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Abstract. Cervical Cancer is one of the leading causes of 
cancer‑associated mortality in women. The present study aimed 
to identify key genes and pathways involved in cervical cancer 
(CC) progression, via a comprehensive bioinformatics analysis. 
The GSE63514 dataset from the Gene Expression Omnibus 
database was analyzed for hub genes and cancer progression 
was divided into four phases (phases I‑IV). Pathway enrich-
ment, protein‑protein interaction (PPI) and pathway crosstalk 
analyses were performed, to identify key genes and pathways 
using a criterion nodal degree ≥5. Gene pathway analysis was 
determined by mapping the key genes into the key pathways. 
Co‑expression between key genes and their effect on overall 
survival (OS) time was assessed using The Cancer Genome 
Atlas database. A total of 3,446 differentially expressed genes 
with 107 hub genes were identified within the four phases. 
A total of 14 key genes with 11 key pathways were obtained, 
following extraction of ≥5 degree nodes from the PPI and 
pathway crosstalk networks. Gene pathway analysis revealed 
that CDK1 and CCNB1 regulated the cell cycle and were acti-
vated in phase I. Notably, the following terms, ‘pathways in 
cancer’, ‘focal adhesion’ and the ‘PI3K‑Akt signaling pathway’ 
ranked the highest in phases II‑IV. Furthermore, FN1, ITGB1 
and MMP9 may be associated with metastasis of tumor cells. 
STAT1 was indicated to predominantly function at the phase IV 

via cancer‑associated signaling pathways, including ‘pathways 
in cancer’ and ‘Toll‑like receptor signaling pathway’. Survival 
analysis revealed that high ITGB1 and FN1 expression levels 
resulted in significantly worse OS. CDK1 and CCNB1 were 
revealed to regulate proliferation and differentiation through 
the cell cycle and viral tumorigenesis, while FN1 and ITGB1, 
which may be developed as novel prognostic factors, were 
co‑expressed to induce metastasis via cancer‑associated 
signaling pathways, including PI3K‑Art signaling pathway, 
and focal adhesion in CC; however, the underlying molecular 
mechanisms require further research.

Introduction

Cervical Cancer (CC) is a highly aggressive tumor and is 
one of the leading causes of cancer‑associated mortality in 
women, with an estimated 570,000 new cases and 311,000 
deaths in 2018 worldwide (1). Women with CC are considered 
to have a lower quality of life (2). The progression of CC, from 
normal cervical mucosal epithelium to cervical intraepithelial 
neoplasia (CIN) grade 1, 2, and 3, to CC (3) is associated 
with persistent high‑risk human papillomavirus (HPV) infec-
tion (4). Furthermore, a number of risk factors, including early 
sexual activity (5), multiple sexual partners (6), long‑term use 
of oral contraceptives (7), genetic factors [active oncogenes, 
including PIK3CA (8), ATAD2 (9) and CRNDE (10); tumor 
suppressor genes, including p53 (11), Ras association domain 
family 1 isoform A (12) and NOL7 (13)], tobacco use [current 
smoker, started smoking age ≤15 years, smoking duration 
≥30 years, ≥20 cigarettes/day (14)] and other viral infections 
(such as HIV, herpes simplex virus (HSV) type II and bacterial 
infections caused by Chlamydia trachomatis) (15) have been 
associated with CC progression.

HPV infection plays a leading role in CC (16). The DNA of 
HPV integrates into the host cell genome [HPV16: q21‑q31 of 
chromosome no. 13; HPV18: q24 of chromosome no. 8 (17)], 
disrupts the open reading frame and causes overexpression 
of E6 and E7 genes (18). It has been verified that E6 and E7 
exert carcinogenic effects by binding to the cell cycle regu-
lators, p53 and retinoblastoma (Rb) (19). While E6 and E7 
proteins are upregulated, E6 can interact with its associated 
protein [E6‑associated protein, E6AP (20)] to form a complex 
and bind to p53. This binding hydrolyzes p53 and results in 
the loss of p53‑induced negative regulation of cell prolifera-
tion, thereby leading to unchecked cellular proliferation and 
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malignant transformation  (21). E7 has a high affinity for 
Rb, which controls the cell cycle. Binding of E7 to Rb can 
dissociate the Rb‑E2F complex, thus releasing E2F to exert its 
role as a transcription factor, which leads to an uncontrolled 
cell cycle and cellular immortalization (22,23). Furthermore, 
centrosomes are central regulators of mitosis that are often 
increased in numbers in cancer cells (24). A previous study 
indicated that an abnormally increased number of centro-
somes is associated with structural chromosomal abnormality 
in cervical lesions with high risk of HPV infection  (25). 
Duensing and Münger (26) reported that abnormal number 
of centrosomes and associated spindle mitotic abnormality 
can be found in cells infected by the high‑risk HPV16 E6 and 
E7 proteins, but not in cells infected by the low‑risk HPV6. 
Although numerous experimental studies on genes [HPV16 
L1 protein (27), sonic hedgehog (28) and FGFR4 (29)], and 
signaling pathways [Wnt/β‑catenin signaling pathway (30), 
adenosinergic pathway  (31) and ERK signal transduc-
tion (32)], as well as bioinformatics analyses have focused 
on microRNAs (33) and genes (34) associated with CC, and 
have provided an understanding of the pathophysiological 
mechanisms of the disease over the last decade, the underlying 
molecular mechanisms remain unclear.

The development of CC occurs over a number of years and 
its complexity presents clinical challenges in patients screening 
and treatment. Currently, The Bethesda System (35), which is 
a tool that is used to report Pap smear results for cervical cyto-
logic diagnoses, provides useful data that allows research into 
the epidemiology, biology and pathology of cervical lesions; 
however, its diagnostic value remains poor (36). Instead, direct 
biopsy remains the gold standard for diagnosis. Nevertheless, 
invasive examinations may cause adverse psychological 
effects, including anxiety, depression or distress  (37). 
Surgery, chemotherapy and radiotherapy (38) are the three 
major therapeutic strategies in the treatment of CC; however, 
their uses may be limited for various reasons. Surgery may 
be limited by the status and stage of patients, including late 
stage or tolerance to anesthesia (39), whereas chemotherapy 
is limited due to the lack of sensitivity and the development 
of drug resistance  (40). In addition, radiotherapy can be 
limited by the maximum tolerated dose to adjacent normal 
tissues (41). Thus, it is essential to understand the underlying 
molecular mechanisms in the initiation and development of 
CC, in order to develop methods for its accurate diagnosis and 
effective treatment. A number of studies have reported that 
multiple genes [CXCL12 (42), FGFR4 (29) and SHH (43)], 
proteins [cyclin D1 (44), FOXO1 (45) and BASP1 (46)] and 
pathways [Toll‑like signaling pathway (47), VEGF signaling 
pathway (48) and Wnt signaling pathway (30)] are involved 
in the natural progression of CC; however, few studies have 
investigated the fundamental pathological molecular mecha-
nisms in the progression of CC (from normal, to CIN1, CIN2, 
CIN3, to cancer). Thus, the specific pathological processes 
remain unclear.

