can be due to the mismatch between in-phase

tactile events and the anti-phase movements of the hands. Please

note that the former interpretation calls for a non specific sensory-

motor mechanism while the latter emphasize on specific properties

of the information specified by the tactile stimuli and its relation to

the coordination pattern of the movement of the hand. Further

work is required to disentangle, or relate, these two lines of

reasoning.

Advantage of multi-modal over uni-modal conditions
We found that the detrimental effect of the tactile metronome

alone could be reduced when presented together with a sound. In

particular, we found that the variability of this ball’s velocity at

throws and its flight duration was lower in the antiphase audio-

tactile condition than in the Tact Doub condition (Figure 3 and 4).

As the minimization of the variability of the flight duration in

skilled jugglers was interpreted as the signature of a global variable

of coordination [52], this result suggests that the multimodal

stimulation was better integrated within the juggling coordination.

In the present case, each one of the two metronomes brings a

distinct tempo, and each tempo is sustained by distinct sensory

pathways, allowing for an easier segregation of the two basic

rhythms. Deciphering whether such segregation takes place at

perceptual, attentional, or more integrated sensori-motor level,

requires further work. Taken as an ensemble, these two distinct

tempos also define a specific relative frequency and relative

phasing between them, and this relative information is the most

meaningful to the ongoing coordination. Hence, it seems logical

that these properties have collectively contributed to strengthen, or

stabilize, the perception-action coordination underlying the

relation between the hands and the balls.

As a consequence, the improvement observed when combining

audio-tactile stimulations in a multi-frequency multi-modal

metronome cannot be exclusively explained by the added

contribution of the sound only. Similarly, we cannot argue that

the benefit obtained with the audio-tactile conditions was precisely

multimodal, because these conditions also specified non negligible

relative frequency and a specific relative phasing. We will discuss

further the latter below.

We suggest that the audio-tactile stimulations may overcome the

tactile detrimental effect, not by acting locally at the level of the

throwing movements, but by acting globally onto the ordering the

overall pattern of coordination, which requires a tight coupling

between the movement of the hands and visual information pick

up about the motion of the balls [40,44,45].

Another line of thinking is to consider asynchronies in the

encoding of visual, auditory and somatosensory cues in the brain.

Schroeder and Foxe [82] found evidences in the onset of neural

activity in the superior temporal polysensory area for shorter

delays following somatosensory stimuli than auditory or visual

ones. In the multimodal case, it was suggested that ‘‘early-

arriving’’ somatosensory inputs could modulate the local cellular

excitability and thus enhance the ‘‘later-arriving’’ auditory input.

Such potentiation may explain the improvement observed when

combining audio-tactile stimulations in the present experiment,

even if only one third of the multimodal stimuli are synchronous

because of the 3:2 coordination involved. Anyway, such suggested

multisensory processing is not yet sufficient to explain the

improvement found specifically in the case of the multimodal

antiphase metronome.

Parametric coupling of movement to multimodal
external events

We examined to what extent the stabilization properties of a

double periodic forcing, interpreted formally as a parametric

function [59,65,83], could generalize to the coordination encoun-

tered in a multimodal and multifrequency context. We found a

reduction of variability by the double metronome when compared

to the simple metronome close to the significance level (Figure 5,

p = .051). However when compared to the baseline level of

variability taken with respect to the control condition, this

stabilization effect did not reach significance (Figure 5). Thus,

our results provide only partial support to the idea that the

stabilization effect of double periodic forcing extends to a

multimodal and multifrequency context. This generalization

requires further validation, which would confirm the assumption

that the underlying parametric coupling is acting at an abstract

level and is amodal [83].

