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ABSTRACT

Recent progress in resting-state neuroimaging demonstrates that the brain exhibits highly
individualized patterns of functional connectivity—a “connectotype.” How these
individualized patterns may be constrained by environment and genetics is unknown. Here
we ask whether the connectotype is familial and heritable. Using a novel approach to
estimate familiality via a machine-learning framework, we analyzed resting-state fMRI
scans from two well-characterized samples of child and adult siblings. First we show that
individual connectotypes were reliably identified even several years after the initial scanning
timepoint. Familial relationships between participants, such as siblings versus those who are
unrelated, were also accurately characterized. The connectotype demonstrated substantial
heritability driven by high-order systems including the fronto-parietal, dorsal attention,
ventral attention, cingulo-opercular, and default systems. This work suggests that shared
genetics and environment contribute toward producing complex, individualized patterns of
distributed brain activity, rather than constraining local aspects of function. These insights
offer new strategies for characterizing individual aberrations in brain function and evaluating
heritability of brain networks.

AUTHOR SUMMARY

By using machine learning and two independent datasets, this report shows that the brain’s
individualized functional connectome or connectotype is familial and heritable. First we
expand previous findings showing that by using a model-based approach to characterize
functional connectivity, we can reliably identify and track individual brain signatures—a
functional “fingerprint” or “connectotype” for the human brain—in both children and adults.
Such signatures can also be used to characterize familial and heritable patterns of brain
connectivity, even using limited data. Most heritable systems include the fronto-parietal,
dorsal attention, ventral attention, cingulo-opercular, and default systems. Our proposed
approach offers new strategies for characterizing normative development as well as altered
patterns of brain connectivity and assists in characterizing the associations between genetic
and epigenetic factors with brain function.
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Heritability of the human connectome

INTRODUCTION

One of the most promising methodologies for identifying typical and atypical features of brain
function is resting-state functional magnetic resonance imaging (rs-fMRI). Rs-fMRI measures
spontaneously correlated activity, termed functional connectivity (FC), between pairs of re-
gions across the brain (i.e., the functional connectome). Common versus distinct aspects ofConnectome:

A map of connections of a given
system. An example is the structural
or functional connections among
different brain areas.

the brain’s functional connectome between individuals is an emerging focus of current re-
search efforts (Van Essen et al., 2013). Thus, investigations that probe how variance in the
human connectome is shared among relatives (i.e., heritability, which implies shared genet-
ics, or familiality, which we define here as similarities due to shared genetics and/or shared
environment) are critical for understanding how genetics and environment collectively shape
common and unique patterns of brain organization. Furthermore, current trends in neuropsy-
chiatric imaging research emphasize the importance of identifying individualized patterns of
brain FC (Laumann et al., 2015; Miranda-Dominguez, Mills, Carpenter, et al., 2014) that may
relate to complex genetic and environmental factors.

In a recent report we used rs-fMRI to characterize functional brain organization in individu-
als. In this work the activity in each brain region was modeled as the weighed combination of
the remaining brain areas—a so-called connectotype, or functional fingerprint of an individ-
ual (Miranda-Dominguez, Mills, Carpenter, et al., 2014). The connectotype corresponds to a
personalized connectivity matrix composed of the unique functional relationships across all
brain regions. Similar to other work using fMRI (Finn et al., 2015; Poldrack et al., 2013), our
approach accurately classifies the same individual at a later date. Further, this model is
effective even with short acquisition times (Laumann et al., 2015; Miranda-Dominguez, Mills,
Carpenter, et al., 2014). The approach is therefore well suited to study the uniqueness,
familiality, and heritability of the functional connectome.

This prior work revealed meaningful shared variance between individual unrelated
adults throughout the brain’s multiple functional systems, indicating that functional brain
organization is largely similar among healthy adults. In contrast, the capacity to classify an
individual adult was driven by a specific set of connections in higher order heteromodal as-Heteromodal:

Highly interconnected brain areas
located in fronto-parietal and
temporal cortex involved in
processing and integration of
sensory inputs.

sociation areas in frontal and parietal cortices (Miranda-Dominguez, Mills, Carpenter, et al.,
2014). These regions are phylogenetically late-developing regions that are disproportionately

Phylogenetically:
The relationship among heritable
traits across time used to
characterize evolutionary
relationships among species.

enlarged in humans relative to other primates (Buckner & Krienen, 2013; Mueller et al., 2013),
suggesting that functional circuits formed by such regions may have a dominant role in
characterizing individual differences (Mueller et al., 2013).

The current study extends that prior work by examining (a) stability of the connectotype
during development and (b) similarities of the connectotype between siblings and twins. Im-
portantly, in the era of scientific rigor and reproducibility (Collins & Tabak, 2014), we maximize
our understanding of the generalizability of the current findings, models, and data, by taking
advantage of a secondary validation dataset.

Thus far, few studies have examined the familiality or heritability of the connectome. Struc-
tural MRI findings in adults show strong evidence of genetic and environmental influences on
structural properties of the brain such as volume, shape, and white matter integrity (Blokland,
de Zubicaray, McMahon, & Wright, 2012). Interestingly, and pertinent to our work here, this
genetic influence seems to be modulated by age (Batouli, Trollor, Wen, & Sachdev, 2014;
Schmitt et al., 2014), underscoring the importance of developmental timing.

There is mixed evidence for heritability in evoked fMRI responses (Moodie, Wisner, &
MacDonald, 2014) and in rs-fMRI (Glahn et al., 2010; Korgaonkar, Ram, Williams, Gatt,
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& Grieve, 2014). Most findings imply that FC of the whole brain is heritable, but some
data suggest heritability estimates may depend on how the rs-fMRI time courses were filtered
(Fornito et al., 2011). Studies also suggest specific global network properties (Sinclair et al.,
2015; van den Heuvel et al., 2013) and connectivity properties of specific brain systems (Fu
et al., 2015; Yang et al., 2016) show some form of heritability. With that said, the heritability
of complex, distributed activity in large samples and with strict control of structural confounds
has not been evaluated across a fully parcellated and interconnected schema of brain con-
nectivity. Furthermore, prior methods of testing heritability (Visscher & Goddard, 2015) have
generally involved univariate or bivariate approaches and have not tested heritability estimates
using independent data. By evaluating similarities in the connectotype between familial and
nonfamilial pairs of subjects, this report builds upon prior work and provides an approach to
examine familial and heritable aspects of the functional connectome.

We first examine the stability of connectotypes in youth over a 1- to 2-year span to test
whether individual aspects of functional brain architecture persist despite typical developmen-
tal changes. We then use a machine-learning approach to test familiality (or similarities in theMachine learning:

A field of study that aims to
extract hidden patterns or to
make predictions based on
existing observations of a
given system.

connectome due to shared genetics and/or shared environment) by examining whether con-
nectotyping can distinguish sibling pairs (including twins) from unrelated pairs of participants,
first in children, then in adults, and last, across datasets. To control for the possibility that our
results reflect underlying anatomical variation, we further test the same types of models using
anatomical features. Finally, we evaluate the evidence for heritability (i.e., shared genetics) of
the connectotype using more traditional statistical methods.