The present study provided a systematic investigation 
of the development of CC and further understanding of the 
associations between the four phases of CC progression, 
and thus revealed additional targets for the detection and 
treatment of CC. A flow diagram of the present study is 
presented in Fig. 1.

Materials and methods

Identif﻿﻿ication of differentially expressed genes (DEGs). The 
CC gene expression profile in the GSE63514 dataset, acquired 
using the GPL570 platform (Affymetrix Human Genome 
U133 Plus 2.0 Array) provided by den Boon in 2015 (49), was 
downloaded from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/). The profile contained 128 cervical specimens, 
including: Normal (n=24), CIN1 (n=14), CIN2 (n=22), CIN3 
(n=40) and cancer (n=28) samples. All samples were divided 
into four phases as follows: Phase I, normal to CIN1; phase II, 
CIN1 to CIN2; phase  III, CIN2 to CIN3 and phase  IV, 
CIN3 to cancer, and GEO2R tools (https://www.ncbi.nlm.
nih.gov/geo/geo2r/) (50) within the limma package version 
3.26.8 (51) were used to screen the DEGs at the four phases. 
The criteria fold change (FC) of expression >2 and P<0.05 
were used to identify DEGs.

Identification of hub genes. The Search Tool for the Retrieval of 
Interacting Genes (STRING) database (52) and Cytoscape soft-
ware (version 3.5.1) (53) were used to identify the hub genes in 
the four phases. The PPI network was constructed by searching 
for gene symbols and the minimum required interaction score 
was set at 0.7, to ensure high confidence in the results. The 
nodes that not connect to the major network were removed to 
decrease the error detection rate. CytoHubba (54), a plug‑in for 
Cytoscape software, was used to investigate notable nodes in the 
interactome network using 12 topological algorithms, including 
Degree, Edge Percolated Component, Maximum Neighborhood 
Component, Density of Maximum Neighborhood Component 
and Maximal Clique Centrality, and centralities based on 
shortest paths, such as Bottleneck, EcCentricity, Closeness, 
Radiality, Betweenness, Clustering Coefficient and Stress. The 
genes that ranked in the top 10 for each topological algorithm 
were extracted and the duplication of each gene was calculated. 
Genes duplicated <2 times were excluded, in order to guarantee 
that the genes were associated with CC. The remaining genes 
were considered as hub genes in the four phases.

Functional enrichment analyses of GO and pathways. The 
functional features of the genes associated with the four phases 
were examined using WebGestalt (55) and ToppGene (56). In 
WebGestalt, over‑representation analysis was selected as the 
enrichment method, Biological Process in GO as the func-
tional database, gene symbol as the gene ID type and genome 
as the reference set for enrichment analysis. In ToppGene, 
two frequently used databases, Kyoto Encyclopedia of Genes 
and Genomes (KEGG; https://www.kegg.jp/) and BioCarta 
(https://www.biocarta.com/), were utilized to perform 
pathway enrichment analysis, to improve the reliability of the 
results. Pathways with a false discovery rate of P<0.05 were 
considered to indicate significantly enriched pathways.

Pathway crosstalk analysis. Pathway crosstalk analysis was 
performed  (57), to investigate the interactions among the 
significantly enriched pathways. The pathways with either a 
false discovery rate of P>0.05 or <3 genes were removed as 
selection criteria. The number of shared genes between pair-
wise pathways was calculated and pairwise pathways with <2 
overlapping genes were removed. The Jaccard Coefficient (JC) 
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and the Overlap Coefficient (OC) parameters were calculated, 
to measure the overlap between the pathways. Specifically, 
JC= , while OC= , where A and B represent the gene 
numbers of the tested pathways. The interrelationships 
between pathways were visualized using Cytoscape software.

To determine the overall progression and further detect an 
association between two pathways, the KEGG and BioCarta 
databases were used to identify the upstream or downstream 
associations between pathways. Furthermore, the nodal degree 
was calculated using Centiscape (58) to identify key nodes. 
According to Han et al (59), key nodes are considered as those 
with a nodal degree ≥5.

Integration of the PPI network. The PPI network (60) was used 
to identify key proteins for the four phases of CC. As Protein 
Interaction Network Analysis (PINA) (https://omics.bjcancer.

org/pina/) (61) is an integrated platform for protein interac-
tion network construction, analysis and visualization, it can 
identify the associations between the queried genes based on 
integration of data from six public PPI databases: IntAct (62), 
MINT (63), BioGRID (64), DIP (65), HPRD (66) and MIPS 
MPact  (67). Thus, the PINA4MS plug‑in for Cytoscape 
software was used to construct the PPI network, to identify 
CC progression‑associated genes. As PINA4MS requires 
UniProt accession numbers, the UniProt Retrieve/ID mapping 
tool (https://www.uniprot.org/uploadlists/) was used to input 
gene symbols. The key nodes for the PPI network were also 
extracted using a criterion of nodal degree ≥5.

Comprehensive gene‑pathway analysis. To determine the 
molecular mechanisms and associations between the key genes 
and pathways, the gene‑pathway network was constructed by 

Figure 1. Flow diagram of the present study. FC, fold change; DEGs, differentially expressed genes; STRING, Search Tool for the Retrieval of Interacting 
Genes/Proteins; GO, Gene Ontology; FDR, false discovery rate; KEGG, Kyto Encyclopedia of Genes and Genomes; PPI, protein‑protein interaction.
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Table I. Hub genes in phases I‑IV.