Phasing of the metronomes matters
We found that, for ball flight duration and vertical distance

between throws, variability in the Multi Simp condition was higher

than in the Multi Anti condition (Figure 5). Let us recall that these

two metronomes differed only by the relative phasing between the

tactile events. This specific phasing of the tactile metronome

matched the antiphase pattern of hands movement required to

perform the 3 balls cascade trick, and is likely to be one important

contribution to a more regular behavior. This is a first indication

that the phasing of the stimulation (whether multimodal or not) is

of high importance for the juggler. A second indication is that the

antiphase metronome was the only one that effectively helped the

juggler to be more stable. More precisely, matching the phasing of

the tactile stimulations with the actual phasing of the movement of

the hands reduced the variation of distance between successive

projection points of left and right hands (i.e., Multi Anti is lower

than zero in Figure 5), presumably by favoring a specific instance

of the so-called anchoring phenomena [55–58].

Taken together, these two indications denote the key role of the

relative phasing in the effective integration of external stimuli

within an ongoing coordination pattern: the degree to which

information can be useful is the degree to which it can be

integrated within the intrinsic behavioral dynamics [54]. Further-

more, a multimodal improvement of movement coordination may

be conditioned by a matching of the structure of the coordination,

as suggested by the advantage of providing non coincident tactile

stimulation corresponding to the anti- phase movement of the

hands.

The mediating role of synchronization to the stimuli
The variability of the juggling coordination covaried with the

difference of frequency between hands movement and the

metronomes. These frequency gaps varied because some partic-

ipants accelerated or slowed down during the course of the

experiments. This suggests that synchronization favors the

integration of the parameters specified by the metronomes to

enhance spatial and temporal coordination. Participants were only

at an intermediate level in juggling skills, and it was difficult for

them to match their movement to the stimuli, hence only weak

frequency locking was established. This explained why we didn’t

find systematic phase synchronization epochs during a trial, only a

loose frequency concordance between metronome and hand

indicative of weak entrainment, which however was sufficient to

pass on the information about the periodic parameters to affect the

coordination.
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Conclusion
Much work has gone toward identifying robust rules for

multisensory combination and integration [3,5,6]. Firstly, when

compared to uni-sensory events, two or more sensory cues from

distinct modalities with spatial or temporal congruency can elicit a

better spatial detection, orientation behavior, or shorter reaction

time. Secondly, departure of multimodal environments from

spatial contiguity and/or synchrony fails to improve such

elementary behaviors when compared to unimodal performances,

but can facilitate the execution of other type of tasks, for instance

the identification of a temporal gap between events [15]. These

two cross- modal phenomena can be tentatively classified

respectively as integration, to express a degree of fusion between

functional units (e.g., percepts, actions), and as segregation, to

indicate a degree of separation between units [84,85]. One may

assume that, depending on the coordination pattern required by

the task, integration or segregation may be sought using

multimodal stimuli. The multimodal and multifrequency metro-

nomes specified also a timing relation between the two main

components of the coordination problem of juggling, because it

associated tactile events matching the tempo of the hands and

sound events matching the tempo of the balls. Therefore, the

present study may be seen as an attempt to use cross-modal stimuli

to segregate two frequencies putatively relevant for two compo-

nents of the coordination, but ultimately to enhance the overall

juggling coordination. The latter was presumably determined also

by the phasing between the two stimuli in a multimodal pair,

associated to antiphase tactile stimuli, despite the weak entrain-

ment of movement to the stimuli.

One specific combination of auditory and tactile metronome

decreased of the spatiotemporal variability of the juggler’s

performance: a sound associated to left and right tactile cues

presented antiphase to each other, the latter which corresponded

to the temporal pattern of hands movement in the juggling task.

Differently we found that tactile cues presented alone increased the

behavioral variability. Because audio-tactile events efficiently

complemented vision in the regulation of movements in a

challenging task and under severe physical constraints, we argue

that this class of bimodal combination could, if properly scaled, be

used in a wide class of applications to guide and stabilize behavior

in the case of efficient or deficient behavior, to accelerate skill

acquisition or rehabilitation, and to improve prosthesis. Whether

such applications are sought within a limb or between limbs, the

coordination has to be carefully analyzed to identify which

information, spatial and temporal, should be specified to benefit

from a multimodal synergy. Clearly such direction of research

could widen the set of laws already established for multisensory

integration, namely the laws of inverse effectiveness and

coincidence in time and space.
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