RESULTS

Comparing the Consistency of the Connectotype Within Individuals, Between Siblings, and
Across Unrelated Pairs

The first goals of this study were (a) to test whether rs-fMRI scans demonstrate unique signa-
tures that persist over development, and (b) to test whether these individualized signatures are
more similar between siblings versus unrelated participants. We used the connectotype as a
model for each individual (Miranda-Dominguez, Mills, Carpenter, et al., 2014), composed of
the coefficients of a multiple linear regression between a given region of interest (ROI) time
course and all other ROIs. This procedure forms a matrix of the functional relationships be-
tween each pair of ROIs in the whole-brain network. Unlike associative measures often used
in conventional rs-fMRI analyses (Fox, Zhang, Snyder, & Raichle, 2009), the connectotype
coefficients signify the unique and directed contributions that each ROI makes toward activ-
ity in each other ROI. Ultimately, this method allows each ROI time course to be predicted
as the weighted sum of all the others. Previously we showed that by looking at the correla-
tion coefficient between predicted and observed time courses we can determine whether the
scans used for modeling and prediction came from the same individual, even if the scans were
acquired 2 weeks later (Miranda-Dominguez, Mills, Carpenter, et al., 2014). Using a longitu-
dinal sample, here we extended this time frame to 1–2 years, and also asked whether siblings
had more similar connectotype-based predictions versus unrelated participants. This longitu-
dinal sample of youths (N = 188 scans) consists of 159 participants, where 131 participants
have 1 scan, 27 participants have 2 scans, and 1 participant has 3 scans, totaling 188 unique
scans. The sample has 16 unique sibling pairs scanned multiple times (Supplementary
Table S1, Miranda-Dominguez et al., 2018), yielding a total of 46 sibling scan-pairs. (Note:
Because the simple Pearson’s correlation is the most established and widely used measure of
functional connectivity, we also repeat the same comparisons for this section and all the other
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sections of the manuscript in the Supplementary Information [Miranda-Dominguez et al.,
2018] using Pearson correlation matrices for functional connectivity.)

From here, we compared each unique scan-pair (self-inclusive) via connectotyping
(Miranda-Dominguez, Mills, Carpenter, et al., 2014; see Figure 1, and Figure 1-Figure Sup-
plement 1 in the Supplementary Information, Miranda-Dominguez et al., 2018). To do this,
we used time courses (after removing autocorrelations) from each scan to calculate a connec-
totype matrix of size nROI × nROI (i.e., to calculate a model), where nROI is the number of
ROIs. This model was used to predict the time courses from each available scan. Predictions
were calculated by multiplying the connectotype matrix obtained from each scan by the time
courses from each scan (ROI × number of available frames). When a scan was used to predict
its own time courses (yellow histogram in Figure 1), the given scan’s time courses were parti-
tioned into two independent samples, where one sample was used for connectotyping and the
second one for prediction (i.e., we always used fresh data). Given the 188 scans, the total num-
ber of comparisons (N = 188 × 188 = 35,344 predictions) consists of the following (Figure 1):

I ) Same individual, predicting data in same scan session, N = 188;
II ) Same individual, predicting data in a different scan (1 or 2 years later), N = 60;

III ) Individual predicting a sibling, N = 46;
IV ) Individual predicting an unrelated individual, N = 35,050.

Figure 1. Segregating groups of paired data (same scan, same participant, siblings, and unrelated).
(A) A subsection of the 188 × 188 scan-pairs being compared; the relationship between the subjects
each scan comes from is color coded as indicated in the legend at the bottom. (B) The distributions
of average correlation coefficients between the predicted and observed time courses across all the
paired comparisons, and (bottom) the differences in age between each paired data.
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For each comparison in the four groups, we calculated the correlation coefficient between
predicted and observed time courses, ending up with as many correlations as ROIs for each
scan-pair being compared. Figure 2 shows the data-driven ROI set proposed by Gordon et al.
(2014). These correlations (R) were then averaged providing one mean correlation value for
each paired comparison. The distributions across all pairs are shown in Figure 1B. The data
show that connectotyping uniquely identified the same individuals predicting fresh data from
the same scan session (Group I, average R > 0.8). The data also show that connectotyping can
predict the same individual in a different scan session, even when the data are acquired up
to 2 years apart (Group II, average R = 0.58). Interestingly, given this sample we find no evi-
dence of any association between the years between scan sessions and predictability (Figure 1-
Figure Supplement 2, Miranda-Dominguez et al., 2018). The correlation coefficient between
the average similarities between scans and time between scans was R = 0.0079 (p = 0.95) for
Group II (Figure 1-Figure Supplement 2, Miranda-Dominguez et al., 2018).

Furthermore, predictions among siblings (Group III, average R = 0.44) compared with
an individual predicting an unrelated participant (Group IV, average R = 0.42) are statisti-
cally different (t test comparing the distributions of predictions between siblings versus predic-
tions among unrelated participants after applying Fisher Z transformation of each correlation
value, p = 2.56 × 10−4). To note, while five parcellation schemes were examined (Figure 1-Parcellation:

Grouping of different and
independent brain regions that
share a similar profile based on
functional or anatomical criteria.

Figure Supplement 3, Miranda-Dominguez et al., 2018)—Gordon (Gordon et al., 2014), HCP
(Glasser et al., 2016), Power (Power et al., 2011), Yeo (Yeo et al., 2011), and Markov (Markov
et al., 2014; Miranda-Dominguez, Mills, Grayson, 2014)—we ran all subsequent analyses

Figure 2. Gordon parcellation and ROIs per network. This cartoon shows the respective location
of each functional network on the brain’s surface as well as the number of ROIs per network,
as described in Gordon et al. (2014).
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using the Gordon parcellation (Figure 2). We did so because it slightly outperformed most of
the others in distinguishing siblings from unrelated groups (t test comparing the distributions
of predictions between siblings versus predictions among unrelated participants after applying
Fisher Z transformation of each correlation value: p values are 2.56× 10−4, 1.96× 10−4, 8.84×
10−4, 9.24 × 10−3, and 2.99 × 10−2, for Gordon, HCP, Power, Yeo, and Markov parcellations,
respectively; see Figure 1-Figure Supplement 3, Miranda-Dominguez et al., 2018), and also
because this parcellation schema, both delineates the full boundary of each brain region and
reports the belonging of each ROI into functional systems.

We should note that the lack of large effects between siblings versus unrelated participants
found above suggests that a more refined analysis is needed, where individual or subsets of
ROIs can drive effects as opposed to one ROI at a time. This approach may be a better test of
whether connectotyping is more similar between familial than nonfamilial pairs. In the next
section, we conduct such a test via multivariate statistical models and further explore which
ROIs may better differentiate siblings from unrelated pairs.

In summary, connectotyping captures individual functional brain signatures that persist
across developmental time spans (1–2 years). In addition, the connectotype is influenced by
family status.

Classification of Sibling Pairs in Youth

We next sought to determine what specific patterns of brain connectivity are shared in fam-
ilies, and how well sibling pairs can be distinguished (i.e., classified) from unrelated pairs
using multivariate statistics. Here we used longitudinal data coming from 16 unique siblingMultivariate statistics:

The usage of multiple features or
metrics to characterize a system.

pairs scanned multiple times, yielding a total of 46 sibling scan-pairs, and 35,050 unrelated
comparisons (Supplementary Table S1, Miranda-Dominguez et al., 2018). We approached this
analysis using support vector machine (SVM) and trained N = 1,000 SVM classifiers, randomly

Support vector machine:
A special case of machine learning
that maximizes separation between
labels or classes after transforming
the features using a given kernel.

selecting and reserving for each run three of the sibling scan-pairs for prediction (using the
remaining 43 for training), along with matched samples of randomly selected unrelated scan-
pairs. Classifiers were trained to detect whether the scan-pairs came from siblings or unrelated
individuals. In this analysis, the same siblings from one scanning timepoint could be included
in the training dataset and at another timepoint be used to test the prediction accuracy.