Phase	 Gene	 Regulation	 Counts	 LogFC	 P‑value

Phase I	 CDK1	 +	 7	 1.24	 <0.01
	 KIF11	 +	 7	 1.27	 0.01
	 BUB1B	 +	 6	 1.13	 0.02
	 BUB1	 +	 5	 1.17	 0.01
	 CCNA2	 +	 5	 1.01	 <0.01
	 HLA‑DPA1	 +	 5	 1.49	 0.03
	 CENPE	 +	 5	 1.36	 0.02
	 RHOA	 +	 4	 1.47	 <0.01
	 KIF15	 +	 4	 1.11	 <0.01
	 CCNB1	 +	 4	 1.23	 0.01
	 NDC80	 +	 4	 1.47	 0.01
	 TTK	 +	 4	 1.14	 <0.01
	 STAT1	‑	  4	‑ 1.47	 0.03
	 CXCL10	 +	 4	 2.47	 <0.01
	 KIF23	 +	 4	 1.48	 0.01
	 KIF4A	 +	 3	 1.00	 0.05
	 PSMB9	 +	 3	 1.12	 0.03
	 GNG2	 +	 3	 1.26	 0.04
	 SPAG5	 +	 2	 1.15	 0.01
	 TRIP13	 +	 2	 1.09	 0.02
	 ANLN	 +	 2	 1.19	 0.02
	 CDKN3	 +	 2	 1.83	 <0.01
	 KIF14	 +	 2	 1.15	 0.01
	 MKI67	 +	 2	 1.45	 0.01
	 NUSAP1	 +	 2	 1.22	 0.02
	 NEK2	 +	 2	 1.30	 0.01
	 NCAPG	 +	 2	 1.18	 <0.01
	 DLGAP5	 +	 2	 1.54	 <0.01
	 GBP1	 +	 2	 1.45	 <0.01
Phase II	 STAT1	‑	  9	‑ 1.03	 0.02
	 CXCL10	‑	  6	‑ 2.16	 0.02
	 CXCL12	‑	  6	‑ 1.48	 0.04
	 DCN	‑	  6	‑ 1.37	 0.01
	 CCL2	‑	  5	‑ 1.54	 0.01
	 KIT	‑	  5	‑ 1.26	 0.05
	 IGF1	‑	  5	‑ 1.86	 <0.01
	 OAS2	‑	  4	‑ 1.37	 0.01
	 IRF7	‑	  4	‑ 1.08	 0.01
	 ISG15	‑	  4	‑ 1.83	 0.02
	 FN1	‑	  4	‑ 1.34	 0.04
	 HGF	‑	  4	‑ 1.22	 0.02
	 HERC6	‑	  3	‑ 1.71	 <0.01
	 MX2	‑	  3	‑ 1.86	 0.01
	 IFIT3	‑	  3	‑ 1.79	 <0.01
	 IFIT1	‑	  3	‑ 2.96	 <0.01
	 GBP1	‑	  3	‑ 1.20	 0.01
	 CDC6	 +	 3	 1.40	 0.01
	 IFIT5	‑	  2	‑ 1.11	 <0.01
	 IFI6	‑	  2	‑ 1.55	 0.01
	 SP110	‑	  2	‑ 1.43	 <0.01
	 IFI44	‑	  2	‑ 1.87	 <0.01
	 DDX60	‑	  2	‑ 1.18	 <0.01
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Table I. Continued.

Phase	 Gene	 Regulation	 Counts	 LogFC	 P‑value

	 IFIT2	‑	  2	‑ 1.67	 <0.01
	 RSAD2	‑	  2	‑ 2.66	 <0.01
Phase III	 BIRC5	 +	 9	 1.13	 <0.01
	 TOP2A	 +	 8	 1.36	 <0.01
	 KIF2C	 +	 6	 1.04	 <0.01
	 MCM10	 +	 6	 1.16	 0.01
	 VEGFA	 +	 6	 1.27	 <0.01
	 MAD2L1	 +	 5	 1.03	 <0.01
	 KIF15	 +	 5	 1.45	 <0.01
	 ASPM	 +	 5	 1.70	 <0.01
	 FOXM1	 +	 5	 1.18	 0.01
	 MX2	 +	 4	 1.34	 0.01
	 STAT1	 +	 4	 1.20	 <0.01
	 PLXNA4	‑	  4	‑ 1.15	 0.01
	 AR	‑	  4	‑ 1.69	 <0.01
	 CCND1	‑	  3	 1.20	 <0.01
	 OAS2	 +	 3	 1.05	 <0.01
	 ACLY	 +	 3	 1.55	 0.01
	 GNG2	 +	 3	‑ 1.21	 <0.01
	 RSAD2	 +	 2	 1.85	 <0.01
	 ISG15	 +	 2	 1.82	 <0.01
	 IFI35	 +	 2	 1.35	 0.01
	 IRF5	 +	 2	 1.46	 <0.01
	 SAMHD1	 +	 2	 1.05	 <0.01
	 MKI67	 +	 2	 1.20	 <0.01
	 PLK4	 +	 2	 1.03	 0.01
	 AHCTF1	 +	 2	 1.03	 <0.01
	 NUDC	 +	 2	 1.07	 <0.01
	 EXO1	 +	 2	 1.29	 <0.01
	 PLXNA3	 +	 2	 1.01	 0.01
	 MMP9	 +	 2	 2.55	 <0.01
	 PLAUR	 +	 2	 1.01	 <0.01
Phase IV	 PIK3CA	 +	 9	 1.42	 <0.01
	 CXCL8	 +	 8	 1.28	 0.05
	 ITGB1	 +	 8	 2.20	 <0.01
	 PTK2	 +	 8	 1.33	 <0.01
	 GNG2	 +	 6	 1.18	 0.05
	 ITGA1	 +	 6	 1.33	 <0.01
	 GNG12	‑	  6	‑ 1.14	 <0.01
	 FOS	‑	  5	‑ 1.13	 0.05
	 EDN1	 +	 5	 1.07	 <0.01
	 NMU	‑	  4	‑ 2.23	 <0.01
	 LPAR5	‑	  4	‑ 1.36	 <0.01
	 STAT1	 +	 3	 1.75	 <0.01
	 FN1	 +	 3	 3.61	 <0.01
	 GSTM1	‑	  3	‑ 1.09	 0.02
	 PLA2G4A	‑	  3	‑ 1.41	 0.02
	 CXCR4	 +	 2	 1.58	 <0.01
	 HCAR3	‑	  2	‑ 1.60	 <0.01
	 S1PR5	‑	  2	‑ 1.56	 <0.01
	 CXCL5	‑	  2	‑ 2.10	 0.01
	 NQO1	‑	  2	‑ 1.38	 0.01
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examining the key pathways, in order to determine which 
pathway contained at least one of the key genes.

