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Drug-Induced Liver Injury (DILI), despite its low occurrence rate, can cause severe side effects or
even lead to death. Thus, it is one of the leading causes for terminating the development of new,
and restricting the use of already-circulating, drugs.Moreover, itsmultifactorial nature, combined
with a clinical presentation that often mimics other liver diseases, complicate the identification of
DILI-related (or “positive”) literature,which remains themainmedium for sourcing results from the
clinical practice and experimental studies. This work–contributing to the “Literature AI for DILI
Challenge” of the Critical Assessment of Massive Data Analysis (CAMDA) 2021– presents an
automated pipeline for distinguishing between DILI-positive and negative publications. We used
Natural Language Processing (NLP) to filter out the uninformative parts of a text, and identify and
extract mentions of chemicals and diseases.We combined that information with small-molecule
and disease embeddings, which are capable of capturing chemical and disease similarities, to
improve classification performance. The former were directly sourced from the Chemical
Checker (CC). For the latter, we collected data that encode different aspects of disease
similarity from the National Library of Medicine’s (NLM) Medical Subject Headings (MeSH)
thesaurus and the Comparative Toxicogenomics Database (CTD). Following a similar procedure
as the one used in the CC, vector representations for diseases were learnt and evaluated. Two
Neural Network (NN) classifiers were developed: a baseline model that accepts texts as input
and an augmented, extended, model that also utilises chemical and disease embeddings. We
trained, validated, and tested the classifiers through a Nested Cross-Validation (NCV) scheme
with 10outer and5 inner folds. During this, the baseline and extendedmodels performed virtually
identically,with F1-scores of 95.04±0.61%and94.80±0.41%, respectively. Upon validation on
an external, withheld, dataset that is meant to assess classifier generalisability, the extended
model achieved an F1-score of 91.14 ± 1.62%, outperforming its baseline counterpart which
received a lower score of 88.30 ± 2.44%.Wemake further comparisons between the classifiers
and discuss future improvements and directions, including utilising chemical and disease
embeddings for visualisation and exploratory analysis of the DILI-positive literature.
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1 INTRODUCTION

Drug-Induced Liver Injury (DILI) is a rare adverse drug reaction
that can cause severe complications and, in some cases, may even
prove fatal. The term is primarily used to signify the unexpected
harm that a drug can cause to the liver. Virtually every class of
medication can lead to hepatotoxicity, but the relative risk varies
greatly between different drugs (David and Hamilton, 2010). For
example, studies suggest that oral medications with doses higher
than 50 mg/day and greater lipophilicity–thus those exhibiting
higher hepatic metabolism–are more likely to cause DILI (David
and Hamilton, 2010; Fontana, 2014).

Liver toxicity can be brought about in a predictable, dose-
dependent manner when an individual is exposed to
concentrations exceeding a drug’s toxicity threshold. This is
known as intrinsic (or direct) DILI, has a relatively short
latency period (hours to days), and is reproducible in animal
models. The most often studied example of intrinsic DILI is
acetaminophen (paracetamol), which accounts for about or more
than half of acute liver failure (ALF) cases in the United Kingdom
and United States (Katarey and Verma, 2016; Andrade et al.,
2019). The majority of DILI cases, however, belong in the
idiosyncratic (or indirect) variety which, as the name suggests,
cannot be solely explained by the drug in question. This type of
DILI is instead driven by a mixture of characteristics that are
unique to the individual and their environment and tends to have
a longer latency period following exposure (days to months)
(Andrade et al., 2019). Idiosyncratic DILI is most prominently
associated with antibiotics, and amoxicillin-clavulanate is the
most commonly implicated drug in studies of European and
American populations (Katarey and Verma, 2016).

Idiosyncratic DILI is, indeed, a rare occurrence, with two
prospective population-based studies in France (Sgro et al., 2002)
and Iceland (Björnsson et al., 2013) placing its crude annual
incidence rate at 13.9 and 19.1 cases per 100,000 people,
respectively. A retrospective study of the UK-based General
Practice Research Database (GPRD) (de Abajo et al., 2004)
reports a lower rate of 2.4 cases per 100,000 people, which is
also in line with other studies from Sweden and the United States
(Andrade et al., 2019). Out of those cases, an analysis of data
coming from the Spanish DILI registry showed that about 4.2%
progress to ALF (Robles-Diaz et al., 2014). This is in agreement
with an incident rate of 1.61 cases per 1, 000, 000 people reported
by another US-based study (Goldberg et al., 2015). Yet, despite its
rarity, DILI remains one of the commonest reasons for the
premature termination of drug development while also
affecting already-circulating drugs, often leading to withdrawal
from the market or issuing warnings and modifications of use
(Katarey and Verma, 2016; Andrade et al., 2019). Therefore, the
ability to reliably identify cases of DILI in the literature becomes
critical, as such resources can aid both physicians in diagnosing
the disease and researchers in, among other things, unravelling its
mechanisms of action.