Features in the SVM were defined as the correlation coefficient between the observed and
the predicted time courses for each ROI. A subset comprising 100 of the Gordon ROIs were
selected as the features for classification by obtaining the features with the largest between-
group differences (siblings versus unrelated individuals), assessed via the Kolmogorov-Smirnov
test (see Supplementary Table S2, Miranda-Dominguez et al., 2018, for a list of all the ROIs
sorted according to their rank in differentiating siblings from unrelated participants). We found
that the classifiers had, on average, an out-of-sample accuracy of 99%, with a sensitivity of 97%Sensitivity:

Ratio of true positives after
comparing the predicted versus
the real outcome.

and a specificity of 100% (p < 10−6 for all, Figure 3A–C). The classification was driven by the

Specificity:
Ratio of true negatives after
comparing the predicted versus
the real outcome.

following functional networks: default, cingulo-opercular, ventral-attention, dorsal attention,
and fronto-parietal, (Figure 3D–E; Figure 3-Figure Supplement 1, Miranda-Dominguez et al.,
2018).

For further clarification of the findings, the 11 ROIs (out of 47) with no assignment
to a functional network that were among the top 100 ROIs (Supplementary Table S2,
Miranda-Dominguez et al., 2018) were also mapped into the appropriate communities
defined by Yeo et al. (2011) using a “winner-take-all” approach. These data are shown in
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Figure 3. Classifying siblings versus unrelated populations when other sibling pairs of the same
family are included in the training set (sample of youths). (A) The distributions of out-of-sample
accuracy (N = 1,000) when predicting siblings and unrelated participants (blue) versus the null
hypothesis (red), which was obtained by running the same classifiers (N = 1,000) with the same
features but randomizing the labels (i.e., sibling or unrelated). Each distribution highlights the per-
centiles 2.5 and 97.5 with a thin line. Thick lines are used to highlight the percentiles 25 and 75,
while the central markers are used to show the mean values. (B) The out-of-sample accuracies when
predicting only siblings. (C) The out-of-sample accuracies when predicting only unrelated partici-
pants. (D) The consensus’ ROIs per functional network (as defined by Gordon et al., 2014) used in
the classifier. (E) The location of such ROIs on the surface of the brain.

Supplementary Table S3 and Figure 3-Figure Supplement 2 (Miranda-Dominguez et al., 2018).
It can be seen that most of these 11 ROIs partially belong to multiple networks: default, limbic,
or fronto-parietal. Following a winner-take-all approach, three ROIs end up in the default and
seven in the limbic system, and one ROI remains unclassified.

To test whether the overall findings were driven by differences in terms of ROI size, we did
a Kolmogorov-Smirnov test to compare the ROI size (number of grayordinates) of the cortical
features used for classification versus the size of the excluded ROIs, being k = 0.1169, p =

0.3041, suggesting no evidence of differences in terms of ROI size between samples (see
Figure 3-Figure Supplement 3, Miranda-Dominguez et al., 2018).

To determine the robustness of this approach with regard to the number of features, we
repeated this analysis using the top 20, 40, . . . until including all the features in the training
set, finding no differences in classification accuracy when at least 60 features are included.
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(Figure 3-Figure Supplement 4A shows the corresponding results and Supplementary Table S2
lists the Gordon ROIs sorted according to their rank in differentiating siblings from unrelated
participants, including size and the functional network each ROI belongs to; see Miranda-
Dominguez et al., 2018.)

Interestingly, if the classifiers are trained using only ROIs within each functional network,
the dorsal and ventral attention, cingulo-opercular, fronto-parietal, and default mode networks
provide the highest accuracy (Figure 3-Figure Supplement 4B, Miranda-Dominguez et al.,
2018). Importantly, the familality of motion was also quantified to rule out shared family char-
acteristics of motion to the current data. Motion could not account for the current findings (see
Supplementary Information, Miranda-Dominguez et al., 2018). These data demonstrate that
shared patterns of brain FC, particularly in higher order heteromodal systems, can accurately
identify familial relationships between participants.

While these results suggest that familial brain connectivity patterns are generalizable to
some extent, we retested whether familial relationships could be classified more accurately
by applying the same methods in a larger sample taken from the Human Connectome Project
(HCP).

Classification of Sibling Pairs Using Connectotyping in Adults Using Human Connectome Project Data

To test the generalizability of familial patterns of brain connectivity, we used a subset
of 198 scans coming from 59 unique families (Supplementary Tables S4 and S5, Miranda-
Dominguez et al., 2018), although we also ran models on the full 499 sample, obtaining
similar levels of out-of-sample accuracies, as shown in Figure 4-Figure Supplement 1 (Miranda-
Dominguez et al., 2018); see the Methods section for details.

On each run (N = 1,000), three families were randomly selected and reserved for predic-
tion, leaving the remaining families for training (matching each partition with unrelated pairs).
Importantly, only families with no twins were used for training. Again, we selected on each run
the top 100 features that were most distinct between siblings and unrelated pairs (data from the
participants assigned to the partition “prediction” were not used to rank features). In addition
to predicting siblings versus unrelated participants, we also used the classifiers to predict twins.
In this case, the out-of-sample accuracy was 83%, with a sensitivity of 84% and a specificity
of 72% (p < 10−6, t test comparing each distribution versus null models obtained using the
same approach but randomizing the labels, i.e., sibling or unrelated) for all (Figure 4A–C). In-
terestingly, the accuracy was higher for identical twins (98%) than for nonidentical twins (73%;
significance of difference: p < 10−6 rank-sum test, Cohen’s d = 3.38) and nontwin siblings
(72%; p < 10−6 for all as shown in Figure 4D–F), which is a significant finding, since families
with twins were excluded from training. The classifications were mainly driven by ROIs be-
longing to the following functional networks: dorsal attention, default mode, fronto-parietal,
visual, somatosensory hand, cingulo-opercular, and ventral attention (Figure 4G–H). As before,
we did not notice significant change in accuracy if a different number of features were selected
when at least 60 features were included (Figure 4-Figure Supplement 2, Miranda-Dominguez
et al., 2018).

Overall, these results suggest that kinship substantially contributes to individualized patterns
of complex brain organization. Furthermore, greater accuracy for predicting monozygotic
versus dizygotic twins strongly suggests that these patterns are partially heritable.
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Figure 4. Classifying siblings versus unrelated populations, when families with twins and other
sibling pairs of the same family were not included in the training set (HCP dataset). (A–F) show the
distributions of (A) full accuracy, (B) siblings, (C) unrelated, (D) monozygotic, (E) dizygotic, and (F)
nontwin sibling pairs for the connectotyping-based SVM classifier versus the results obtained
when the same classifiers were run after randomizing the labels (sibling or unrelated). (G) The
consensus’ distribution of ROIs per functional network used in the classifier. (H) The location of
such ROIs on the surface of the brain.