Co‑expression and survival analysis for key genes. To 
identify the co‑expression of key genes and their impact on 
OS time, the LinkedOmics database (68) was used, which 
was based on TCGA (69). The co‑expression analysis was 
performed using Pearson correlation and OS analysis was 
assessed with Cox regression method. For survival analysis, 
samples were divided by the median value of the investigated 
gene. P<0.05 was considered to indicate a statistically 
significant difference for both the co‑expression correlation 
and OS time.

Results

Identification of DEGs. Analysis of the GSE63514 dataset 
using GEO2R, with a criteria of ≥2 FC and P<0.05, identi-
fied a total of 3,446 DEGs for the four phases as follows: 
446 DEGs in phase I, of which 76 were upregulated and 370 
were downregulaged; 382 DEGs in phase II, of which 146 
were upregulated and 236 were downregulated; 756 DEGs 
in phase III, of which 435 were upregulated and 321 were 
downregulated; 1,862 DEGs in phase IV, of which 816 were 
upregulated and 1046 were downregulated.

Identification of hub genes. Following removal of 2,256 
irrelevant genes (Phase I, 265; Phase II, 197; Phase III, 603; 
Phase  IV, 1191), 12 topological algorithms were used and 
the top 10 genes for each method were extracted. A total of 
107 genes that appeared at least twice were conserved as 
hub genes, as presented in Table I. A total of 29 genes were 
identified in phase I, among which five genes were members 
of the kinesin family (KIF11, KIF15, KIF23, KIF4A and 
KIF14), and five genes were associated with meiosis and the 
maturation of oocytes [BUB1B (70), BUB1 (71), CCNA2 (72), 
CCNB1 (72) and CDK1 (73)], as well as other genes associated 
with inflammation and innate immune responses [STAT1 (74), 
GBP1 (75) and RHOA (76)]. A total of 25 hub genes were 
verified in phase II, among which the involvement of seven 
interferon‑induced genes was identified (IFI44L, IFIT3, 
IFIF1, IFIF5, IFI44, IFIT2 and IFI6), and several pattern 
recognition receptor‑associated genes [IRF7 (77), STAT1 (78) 
and CXCL10 (79)], as well as some genes involved in inva-
sion and metastasis of cancer cells [HGF  (80), IGF1  (81), 
KIT (82), FN1 (83) and CXCL12 (84)]. A number of common 
cancer‑associated signaling pathway genes were identified in 
phase III [CCND1 (85), STAT1 (86) and VEGFA (87)]. A total 

of three C‑X‑C motif chemokine ligands (CXCL8, CXCL11 
and CXCL4), two integrin subunits (ITGB1 and ITGA1), and 
one mitogen‑activated protein (MAPK12) were identified in 
phase IV. Furthermore, PIK3CA (88) and FOS (89) partici-
pated in cancer‑associated pathways in phase IV. The diversity 
of genes within the four phases demonstrated that CC progres-
sion is a complex process and its molecular mechanisms are 
not constant.

GO enrichment analysis of hub genes. To further identify the 
biological functions and locations of hub genes, GO enrich-
ment analysis (90) was performed (Fig. 2). Hub genes were 
notably enriched in ‘biological regulation’, ‘metabolic process’ 
and ‘cellular component organization’ in phase  I and  II, 
while ‘responses to stimulus’ and ‘biological regulation’ were 
predominantly enriched at phases III‑IV in biological process. 
For the cellular components, ‘nucleus’, ‘membrane‑enclosed 
lumen’ and ‘macromolecular complex’ was enriched at 
phases  I‑III, while ‘chromosome’ and ‘membrane’ was 
identified in phases II and IV, respectively. ‘Protein binding’ 
was enriched at all four phases for Molecular Function. 
Furthermore, ‘nucleic acid binding’ and ‘hydrolase activity’ 
were enriched at phase II and III, while ‘ion binding’ was 
enriched at phase III and IV.

Pathway enrichment analysis of hub genes. As presented in 
Table II, a total of 10 notably enriched pathways were identi-
fied at phase I, of which five pathways were associated with 
virus infections including, ‘influenza A’, ‘tuberculosis’, ‘herpes 
simplex infection’, ‘viral carcinogenesis’ and ‘Epstein‑Barr 
virus infection’, and additional pathways involved in the ‘cell 
cycle’, ‘oocyte meiosis’ and ‘progesterone‑mediated oocyte 
maturation’. Furthermore, the chemokine signaling pathway 
was also identified in phase I. The RIG‑I‑like receptor and 
Toll‑like receptor signaling pathways were identified in 
phase II, and are associated with pattern‑recognition recep-
tors  (91). In addition, several pathways, including ‘focal 
adhesion’, ‘Rap1 signaling pathway’, ‘Ras signaling pathway’, 
‘PI3K‑Akt signaling pathway’ and ‘Proteoglycans in cancer’ 
were associated with invasion and metastasis (92‑96). The 
two common cancer‑associated signaling pathways ‘Pathways 
in cancer’ and ‘Proteoglycans in cancer’, were enriched in 
phase  III, while 70 pathways were significant enriched at 
phase IV (P<0.05). Apart from the common cancer‑associated 
signaling pathways and virus infection pathways at phase IV, 
the ‘IL‑17 signaling pathway’, ‘VEGF signaling pathway’ and 
‘endocrine resistance’ also were also demonstrated to be asso-
ciated with CC progression. Furthermore, the ‘AGE‑RAGE 

Table I. Continued.

Phase	 Gene	 Regulation	 Counts	 LogFC	 P‑value

	 CXCL11	 +	 2	 1.69	 0.02
	 COMP	 +	 2	 1.62	 0.01
	 MAPK12	 +	 2	 1.38	 <0.01

+, upregulated; ‑, downregulated.
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signaling pathway in diabetic complications’ was also identi-
fied at phases II‑IV.