Classification of Sibling Pairs Using Independent Datasets

As a final validation of our approach, we trained classifiers in one dataset and predicted
siblings and unrelated pairs in the other. As each dataset comes from different institutions,
they have large differences in terms of imaging protocols, length of acquired data, processing
and denoising strategies, and age of the participants (youths versus adults). Therefore, accu-
rate predictions would signify the detection of shared environmental and genetic effects that
are strongly generalizable. Per training dataset, all the sibling pairs and an equal number of
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Figure 5. Familial patterns of brain connectivity captured in youth can also be seen in an inde-
pendent sample of adults when using connectotyping. The figure depicts the accuracy (N = 1,000)
of the connectotyping SVM classifier (blue) relative to permutation tests (red). (A) Full, (B) sibling,
(C) unrelated, (D) monozygotic, (E) dizygotic, and (F) nontwin sibling accuracy is shown.

unrelated pairs (resampling on each run) were included. Classifiers were used to predict all the
sibling pairs of the other dataset and an equal number of randomly selected unrelated pairs.
Interestingly, only youths predicting adults by using connectotyping rendered significant re-
sults (see Figure 5 and Figure 5-Figure Supplement 1, Miranda-Dominguez et al., 2018). In
this case, the average out-of-sample accuracy was 74%, with a sensitivity of 74% and a speci-
ficity of 74%, p < 10−6 for all. Interestingly, and also in line with heritability, the classifiers’
accuracy was higher for identical twins (86%) than for nonidentical twins (77%; p < 10−6

rank-sum test, Cohen’s d = 0.27) and nontwin siblings (71%; p < 10−6 for all as shown in
Figure 5D–F). These results obtained using an independent dataset again suggest heritable
effects that constrain FC patterns.

Classification of Sibling Pairs Using Anatomical Features

To be sure that the above findings were not driven by underlying anatomical distinctions in-
stead of patterns of functional connectivity, we repeated the previous analysis (i.e., we trained
classifiers in youth and predicted siblings and unrelated participants in adults) using cortical
thickness and sulcal depth, independently. We first trained the anatomical classifiers using
the same ROIs (i.e., features) utilized for the functional analysis above. If our results were
driven by anatomical features instead of functional relationships, repeating our analysis using
anatomical, instead of functional, measurements for the same ROIs should lead to a successful
classification between siblings and unrelated participants. Instead, we found that neither sul-
cal depth nor cortical thickness was able to distinguish between siblings and unrelated pairs.
This was true for the raw anatomy data and for data corrected by intracranial volume (using
normalization or regression, separately).
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Next, we reran the analyses from scratch. This time we used the ROIs or features for the
anatomical analysis that most separated the samples in the training set on each run. We found
that while small levels of out-of-sample accuracy could be identified, the results were lower
compared with connectotyping, and the classifiers tended to overpredict siblings at the cost of
unrelated pairs. Not only that, the identified features showed little overlap with the functional
features, suggesting that while anatomy might be familial, such traits may be distinct from
the functional familiality. Figure 6 shows the case with the best out-of-sample performance:
cortical thickness, normalizing anatomical features by head size. The other conditions, which
included no normalization, or regressing out head size, showed worse classification (Figure 6,
Figure Supplement 1, Miranda-Dominguez et al., 2018).

Figure 6. Comparing the performance of classifiers using connectotyping (green) and anatomical
features cortical thickness (brown) to classify kinship in adults when classifiers were trained using
data from an independent dataset of youths. Green traces correspond to the results of the classifica-
tion using connectotyping, as shown in Figure 5. The same classification procedure was repeated
using cortical thickness as features (after removing the effect of head size), but using the top 100
more distinct features according to connectotyping (light brown, labeled as “Comb” to indicate
“combined”). Dark brown lines show the performance of the classifiers when features and feature
selection were based on cortical thickness. Bottom panel (brain figure): Top most distinct features
between siblings and unrelated participants (youth) for connectotyping are shown in green. Brown
ROIs are the top distinct features according to cortical thickness. ROIs in black (N = 20) correspond
to the overlapped regions between connectotyping and cortical thickness.
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Quantifying the Heritability of the Human Connectome

Heritability was then quantified for connectotyping measures using three-way (shared envi-
ronment X shared genetics X ROI) repeated-measures ANOVA (analysis of variance), with ROI
as the repeated measure. Heritability estimates (shared genetics) were made at the level of
each of the 352 individual regions (333 cortical + 19 subcortical), each of the 14 networks,
the whole brain, and for all individual ROI-ROI correlations (Figure 7-Figure Supplement 1,
Miranda-Dominguez et al., 2018). We found that connectotyping predictions showed signifi-
cant but small heritability for 257 of the 352 individual ROIs (h2 < 0.05, p < 0.05 corrected
for multiple comparisons). Figure 7 plots the heritability of the top 100 features of the SVM for
connectotyping. Notice that heritability is low at the level of individual regions.

Therefore, we examined the heritability across the whole brain and for each network con-
trolling for the effect of individual ROIs via repeated-measures ANOVA. We found that the
dorsal attention and fronto-parietal systems were among the most heritable (Figure 7A, top;
h2 > 0.14, p < 1e − 6), paralleling the most used networks for SVM. Thus, the SVM is likely
capturing some heritability of individual networks. Across the whole brain, heritability was

Figure 7. Heritability of connectotyping-based functional connectivity. (A) The connectotyping
heritability of the top 100 regions used in the SVM classification for connectotyping (see Figure 3).
(B) The connectotyping heritability for each network. Networks are sorted from most to least heri-
table, and the bar color matches the networks shown in Figure 2.
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much greater (h2 = 0.20 (upper 95% CI = 0.25, lower 95% CI = 0.14; p < 1e-6 ) than at the
level of individual regions or networks and further suggests that rather than individual connec-
tions, groups of functional connections are heritable.

Using the same repeated-measures ANOVA, we found that the shared environment of
networks was greater for the whole brain than for individual connections (Figure 7-Figure Sup-
plement 1, Miranda-Dominguez et al., 2018).

Connectotyping predicting time courses show significant heritability and shared envi-
ronment in both the 198 (heritability: Figure 7; shared environment: Figure 7-Figure Sup-
plement 1, red plus sign, Miranda-Dominguez et al., 2018) and 499 (heritability: Figure 7-
Figure Supplement 1, blue circle; shared environment: Figure 7-Figure Supplement 1, blue plus
sign, Miranda-Dominguez et al., 2018) datasets. Taken together, the set of results suggests that
connections between groups but not pairs of brain regions may be heritable. However, these
results are difficult to interpret because nontwin sibling pairs represent a large portion of our
data, so we are reluctant to interpret these results with too much emphasis. A twin design
with greater numbers than presented here would be required to properly estimate shared
environment.

DISCUSSION

Individual Connectomes Can Be Reliably Identified Across Many Years, Even in Youth

In a previous study (Miranda-Dominguez, Mills, Carpenter, et al., 2014) we showed that even
2.5 min of fMRI data can be used to build robust, individual connectotypes in adult humans
and in nonhuman primates. Those individual signatures were able to identify individuals
with very high reliability after a 2-week interval, mainly because of activity in brain systems
involving fronto-parietal areas.

In the current report we extended these findings in several ways. First, we showed that
connectotypes can uniquely identify children, even when scanned over 2 years apart, which
suggests that individualized FC patterns are preserved and superimposed on top of develop-
mental changes in brain connectivity. Second, we distinguished individual sibling and twin
pairs from unrelated pairs in both children and adults, demonstrating that family status con-
strains the functional organization of an individual’s brain. Consistent with our prior find-
ings, familial status was most prominently classified by higher order systems, including the
fronto-parietal, dorsal attention, and default systems. Last, after quantifying heritability, we
showed that rather than individual connections, clusters of connections show modest
heritability.

Connectomes Are Familial and Heritable

The present work represents a fundamentally novel approach to testing familial (influences on
the connectome due to shared genetics and/or shared environment heritability) and herita-
ble (influence on the connectome implied by shared genetics) aspects of functional brain net-
works. Heritability studies often rely on forms of regression, such as structural equation models
(Fu et al., 2015) or general linear mixed models (Visscher & Goddard, 2015). Because brain
regions are interconnected, and many brain regions exist within the brain, approaches that
examine heritability of single connections or brain regions may not capture network-level
effects appropriately. Here, we tested familiality using SVMs and heritability using traditional
ANOVAs. As can be seen by our heritability analysis, most individual connections show lim-
ited variation in heritability, which is consistent with the prior literature (Fornito et al., 2011;
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Glahn et al., 2010; Korgaonkar et al., 2014). In contrast, individual networks and whole-
brain networks were far more heritable. These analyses represent only a subset of possible
multivariate approaches, and therefore it should be interesting for future work to evaluate
alternative multivariate models (e.g., latent factor analysis) that may be amenable to more
traditional heritability analysis.

Our findings are consistent with prior rs-fMRI studies that have found significant heritabil-
ity for whole-brain network or organizational properties (Sinclair et al., 2015; van den Heuvel
et al., 2013). Yang et al. (2016) and Fu et al. (2015) found significant within-network heritability
for most brain networks, but heritability was limited between functional networks (Yang et al.,
2016). Heritability of correlations within networks in the present study were comparable to
these prior studies. The SVM model used here, however, can also be validated in different
datasets, which overcomes a strong criticism of most heritability studies. Here we found that
connectotyping-trained SVMs, but not correlation-trained SVMs, could predict family status in
completely independent datasets. Such an approach is in its infancy, so statistical geneticists
will benefit from studying this approach in other contexts as well (e.g., behavioral studies or
examining networks of genes instead of brain networks).

The present data demonstrate shared family characteristics of the connectome in two inde-
pendent datasets with large differences in age as well as in acquisition and processing param-
eters. Interestingly, while the child and adult groups exhibited slight differences in the relative
contributions of different brain networks toward sibling classification, the top network contrib-
utors were similar (see below). This finding suggests that the familiality of the connectome is
mostly determined by the same functional networks, regardless of age.

Importantly, machine learning could offer an alternative approach to estimate heritabil-
ity. Training classifiers to distinguish between mono- and dizygotic twins could disambiguate
between the contributions of shared environment or shared genetics in the estimation of heri-
tability of multiple traits.

Familial Relationships Are Driven by Shared Variance in Higher Order Systems

We found that the brain networks that contributed most toward familial classification included
the default mode, cingulo-opercular, ventral attention, dorsal attention, and fronto-parietal sys-
tems. The contribution of the fronto-parietal and dorsal attention networks to familiality was
larger in the adults than in the youth. This finding sheds light on our prior work that showed
that the fronto-parietal and dorsal attention systems have the most variable FC patterns in adults
(Miranda-Dominguez, Mills, Carpenter, et al., 2014), a finding replicated in multiple contexts
(Finn et al., 2015; Mueller et al., 2013). While the discrepancies between children and adults
must also be taken in light of differences in data acquisition, the increased contribution of
these fronto-parietal systems might represent changes in gene expression and topological re-
organization of the brain across age. For example, recent work has shown that the expression
of genes involved in synaptic function correlates with the strength of FC across the lifespan
(Richiardi et al., 2015), potentially contributing to the reshaping of systems.

The cingulo-opercular and ventral attention systems (along with the fronto-parietal networks
noted above) have long been known to be involved in higher order executive or attentional
phenomena (Corbetta & Shulman, 2002; Dosenbach et al., 2007; Power, Fair, Schlaggar, &
Petersen, 2010). The ventral attention and dorsal attention networks work together in the
dynamic control of attention in relation to top-down goals and bottom-up sensory stimu-
lation (Shulman, Ollinger, Linenweber, Petersen, & Corbetta, 2001). The cingulo-opercular
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system is also involved in the maintenance of task sets (Dosenbach, Fair, Cohen, Schlaggar,
& Petersen, 2008), among other higher order cognitive phenomena such as control initiation
and adjustment in response to feedback (Dosenbach et al., 2006, 2008). Indeed, the clusters
of regions identified here as being heritable or familial are largely overlapping with brain re-
gions that covary with multiple features related to psychometrics, behavioral measures, and
demographics—relationships that relate to general intelligence and “real-life” function (such
as cognition, life satisfaction, years of education, income; Smith et al., 2015). The observation
that complex patterns of activity within and between these networks are uniquely heritable
may help explain why complex behaviors associated with these systems are also highly heri-
table (Friedman et al., 2008).

An important consideration is that these results do not seem to be dominated by the size
of the functional networks per se. Figure 3-Figure Supplement 1 (Miranda-Dominguez et al.,
2018) shows that even small functional networks have a strong contribution to the familial-
ity and heritability of the connectome. Furthermore, when classifiers were run using only
ROIs from each functional network independently, large sensorimotor systems like the visual,
auditory, and somatosensory hand ranked low on their ability to classify siblings from unre-
lated participants (Figure 3-Figure Supplement 4, panel B; Miranda-Dominguez et al., 2018).
We also did not find evidence that our approach could be biased by ROI size since there
were no differences in terms of ROI sizes when comparing the ROIs included or excluded
(Kolmogorov-Smirnov test, k = 0.1169, p = 0.3041, Figure 3-Figure Supplement 3, Miranda-
Dominguez et al., 2018) in the classifiers.