Pathway crosstalk analysis. The pathway crosstalk analysis 
results are presented in Fig. S1. A total of two major modules 
were identified in phase I, one of which was predominantly 
associated with inflammatory responses to viral infections, 
such as the NOD‑like receptor signaling pathway and the 
chemokine signaling pathway, while the other module was 
associated with cycle regulation of oocytes, including cell 
cycle, progesterone‑mediated oocyte maturation and oocyte 
meiosis (Fig. S1A). Similarly, the pathways were grouped into 
two modules in phase II. One module consisted of immune 
responses (RIG‑I‑like receptor and Toll‑like receptor signaling 
pathways, and NOD‑like receptor signaling pathway), which 
may trigger rapid activation of innate immunity by inducing 
the production of proinflammatory cytokines (97‑99). The 
other module was predominantly involved in the regulation 
of cell proliferation and invasion (Ras signaling pathway, 
PI3K‑Akt signaling pathway, Rap1 signaling pathway, focal 
adhesion and other cancer‑associated signaling pathways) 
(Fig. S1B). Notably, the two modules in phases I and II were 
not independent as they were demonstrated to connect with 
each other via several signaling pathways. All pathways 
formed a cluster and common cancer‑associated signaling 
pathways were indicated to play a critical role in phase III 
(Fig.  S1C), while the connection between the pathways 
became highly complex in phase IV (Fig. S1D). The possible 
molecular mechanisms, such as inflammation caused by virus 
infections, pathways associated with cell invasion, IL‑17 and 
VEGF signaling pathways, and endocrine resistance, are 
associated with one another. These results further verified the 

complexity of CC. A comprehensive combination of pathway 
crosstalk analysis containing 47 nodes and 105 edges among 
the four phases is presented in Fig. 3A. By analyzing the nodes 
with degrees ≥5, a subnetwork containing 11 key pathways 
was extracted (Fig. 3B). It indicates that the MAPK signaling 
pathway (degree=33), PI3K‑Akt signaling pathway (degree=21) 
and focal adhesion (degree=15), which are ranked as the top 
three nodes and most interactive, may play critical roles in the 
progression of CC.

PPI network analysis. A PPI network containing 51 nodes and 
78 edges was constructed (Fig. 4A) by downloading the hub 
genes into the PINA database. Based on the description of a 
previous study (59), which defined the main nodes as nodes 
with degree >5, 14 key genes were identified from the PPI 
network (Fig. 4B). CDK1, FN1 and ITGB1 rank first, second 
and third, respectively, as the top three‑degree levels (16, 12 
and 8, respectively). STAT1 was the only gene demonstrated to 
be involved at all four phases. Furthermore, MMP9 presented 
self‑regulating functions and was demonstrated to co‑express 
with FN1 and ITGB1.

Comprehensive gene‑pathway analysis. After mapping the key 
genes onto the key pathways using the KEGG and BioCarta 
databases, a potential gene‑pathway flowchart, including eight 
key pathways and six key genes was constructed (Fig. 5). 
The results demonstrated the following: For phase I, CDK1 
and CCNB1 participated in the regulation of the cell cycle, 
while CDK1 was also involved in viral carcinogenesis; for 
phases  II‑IV, ‘pathways in cancer,’ ‘focal adhesion’ and 
‘PI3K‑Akt signaling pathway’ were ranked the top three path-
ways according to the number of genes involved; FN1, ITGB1 

Figure 2. Gene ontology enrichment analysis of hub genes for phase I, II, III and IV. The number in each phase represents the gene count.
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Table II. Pathway enrichment analysis for phases I‑IV.

Phase	 Pathway	 FDR	 Involved genes

Phase I	 Cell cycle	 <0.001	 CDK1, TTK, CCNA2, BUB1, CCNB1, BUB1B
	 Progesterone‑mediated oocyte maturation	 0.002	 CDK1, CCNA2, BUB1, CCNB1
	 Chemokine signaling pathway	 0.006	 RHOA, CXCL10, STAT1, GNG2
	 Oocyte meiosis	 0.018	 CDK1, BUB1, CCNB1
	 NOD‑like receptor signaling pathway	 0.036	 RHOA, GBP1, STAT1
	 Influenza A	 0.036	 HLA‑DPA1, CXCL10, STAT1
	 Tuberculosis	 0.037	 RHOA, HLA‑DPA1, STAT1
	 Herpes simplex infection	 0.038	 CDK1, HLA‑DPA1, STAT1
	 Viral carcinogenesis	 0.044	 RHOA, CDK1, CCNA2
	 Epstein‑Barr virus infection	 0.044	 CDK1, HLA‑DPA1, CCNA2
Phase II	 Influenza A	 <0.001	 CCL2, OAS2, IRF7, RSAD2, CXCL10, 
			   STAT1
	 NOD‑like receptor signaling pathway	 <0.001	 GBP1, CCL2, OAS2, IRF7, STAT1
	 Herpes simplex infection	 <0.001	 CCL2, OAS2, IRF7, IFIT1, STAT1
	 Pathways in cancer	 0.001	 HGF, IGF1, FN1, KIT, CXCL12, STAT1
	 Hepatitis C	 0.001	 OAS2, IRF7, IFIT1, STAT1
	 Cytokine‑cytokine receptor interaction	 0.001	 HGF, CCL2, KIT, CXCL10, CXCL12
	 RIG‑I‑like receptor signaling pathway	 0.003	 IRF7, ISG15, CXCL10
	 Chemokine signaling pathway	 0.003	 CCL2, CXCL10, CXCL12, STAT1
	 Genes encoding secreted soluble factors	 0.003	 HGF, CCL2, IGF1, CXCL10, CXCL12
	 Proteoglycans in cancer	 0.004	 HGF, IGF1, FN1, DCN
	 AGE‑RAGE signaling pathway in diabetic	 0.005	 CCL2, FN1, STAT1
	 complications		
	 Toll‑like receptor signaling pathway	 0.006	 IRF7, CXCL10, STAT1
	 Ensemble of genes encoding extracellular matrix 	 0.008	 HGF, CCL2, IGF1, FN1, DCN, CXCL10, 
	 and extracellular matrix‑associated proteins		  CXCL12
	 Measles	 0.009	 OAS2, IRF7, STAT1
	 PI3K‑Akt signaling pathway	 0.015	 HGF, IGF1, FN1, KIT
	 Focal adhesion	 0.024	 HGF, IGF1, FN1
	 Rap1 signaling pathway	 0.026	 HGF, IGF1, KIT
	 Ras signaling pathway	 0.029	 HGF, IGF1, KIT
	 Ensemble of genes encoding ECM‑associated	 0.032	 HGF, CCL2, IGF1, CXCL10, CXCL12
	 proteins including ECM‑affilaited proteins, ECM		
	 regulators and secreted factors		
Phase III	 Pathways in cancer	 0.002	 BIRC5, CCND1, MMP9, AR, STAT1, GNG2, 
			   VEGFA
	 Bladder cancer	 0.006	 CCND1, MMP9, VEGFA
	 Hepatitis B	 0.011	 BIRC5, CCND1, MMP9, STAT1
	 Pancreatic cancer	 0.012	 CCND1, STAT1, VEGFA
	 Proteoglycans in cancer	 0.025	 PLAUR, CCND1, MMP9, VEGFA
	 AGE‑RAGE signaling pathway in diabetic	 0.027	 CCND1, STAT1, VEGFA
	 complications		
Phase IV	 Chemokine signaling pathway	 <0.001	 GNG12, CXCL11, CXCL5, PIK3CA, CXCR4, 
			   PTK2, STAT1, CXCL8, GNG2
	 Pathways in cancer	 <0.001	 FN1, LPAR5, GNG12, ITGB1, PIK3CA, 
			   CXCR4, FOS, PTK2, STAT1, CXCL8, GNG2
	 Fluid shear stress and atherosclerosis	 <0.001	 GSTM1, NQO1, MAPK12, PIK3CA, FOS, 
			   EDN1, PTK2
	 Signaling of Hepatocyte Growth Factor Receptor	 <0.001	 ITGA1, ITGB1, PIK3CA, FOS, PTK2
	 PI3K‑Akt signaling pathway	 <0.001	 ITGA1, FN1, COMP, LPAR5, GNG12, ITGB1, 
			   PIK3CA, PTK2, GNG2
	 B Cell Survival Pathway	 <0.001	 ITGA1, ITGB1, PIK3CA, FOS
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Table II. Continued.