Age Differences in Familiality and Heritability

This study benefited from the training and testing of a machine-learning model using indepen-
dent datasets. The finding that heritability could be identified in adults after training in youth
provides two important insights. First, since the youth data consisted of much shorter scan
times, this supports the notion that connectotyping extracts information from limited datasets
that may not be captured by traditional functional connectivity correlation matrices (Miranda-
Dominguez, Mills, Carpenter, et al., 2014). Second, classifying siblings could not be done
when training the SVM on adults and predicting siblings in youth. Multiple factors may have
contributed to differences in performance of our classifiers, including site and data acquisition
procedures (see limitations below). Nonetheless, the ability to classify sibling status in adults
from models generated in children, but not children from models generated in adults, is intrigu-
ing and deserves further study. One possibility of this lack of generalization might be due to
the specific features chosen for the training data—whether they come from children or adults.
Fronto-parietal systems, which formed the core of models in many respects, are important for
functional fingerprinting (Miranda-Dominguez, Mills, Carpenter, et al., 2014), and diverge in
individuals over the course of development into adulthood. In short, fronto-parietal systems
take longer to fully mature (Gogtay et al., 2004). If so, the top selected features for training
from the child set might constitute a distinct subset of that produced by the adults. Presumably,
while not ideal this subset could still be used to predict sibling status because they are also
part of the “functional fingerprint” in adults. On the other hand, the features that best estimate
sibling relationships from adults might include some features that are already developed in
children, but others that are not yet fully developed as well. In such a scenario, the mature
pattern (or feature set) would not be optimal, and indeed might fail in children retrospectively
for classification. Work across sites within adult samples, or within child samples, will assist
in testing these ideas.
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Functional Fingerprinting

The current work builds on new trends in neuroscience aimed at identifying individual sig-
natures of complex brain connectivity. The current framework is distinguished from other con-
ventional FC approaches in a number of salient ways (Friston, 2011). First, traditional measures
of pairwise association such as Pearson correlations are confounded by correlations with other
brain regions. While this cofound can be minimized by using partial correlations, FC is a mea-
sure of statistical dependencies among ROIs. Via multiple linear regression, connectotyping
attempts to determine the unique contributions made between each pair of brain regions; in
other words, connectotyping attempts to explain the statistical dependencies observed in FC.
Second, connectotyping provides an equation to predict brain signal in future data. Third,
recent literature suggests that at least 30 min of motion-free resting-state data are required
to obtain a functional correlation matrix that converges closely with its final form averaged
over many scanning sessions (Laumann et al., 2015). This is far greater than the amount of
data typically acquired, and it may not be a realistic goal for many studies. It is likely that the
variability of correlations with limited data contributes substantially to the difficulty in
obtaining reproducible results in studies of complex neuropsychiatric illnesses (Castellanos,
Kelly, & Milham, 2009), particularly in studies of neurodevelopment because of the greater in-
cidence of head motion in younger participants (Satterthwaite et al., 2012; Van Dijk, Sabuncu,
& Buckner, 2012). Our results demonstrate that connectotyping models calculated with as
little as 2.5 min of data (Miranda-Dominguez, Mills, Carpenter, et al., 2014) enable sophisti-
cated predictions that can be validated in independent datasets. This may increase the usability
of new as well as currently available resting-state datasets.

When comparing by visual inspection traditional connectivity maps obtained by correla-
tions with beta weights obtained by connectotyping (Figure 1-Figure Supplement 1, Miranda-
Dominguez et al., 2018), we advise against judging the beta weights based on how well they
can differentiate functional networks. Functional networks are defined following data-driven
approaches that take as input traditional correlations among brain regions. Hence, correla-
tions represent the optimal solution to visualize such networks. Connectotyping is tuned to
capture the global linear dependence across ROIs. This means that each coefficient needs to
be considered together with all the other beta weights. It is also important to mention that
these beta weights are the result of a regularized but underdetermined multiple regression (in
other words, the number of ROIs outnumbers the number of frames, i.e., the degrees of free-
dom per time course). This fact means that no optimal connectotyping solution for a given
individual might be found when acquisition times are short. However, as shown here and in
the original connectotyping manuscript (Miranda-Dominguez, Mills, Carpenter, et al., 2014),
the estimated connectotype strongly represents individualized signatures, and the areas that
vary the most (and the least) have a biological interpretation.

There are other substantial implications to the connectotyping approach. The connectotype
model exposes latent similarities (and dissimilarities) between individuals due to kinship (or
due to lack of kinship). In principle, these individualized signatures may be useful in identifying
atypical patterns of brain functioning in ways that are heterogeneous or obscured by traditional
group-level analyses (Fair, Bathula, Nikolas, & Nigg, 2012). Thus, the approach outlined here
provides new avenues for a critical goal of modern neuropsychiatric research: to elucidate
how unique patterns of neuropathology may manifest as related clinical outcomes (Fair, Nigg,
et al., 2012).
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Functional Fingerprints Are Determined by Patterns of Functional Connectivity, Not by Anatomy

To account for variation in anatomy, we used state-of-the-art surface-based registration pipe-
lines (Glasser et al., 2013). Furthermore, when we repeated our analysis using anatomical
features instead, the classifiers using anatomical features did not generalize and the selected
features had little overlap (~20%) with the functional features. Putting all these findings to-
gether, although additional work will need to be conducted in this realm, we can reliably
demonstrate that our findings are not driven by pure anatomy. With that said, any study
of functional connectivity using group-based derived parcellation schemata can potentially
be affected by interindividual differences in area location. The delineation of individualized
functional areas is probably the most effective approach to account for this potential confound.
Definition of such individualized areas is still under investigations; however, as of now, any
true correspondence likely requires at least 1 hr of high-quality functional data (Glasser et al.,
2016; Laumann et al., 2015), something that is not feasible in most of MRI studies, particularly
in special populations.

Limitations and Considerations

While this study covers an important developmental time span (7–14 years), further research
will be required to determine how early in development (prenatal/postnatal) connectomes
acquire individualized characteristics (Graham et al., 2015). Future work will also be needed
to determine whether effects are robust beyond a 2-year interval between scan sessions.

We acknowledge that consensus remains elusive regarding the optimal processes for ac-
quiring and analyzing fMRI data, and more work is required to determine optimal denoising
procedures (Burgess et al., 2016; Glasser et al., 2013). We used different methods on Oregon
and HCP datasets to attenuate motion artifact, although both are recommended practices. Mo-
tion censoring combined with global signal regression was used for the Oregon dataset, while
the Human Connectome Workflow Pipelines and strict quality control measures were applied
to the HCP data along with global signal regression (Burgess et al., 2016; Siegel et al., 2016).
Although this substantially limited our HCP sample size and introduced differences in process-
ing with Oregon, the intent was to employ the processing strategies that were optimal for each
institution’s set of acquisition parameters. We are also keenly aware of the need for imaging
studies to be reliable and reproducible (Collins & Tabak, 2014). The use of publicly available
datasets (in our case the HCP) to validate findings from our institutional data helped with this
goal. In addition, our multivariate modeling procedure predicts “fresh, unseen” data, which
represents a step toward maximizing reliability and reproducibility of findings. Finally, a re-
cent rs-fMRI study showed that head motion may be heritable (Couvy-Duchesne et al., 2016).
However, we did not find evidence of heritability of movement parameters (see Supplementary
Information, Miranda-Dominguez et al., 2018).

It is also worth noting that between-subject differences in FC may be modulated by dif-
ferences in functional architecture. Future developments in obtaining individualized brain
parcellations from rs-fMRI data (Glasser et al., 2016; Laumann et al., 2015) will be critical for
clarifying these distinctions, although such approaches currently require acquisition times
that are prohibitively long for large-scale studies. Results reported here used the Gordon par-
cellation schema (Gordon et al., 2014). This ROI set outperforms many other well-established
parcellations with varying numbers of ROIs in terms of homogeneity when defining
functional areas (Gordon et al., 2014), indicating its robustness to variable functional
architecture. Furthermore, our Supplementary Information, which compares the performance
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of connectotyping using different parcellation schemes (see Figure 1-Figure Supplement 3,
Miranda-Dominguez et al., 2018), demonstrates that the predictability of siblings, same in-
dividuals, and unrelated pairs is largely independent from the ROI set. Taken together, such
findings make it unlikely that the SVM model is driven by how well each participants’ ROIs
were mapped into the anatomical atlas.

An important consideration in this study is that the two datasets used for cross-validation
differ in multiple dimensions: scanner hardware, parameters of the imaging sequences, pre-
and postprocessing methods to account for noise, as well as the length of the resting-state
time courses. The usage of more homogeneous datasets might lead to higher out-of-sample
accuracies than the ones we found here. On the other hand, the fact that the two datasets
differ so substantially extends the credibility that our findings are generalizable.

One factor that might have been particularly affected by the two independent datasets for
our analyses was the seemingly discrepant finding that the model-based approach was stronger
at characterizing family relationships (as opposed to traditional correlations); on the contrary,
the quantification of heritability was stronger with traditional correlations. There are a few con-
siderations that might explain these findings. Our analysis using machine learning includes
both datasets, while the formal estimation of heritability was done using only the sample of
adults. Under this context it is likely that the discrepancy between the results is largely a
function of the differences in the acquisition parameters, in particular, the amount of data col-
lected. Connectivity in the youth dataset was characterized using 2.5 min of movement-free
resting-state data, while in the adult datasets 1 hr of data was available. Hence, traditional
correlations in the adult dataset are likely a good representation of individual connectivity
(Laumann et al., 2015). As mentioned before, connectotyping coefficients are the result of
a regularized but underdetermined multiple regression leading to more variable correlations
between predicted and observed time courses. Potentially, because the higher normalized
variance decreases effect size estimates for the ANOVA in the heritability analysis, the heri-
tability estimates are lower for the connectotyping-based predictions, as opposed to the tradi-
tional correlations. More work is needed on this front, but these data might suggest that when
quantifying heritability of the connectome using traditional methods, if data of up to 1 hr are
available, traditional correlations might be more suited.

Nonetheless, in traditional acquisition settings, both our current and our prior work sug-
gest that the use of mathematical modeling and regularization tools can be used to effectively
examine regional interactions from short scan sessions (a few minutes of data), enabling the
reliable characterization of individuals. However, we recognize that other methods toward
characterizing individual connectomes have been conducted (e.g., Shehzad et al., 2009). For
example, it has been proposed that classifiers can be tuned to find group differences in func-
tional MRI by modeling the nonlinear relationship between the BOLD signal and the neural
activity. This approach is designed to map such differences to “hidden” physiological variables
like synaptic weights (Brodersen et al., 2011). In addition, we recognize that our approach may
not be optimal for all scientific inquiries and types of data. Indeed, short scan sessions (or data
availability) are unlikely to be sufficient for identifying some detailed distinct characteristics of
the individual connectome (Laumann et al., 2015; Poldrack et al., 2015).

Conclusions

In this study we show that FC can be reliably used to identify and track individual brain
signatures—a so-called functional fingerprint or connectotype for the human brain (Miranda-
Dominguez, Mills, Carpenter, et al., 2014)—in both children and adults. These signatures
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demonstrate robustly familial and heritable relationships. Across development, these relation-
ships are driven by specific higher order functional networks. Importantly, these signatures
can be detected using limited data, are reliable, and are reproducible. Understanding the link
between individual and familial connectomes may help us better describe the nature of het-
erogeneity across typical and atypical populations (Costa Dias et al., 2015; Fair, Bathula, et al.,
2012; Gates, Molenaar, Iyer, Nigg, & Fair, 2014) and assist in characterizing the interactions
of genetic and epigenetic factors toward brain function.

METHODS

Participants

Participants (N = 357) in this study were taken from two datasets: a youth longitudinal study
in Oregon (N = 159) and the Human Connectome Project (HCP, N = 198).

Oregon. Participants in this study (N = 159; 7.5–14.6 years old, mean = 10.64 and SD =
1.537, 60% males), free of known medical or neurological conditions (self-reported) and char-
acterized to rule out ADHD and autism, were enrolled as part of an ongoing longitudinal study
run at Oregon Health and Science University (131 participants with 1 scan, 27 participants
with 2 scans, and 1 participant with 3 scans, n = 188 total scans). Parents provided writ-
ten informed consent and youth under age 16 provided written informed assent. This sample
contained 16 pairs of siblings, some of whom had multiple scans (Supplementary Table S1,
Miranda-Dominguez et al., 2018).

HCP. We used data from the HCP consortium “500 Subjects” release. We included the
198 out of 499 participants that passed our quality assurance (QA) criteria of having at least
5 min of usable data after strict motion correction (as described below). These were adult
participants, age 22–36 years old, mean = 28.4, SD = 3.50, 45% males, belonging to 129
different families (70 families with one descendant, 49 families with two, and 10 families with
three descendants). With regard to siblings, the data came from 10 pairs of monozygotic twins,
11 pairs of dizygotic twins, and 58 pairs of nontwins. Seventy participants had no siblings
(Supplementary Tables S4 and S5, Miranda-Dominguez et al., 2018).

MRI Data Acquisition

Oregon. Structural and functional data were acquired using a 3T Siemens Trio Tim equipped
with a 12-channel head coil. Resting-state data were acquired in three 5 min sessions using
BOLD contrast (3.75 × 3.75 × 3.8 mm voxels, TR = 2,500 ms, TE = 30 ms, no acceleration
factor). Subjects were instructed to lie still and fixate on a crosshair at the center of their visual
field.

HCP. Structural and functional data were acquired in a 3T Siemens Skyra scanner using a
32-channel head coil. Resting-state BOLD data were acquired with 2 mm (isotropic) voxels,
TR = 720 ms, TE = 33.1 ms, and a multiband acceleration factor of 8. Complete acquisition de-
tails for Oregon and HCP are available in the Supplementary Information (Miranda-Dominguez
et al., 2018).
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MRI Data Preprocessing

Oregon. Data were processed using the pipelines from the Human Connectome Project
(Glasser et al., 2013); see details in the Supplementary Information (Miranda-Dominguez et al.,
2018). Resulting time courses (surface registration for cortex and volume registration for sub-
cortical gray matter) were detrended and further processed to remove the effect of movement
regressors (Friston, Williams, Howard, Frackowiak, & Turner, 1996; Power et al., 2014; Power,
Barnes, Snyder, Schlaggar, & Petersen, 2012) and whole brain, ventricle, and white matter
signals by regression. Finally, a first-order Butterworth band pass filter was applied to the time
courses to preserve frequencies between 0.009 and 0.080 Hz (Fox et al., 2005).

Motion censoring: Signal from volumes where the total relative movement in any direction
(frame displacement, FD) in relation to the previous volume were greater than 0.2 mm were
censored out, as well as all surviving segments of data lasting fewer than five contiguous vol-
umes (Power et al., 2012). Participants were included if at least 2.5 min of usable data survived
motion censoring (surviving frames statistics: average = 242, SD = 83.2; range: 60 to 344). The
2.5-min threshold is based on prior work showing that our connectotyping models are quite
stable for this amount of data (Miranda-Dominguez, Mills, Carpenter, et al., 2014).

HCP. For this analysis, we used the ICA-FIX denoised rs-fMRI time courses provided by the
HCP (Smith et al., 2013); see details in Supplementary Information (Miranda-Dominguez et al.,
2018). Furthermore, we applied whole-brain regression to minimize the effect of structured
noise (Burgess et al., 2016). To be sure that movement was not a concern for the current
analysis, we selected a subset of 198 participants having at least 5 min of usable data with an
FD of at most 0.2 mm. For the selected participants, we used all the functional data available
(i.e., we did not perform motion censoring).