Phase	 Pathway	 FDR	 Involved genes

	 AGE‑RAGE signaling pathway in diabetic	 <0.001	 MAPK12, FN1, PIK3CA, EDN1, STAT1, 
	 complications		  CXCL8
	 Toll‑like receptor signaling pathway	 <0.001	 MAPK12, CXCL11, PIK3CA, FOS, STAT1, 
			   CXCL8
	 Aspirin Blocks Signaling Pathway Involved in	 <0.001	 PLA2G4A, ITGA1, ITGB1, PTK2
	 Platelet Activation		
	 Erk and PI‑3 Kinase Are Necessary for Collagen	 <0.001	 ITGA1, ITGB1, PIK3CA, PTK2
	 Binding in Corneal Epithelia		
	 Pertussis	 <0.001	 MAPK12, CXCL5, ITGB1, FOS, CXCL8
	 Focal adhesion	 <0.001	 ITGA1, FN1, COMP, ITGB1, PIK3CA, PTK2
	 TNF signaling pathway	 <0.001	 MAPK12, CXCL5, PIK3CA, FOS, EDN1
	 Leukocyte transendothelial migration	 <0.001	 MAPK12, ITGB1, PIK3CA, CXCR4, PTK2
	 Regulation of actin cytoskeleton	 <0.001	 ITGA1, FN1, GNG12, TGB1, PIK3CA, PTK2
	 VEGF signaling pathway	 <0.001	 PLA2G4A, MAPK12, PIK3CA, PTK2
	 PTEN dependent cell cycle arrest and apoptosis	 <0.001	 ITGB1, PIK3CA, PTK2
	 uCalpain and friends in Cell spread	 <0.001	 ITGA1, ITGB1, PTK2
	 Trefoil Factors Initiate Mucosal Healing	 <0.001	 ITGB1, PIK3CA, PTK2
	 Prolactin signaling pathway	 <0.001	 MAPK12, PIK3CA, FOS, STAT1
	 Leishmaniasis	 <0.001	 MAPK12, ITGB1, FOS, STAT1
	 Inhibition of Cellular Proliferation by Gleevec	 <0.001	 PIK3CA, FOS, STAT1
	 CXCR4 Signaling Pathway	 <0.001	 PIK3CA, CXCR4, PTK2
	 TPO Signaling Pathway	 <0.001	 PIK3CA, FOS, STAT1
	 Bacterial invasion of epithelial cells	 <0.001	 FN1, ITGB1, PIK3CA, PTK2
	 mCalpain and friends in Cell motility	 <0.001	 ITGA1, ITGB1, PTK2
	 ECM‑receptor interaction	 <0.001	 ITGA1, FN1, COMP, ITGB1
	 Small cell lung cancer	 <0.001	 FN1, ITGB1, PIK3CA, PTK2
	 EGF Signaling Pathway	 <0.001	 PIK3CA, FOS, STAT1
	 IL‑17 signaling pathway	 <0.001	 MAPK12, CXCL5, FOS, CXCL8
	 PDGF Signaling Pathway	 <0.001	 PIK3CA, FOS, STAT1
	 Amoebiasis	 <0.001	 FN1, PIK3CA, PTK2, CXCL8
	 Endocrine resistance	 <0.001	 MAPK12, PIK3CA, FOS, PTK2
	 Proteoglycans in cancer	 <0.001	 MAPK12, FN1, ITGB1, PIK3CA, PTK2
	 Chagas disease (American trypanosomiasis)	 <0.001	 MAPK12, PIK3CA, FOS, CXCL8
	 Agrin in Postsynaptic Differentiation	 <0.001	 ITGA1, ITGB1, PTK2
	 Integrin Signaling Pathway	 <0.001	 ITGA1, ITGB1, PTK2
	 Fc Epsilon Receptor I Signaling in Mast Cells	 <0.001	 PLA2G4A, PIK3CA, FOS
	 Cholinergic synapse	 <0.001	 GNG12, PIK3CA, FOS, GNG2
	 Platelet activation	 0.001	 PLA2G4A, MAPK12, ITGB1, PIK3CA
	 Osteoclast differentiation	 0.001	 MAPK12, PIK3CA, FOS, STAT1
	 Dopaminergic synapse	 0.001	 MAPK12, GNG12, FOS, GNG2
	 Hepatitis C	 0.001	 MAPK12, PIK3CA, STAT1, CXCL8
	 Cytokine‑cytokine receptor interaction	 0.001	 CXCL11, CXCL5, CXCR4, ACKR3, CXCL8
	 Hepatitis B	 0.001	 PIK3CA, FOS, STAT1, CXCL8
	 Phospholipase D signaling pathway	 0.001	 PLA2G4A, LPAR5, PIK3CA, CXCL8
	 Shigellosis	 0.001	 MAPK12, ITGB1, CXCL8
	 Fc epsilon RI signaling pathway	 0.002	 PLA2G4A, MAPK12, PIK3CA
	 Influenza A	 0.002	 MAPK12, PIK3CA, STAT1, CXCL8
	 Axon guidance	 0.002	 ITGB1, PIK3CA, CXCR4, PTK2
	 Integrin Signaling Pathway	 0.002	 ITGA1, PIK3CA, PTK2
	 Salmonella infection	 0.003	 MAPK12, FOS, CXCL8
	 MAPKinase Signaling Pathway	 0.003	 MAPK12, FOS, STAT1
	 Rap1 signaling pathway	 0.003	 MAPK12, LPAR5, ITGB1, PIK3CA
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Table II. Continued.