Parcellations and Functional Networks

Time courses were calculated as the average signal within the ROIs defined by different par-
cellation schemata: Markov (Markov et al., 2014), Yeo (Yeo et al., 2011), Power (Power et al.,
2011), Gordon (Gordon et al., 2014), and HCP (Glasser et al., 2016). The Markov parcellation
is an anatomical, macaque-derived parcellation schema that was projected onto a surface of
the human brain (Miranda-Dominguez, Mills, Grayson, et al., 2014) and included for compari-
son purposes with previous findings (Miranda-Dominguez, Mills, Carpenter, et al., 2014). Yeo,
Power, HCP, and Gordon are data-driven parcellations. The majority of analyses are conducted
with the Gordon atlas because of its superiority in predicting familial characteristics (Figure 1).
This parcellation schema defines 333 ROIs clustered in 12 functional networks (47 ROIs have
no assignment). The functional networks are auditory, cingulo-opercular, cingulo-parietal, de-
fault, dorsal attention, fronto-parietal, retrosplenial temporal, salience, somatosensory hand,
somatosensory mouth, ventral attention, and visual. In addition to these functional networks,
we added the subcortical segmentations derived from FreeSurfer to define a subcortical net-
work. Figure 2 shows the location of each network projected onto a surface template of the
human brain as well as the number of ROIs that comprise them.

Estimation of Single-Subject Functional Organization Using Connectotyping

In order to capture each individual’s unique functional fingerprint, we used a model-based ap-
proach, termed “connectotyping,” that is derived from a mathematical modeling among ROIs
and is based on previously established procedures described in Miranda-Dominguez, Mills,
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Carpenter, et al. (2014; see Supplementary Information, Miranda-Dominguez et al., 2018,
for using correlation matrices to capture functional connectivity). Connectotyping explains
how the brain activity of each ROI can be predicted by the weighted contribution of the ac-
tivity of all the other ROIs. Such weights are optimized by regularization and cross-validation
(Miranda-Dominguez, Mills, Carpenter, et al., 2014). Briefly, the first step consists of removal
of autocorrelations from each ROI. To note, we did not remove autocorrelations on HCP data,
since that dataset has already been cleaned by ICA (independent component analysis). Next,
the activity of each ROI is modeled as the weighted contribution of the other ROIs. Over-
fitting is minimized by using regularization using truncated singular value decomposition. The
optimal number of singular values to be kept was selected by cross-validation. The result is
a directed ROI × ROI connectotype matrix that indicates the weighted contribution of the
remaining ROIs used to explain the time courses of each ROI:
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where M is the number of ROIs, ri is the vector of the residuals of the BOLD signal at the
ROI i (after removing autocorrelations) r̂i is the predicted value for each ri, and bi,j are the
regularized coefficients (beta weights) that constitute the connectotype. (Additional details are
in Miranda-Dominguez, Mills, Carpenter, et al., 2014.) Software is available upon request.

Machine Learning–Based Identification of Siblings

We used support vector machine (SVM) to classify sibling pairs and unrelated pairs. On each
SVM experiment reported here, each dataset was randomly partitioned 1,000 times into “train-
ing (in-sample)” and “testing (out-of-sample)” subsets. The size of the fresh “testing” is specified
for each in the Results section. Classifiers were optimized by leave-one-out cross-validation
(loocv) using only the dataset “training.” Resulting optimized classifiers were tested in the
fresh dataset “testing” to determine their accuracy. This out-of-sample performance is reported
on each experiment (see Supplementary Information, Miranda-Dominguez et al., 2018, for
details). Matlab code can be found at https://github.com/DCAN-Labs/MachineLearning_SVM
(Miranda-Dominguez, 2016).

Classes. Comparisons across each scan-pair were grouped according to kinship: “siblings”
or “unrelated.” These groups were used as labels in the classifiers.

Features. A connectotype (model) was calculated for each scan and used to predict time
courses for each other scan. The correlation coefficients between the predicted and observed
time courses for each ROI were used as features for each comparison.

Anatomy-derived features. We calculated the average sulcal depth and cortical thickness for
each of the 333 ROIs defined by Gordon et al. (2014). For subcortical features, we used the
volume of the ROI. These numbers were used directly, or were controlled for brain size by
either regression or normalization of brain size (results are reported for each case). When
comparing paired data (i.e., siblings or unrelated), features were subtracted and the sign of the
difference was kept.
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Null hypothesis. Null hypotheses were generated N = 1, 000 times by randomizing class
labels within the training partition for each run as described in the training section above.

Feature selection. For each classifier, we followed two distinct approaches to select the fea-
tures to retain:

By functional network: We optimized classifiers including all the features included on
each of the 14 functional networks derived from the Gordon parcellation, and we did so
independently for each network.
By significance (based on the Kolmogorov-Smirnov test): Regardless of network assign-
ment, a subset of p features was selected to optimize each classifier. This subset was
selected after ranking all the features (data from the participants assigned to the partition
“prediction” were not used to rank features) based on how different they were (between
class; sibling or unrelated), according to the Kolmogorov-Smirnov test. We decided to
use this test because it makes no assumptions on the corresponding subjacent probability
distribution functions of the features (Loudin & Miettinen, 2003).

Heritability Analysis

Because the SVM approach can test but not quantify heritability, we performed a heritability
analysis adapted from standard tests of heritability (Visscher & Goddard, 2015). We used the
distributions of connectotyping predictions as the outcome variables in two separate analyses.
The analyses were performed on the HCP dataset and not the Oregon dataset, which has no
twins. We also conducted these analyses on both the 499 full HCP dataset (Figure 7-Figure
Supplement 1, Miranda-Dominguez et al., 2018) as well as the 198 participants that met QA.

The heritability and shared environment (Figure 7 and Figure 7-Figure Supplement 1,
Miranda-Dominguez et al., 2018) of the connectotyping models were tested using three-way
(shared environment X shared genetics X ROI) repeated-measures ANOVAs, with ROI as the
repeated measure. Only the main effects of shared genetics and environment were tested. All
outcome variables were transformed into normally distributed variables using a rank-based
transform (Glahn et al., 2010). Monozygotic, dizygotic, and sibling pairs represented one
level in the shared-environment factor, whereas unrelated pairs represented the other level.
Shared genetics had three levels: one for monozygotic pairs, one for dizygotic and sibling
pairs, and a third for unrelated pairs. To estimate shared genetics and environment across the
whole brain, ROI was included as a within-subject factor at 352 levels. To estimate heritabil-
ity and shared environment per network, only ROIs within a given network were included
as dependent variables. Heritability and shared environment (see Supplemental Information,
Miranda-Dominguez et al., 2018) were quantified by measuring the ratio of the given factor’s
sum of squares to the total sum of squares. Because we had far more unrelated pairs than sib-
ling or twin pairs, a matching subset of unrelated pairs (N = 58) was randomly selected from the
larger subset per ANOVA. Per analysis, we generated 95% confidence intervals for heritability
and shared environment from 1,000 ANOVAs, and we randomly sampled the unrelated pairs
per ANOVA.
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