Phase	 Pathway	 FDR	 Involved genes

	 Rheumatoid arthritis	 0.003	 CXCL5, FOS, CXCL8
	 Th1 and Th2 cell differentiation	 0.003	 MAPK12, FOS, STAT1
	 Circadian entrainment	 0.003	 GNG12, FOS, GNG2
	 Inflammatory mediator regulation of TRP	 0.003	 PLA2G4A, MAPK12, PIK3CA
	 channels		
	 Ras signaling pathway	 0.003	 PLA2G4A, GNG12, PIK3CA, GNG2
	 Choline metabolism in cancer	 0.003	 PLA2G4A, PIK3CA, FOS
	 Retrograde endocannabinoid signaling	 0.003	 MAPK12,GNG12,GNG2
	 T cell receptor signaling pathway	 0.004	 MAPK12, PIK3CA, FOS
	 Th17 cell differentiation	 0.004	 MAPK12, FOS, STAT1
	 Serotonergic synapse	 0.004	 PLA2G4A, GNG12, GNG2
	 Toxoplasmosis	 0.004	 MAPK12, ITGB1, STAT1
	 Glutamatergic synapse	 0.004	 PLA2G4A, GNG12, GNG2
	 MAPK signaling pathway	 0.004	 PLA2G4A, MAPK12, GNG12, FOS
	 Sphingolipid signaling pathway	 0.005	 S1PR5, MAPK12, PIK3CA
	 NOD‑like receptor signaling pathway	 0.012	 MAPK12, STAT1, CXCL8
	 cAMP signaling pathway	 0.018	 HCAR3, PIK3CA, FOS

FDR, false discovery rate.

Figure 3. Comprehensive pathways crosstalk analysis. (A) Combination of pathways crosstalk analysis for the four phases and the (B) subnetwork with nodal 
degree ≥5. Green, phase I; yellow, phase II; orange, phase III; red, phase IV. The arrow represents the up/downstream associations between the pathways. 
MAPK signaling pathway (degree=33), PI3K‑Akt signaling pathway (degree=21) and Focal adhesion (degree=15) rank as the top three pathways, whereby the 
majority of other pathways transfer information with them.
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and MMP9 may be associated with metastasis of tumor cells, 
and STAT1 participated in ‘pathways in cancer’ and ‘Toll‑like 
receptor signaling pathway’, which functioned at a phase IV.

Co‑expression network and survival analysis for key genes. 
By mining the data from LinkedOmics, the results of 
co‑expression demonstrated that CDK1 had a significantly 
positive correlation with CCNB1 (P<0.0001), but negative 
correlation with FN1 (P=0.003) and MMP9 (P=0.001), respec-
tively (Fig. 6). CCNB1 demonstrated a significantly negative 
correlation with ITGB1 (P=0.047); however, FN1, ITGB1 and 
MMP9 indicated a significantly positive correlation between 
each other (FN1 and ITGB1, P<0.001; FN1 and MMP9, 

P<0.0001; ITGB1 and MMP9, P=0.023). STAT1 was signifi-
cantly positively correlated with MMP9 (P<0.0001).

Survival analysis indicated that patients with higher FN1 
and ITGB1 expression levels had a significantly worse OS 
time (FN1, P=0.00080; ITGB1, P=0.00005; Fig. 7). However, 
CDK1, CCNB1, MMP9 and STAT1 were not demonstrated to 
have a significant effect on OS.

Discussion

To date, the occurrence and development of CC is hypothesized 
to be linked with persistent HPV infection (100); however, the 
specific molecular mechanisms require further investigation. 

Figure 4. Protein‑protein interaction network analysis. (A) Protein‑protein interaction network downloaded from The Protein Interaction Network Analysis 
platform and (B) subnetwork with nodal degree ≥5. Green, phase I; blue, phase II; yellow, phase II; red, phase IV. The nodal size represents the degree of each 
node. CDK1 (degree=16), FN1 (degree=12) and ITGB1 (degree=8) rank as the top three proteins. MMP9 was self‑regulated and co‑expressed with FN1 and 
ITGB1.

Figure 5. Gene‑pathway flowchart for the key genes and the pathways in phases I‑IV. Circle, gene; rectangle, pathway. CDK1 and CCNB1 regulate the cell cycle 
and they are activated in phase I. For phases II‑IV, ‘pathways in cancer’, ‘focal adhesion’ and ‘PI3K‑Akt signaling pathway’ rank as the top three pathways 
according to the number of genes involved.
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In addition, although a number of studies are examining the 
molecular mechanisms of CC (101‑104), the detailed patho-
logical process remains unclear.

The results of the present study indicated that CDK1 had the 
highest degree, and participated in the cell cycle with CCNB1 
and viral carcinogenesis in phase I. CDK1 is one of the major 
cell cycle regulatory proteins and operates at the center of the 
cell cycle regulatory network (105). It regulates the G‑S phase 
transition and initiates DNA replication (106). Furthermore, 
as a core molecule at the M phase checkpoint, CDK1 plays 
a role in the regulation of G2 phase, at M phase in the cell 
cycle (107). The HPV infection pathway is regulated within 
the viral carcinogenesis pathway (19). E6 proteins inactivate 
p53 by binding (108), while p53 negatively regulates CDK1 
transcription under normal physiological conditions (109). In 
addition, the activation of cyclin B1‑CDK1 is the key event 
that initiates the start of mitosis (110). Centrosome separa-
tion can be regulated by CDK1 (111), and cyclin B1‑CDK1 
remains activated following centrosome separation  (110). 
Hence, overexpression of CDK1 can cause dysfunction in cell 
cycle progression, failure of normal proliferation and differen-
tiation, and thereby lead to malignant proliferation of cancer 
cells and the formation of CC. CCNB1 is a notable member of 
the cyclin family, a key initiator and a stringent quality control 
step of mitosis (112). It also plays a key role in the regula-
tion of CDK1, and its phosphorylated substrates can promote 
the transition of the cell cycle from G2 to mitosis (113,114). 
Amplification of the HPV genome depends on prolongation of 
the G2 phase in the cell cycle (115). CCNB1 is a downstream 
target of STAT3, which is a key gene that regulates the prolif-
eration and differentiation of CC cells (116). In cells with 
inactivated STAT3, CCNB1 expression is downregulated and 
amplification of the HPV genome is also decreased, resulting 
in decreased activity of CC cells (116). As the results of the 
present study demonstrated that CDK1 and CCNB1 occurred 
in phase I and functioned as regulators of proliferation and 

differentiation, they may be potential promoters of CIN and 
CC.

In the process of tumor invasion and metastasis, cancer cells 
can bind to ligands of the extracellular matrix (ECM) via inte-
grins and degrade the basement membrane (BM) by secreting 
proteases via the pathways of focal adhesion and the PI3K‑Akt 
signaling pathway (117). This degradation is also the prereq-
uisite for stromal infiltration and cancer cell migration (118). 
ITGB1 belongs to the integrin family and FN1 is the ligand. 
The binding of ITGB1 and FN1 induces the phosphorylation 
of tyrosine and directly affects cytoskeleton reconstruction 
and signal transduction activities of the Ras‑MAPK signaling 
pathway via the RAP1 signaling pathway, which initiates 
the expression of MMP genes (119). MMPs are a family of 
calcium and zinc‑dependent proteases that degrade a variety 
of components of the ECM (120). Collagen type IV is the main 
scaffold in the BM of the ECM and also the main substrate of 
MMP9 (121). MMP9 can decompose the nestin in the BM to 
destroy the cells integrity and promote the invasion and metas-
tasis of cancer cells (122). MMP9 expression in HPV‑positive 
patients with CC is higher than in HPV‑negative patients (123). 
Cardeal et al  (124) reported that MMP9 is upregulated in 
human keratinocytes expressing the HPV16 E7 protein. This 
may be due to TIMP2, an inhibitor of MMP9, which could 
be downregulated by HPV16 E7. It was also demonstrated 
that HPV can directly regulate the activity of MMP9 in lung 
cancer cells (125). There may be an association between HPV 
infection and the MMP family, which may be beneficial in the 
diagnosis of cervical precancerous lesions and CC as MMP9 
may be considered as a novel biomarker. However, the specific 
molecular mechanisms require further investigation. As FN1 
and ITGB1 were targets of miR‑9‑3p (126) and FN1 promoted 
migration and invasion by upregulating MMP9 in cancer (127), 
it is not surprising that these three genes are co‑expressed as 
a reaction triplet. Furthermore, since higher levels of FN1 
and ITGB1 are significantly associated with lower OS rate, 
these two genes may be developed as novel prognostic factors 
for CC.

STAT1, the only gene that participates in all four phases, 
in the present study, is involved in the cancer pathway 
at phases II, III and IV. It has been reported that STAT1 is 
upregulated in both CIN1 and CC (128), and the results of the 
present study that STAT1 is upregulated in phase I, III and 
IV confirmed this finding. A previous study demonstrated that 
activated STAT1 plays a tumor suppressive role in breast cancer 
cells (129). Nevertheless, STAT1 also exerts tumor promoter 
effects under specific conditions  (130). In some malignant 
diseases, including breast and lung cancers, STAT1 can act as 
an oncoprotein or a tumor suppressor of the same cell type 
based on the specific genetic background (130). In CC, STAT1 
may have a protective effect in the early stages of HPV infec-
tion but may act as a proto‑oncogene during the invasive phase 
of the disease (128). STAT1 can promote cancer cell death by 
activating p53 expression, and it plays a role in immunosur-
veillance, and the inhibition of angiogenesis and metastasis in 
cancer cells (130); however, STAT1 can also promote tumor 
invasion and metastasis in chronic inflammation (131). The 
effect of STAT1 in CC still remains unclear; therefore, further 
verification is required as it may be a key target for the treat-
ment of CC.

Figure 6. Co‑expression analyses for the key genes. Positive correlation was 
detected between CDK1 and CCNB1; between FN1 and ITGB1, and MMP9, 
and between STAT1 and MMP9. Color in each grid represents the correlation 
coefficient between two genes. The values in the color legend represent the 
correlation coefficient. *P<0.05, **P<0.01, ***P<0.001.
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The current study presented several limitations. First, as 
this was an in‑silico study, the identification of DEGs may 
change with additional data, thus the results of subsequent 
analyses may change accordingly. Secondly, some genes were 
excluded to decrease the false‑positive rate; however, these 

genes may also have a vital effect on CC. Thirdly, although 
several genes associated with HPV infection (TP53TG1, 
RAC1, PAK2 and LTBP2) were identified in DEGs, HPV 
infection was not observed in the pathway analyses. This may 
be due to the fact that an insufficient amount of hub genes were 

Figure 7. Survival analysis for the key genes. (A) FN1, (B) ITGB1, (C) CDK1 and (D) CCNB1, (E) MMP9 and (F) STAT1. ITGB1 and FN1 have significant 
effect on overall survival.
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identified, or the genes had a low or moderate effect on the 
HPV infection pathway.

In conclusion, the present study revealed that CDK1, 
CCNB1, ITGB1, FN1, MMP9 and STAT1 played different roles 
in the progression of CC through different signaling pathways. 
CDK1 and CCNB1 served as regulators of proliferation and 
differentiation via regulation of the cell cycle and viral tumori-
genesis, and initiated CIN and CC, whereas FN1, ITGB1 and 
MMP9 were co‑expressed as a reaction triplet to trigger 
metastasis via cancer pathways, PI3K‑Akt signaling pathway 
and focal adhesion. FN1 and ITGB1 may be novel prognostic 
factors for CC. STAT1 may have a protective effect in the early 
stage of HPV infection, but may also act as a proto‑oncogene 
during the invasive stage; however, the specific molecular 
mechanisms require further investigation.
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