The identification of DILI-related literature is complicated by
the heterogeneous and multifactorial nature of it. Typically, a
drug causes hepatotoxicity directly, through its metabolites and/
or due to possible subsequent inflammatory reaction. However,

factors including pre-existing liver pathology, such as Hepatitis B
or C, or non-alcoholic fatty liver disease (NAFLD), and chronic
alcohol consumption can increase an individual’s susceptibility to
DILI. Similarly, genetic factors are at play; different cytochrome
p450 enzyme phenotypes can lead to either decreased metabolism
of toxic drugs or accelerated production of toxic intermediates,
and human leukocyte antigen (HLA) polymorphisms may cause
enhanced immune-mediated mechanisms. Furthermore, the
clinical presentation of the disease is broad, with symptoms
that often mimic other acute and chronic liver diseases and, in
the absence of diagnostic tests and biomarkers, diagnosis is
primarily based on establishing a temporal association between
drug exposure and symptom development which is assessed
alongside clinical history, liver biochemistry, imaging, and in
some cases biopsy (David and Hamilton, 2010; Katarey and
Verma, 2016). This complex landscape makes DILI
identification a challenging task, with the application of text-
mining techniques on DILI-related literature (Cañada et al., 2017;
Wu et al., 2021) remaining relatively sparse.

This work presents a contribution to the “Literature AI for
DILI Challenge” which was part of the Critical Assessment of
Massive Data Analysis (CAMDA) 2021 (http://camda2021.
bioinf.jku.at). The aim of the challenge was to develop a
classifier capable of identifying DILI-relevant papers. For that,
we were given access to about 7,000 DILI-positive PubMed
papers, referenced in the National Institutes of Health’s (NIH)
LiverTox database (Hoofnagle et al., 2013), and a non-trivial
reference dataset of around 7,000 DILI-negative papers. These
originated from a larger collection of positive and negative
corpora that was split in half to create a second dataset,
similar in size with the one released (about 14,000 texts in
total), that was withheld and used for final performance
testing. We refer to this as “external validation” to distinguish
it from the (internal) Nested Cross-Validation (NCV) that we
perform. A second, smaller but more challenging, external
validation dataset of 2,000 texts was also provided.

We built an analysis pipeline that combines Natural Language
Processing (NLP) with small-molecule and disease similarities.
We pre-processed and normalised the texts to exclude
uninformative words and allow for comparisons to be drawn
across them. Within each text, chemical and disease terms were
annotated and extracted. We treated those as external features
and applied a framework that is capable of capturing their
similarity. For chemicals, we acquired vectors (embeddings)
directly from the Chemical Checker (CC) (Duran-Frigola
et al., 2020). For diseases, we first collected data that encode
the relations that exist between them. These were sourced from
the National Library of Medicine’s (NLM) Medical Subject
Headings (MeSH) thesaurus (https://meshb.nlm.nih.gov/) and
the Comparative Toxicogenomics Database (CTD) (Davis
et al., 2021). We then followed a similar procedure as the one
used in the CC to learn vector representations for diseases. Since,
typically, a text is associated with multiple terms, an average
chemical- and disease-vector (external feature vector) was
calculated and attached to it. These, together with the
normalised texts, were fed into a Neural Network (NN)
classifier. To prevent over-fitting during training and to get an
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unbiased estimate of classification performance, we did
hyperparameter tuning in a NCV scheme with 10 outer and 5
inner folds. Duringmodel evaluation, the extent to which external
features alone are capable of distinguishing between the DILI-
positive and negative texts was examined. Classifiers with and
without the inclusion of external feature vectors were built and
compared. During discussion, we explore drawbacks, point out
future improvements, and focus on the potential impact of this
work on facilitating DILI research.

2 METHODS

This analysis is split in three consecutive stages, with each being
dependant on the output of the previous ones. First, title and
abstract pairs (texts) were collected and processed. This stage
constitutes the NLP pipeline, which can be further split in two
steps: text pre-processing, and chemical and disease term
(concepts) annotation. At the second stage, drug and disease
embeddings were learnt and an average drug- and disease-
representation (external feature vector) was calculated for each
text. Lastly, the NN classifiers were built and then trained,
validated, and tested in a NCV scheme. The project has been
developed in Python 3.9.10 and bundled as a package to provide
ease of use and aid future development.

2.1 NLP Pipeline
2.1.1 Text Pre-Processing
Titles and abstracts were first concatenated to form “full” texts.
These were then provided as input to the Stanza NLP package (Qi
et al., 2020), which was initialised with its tokenisation,
lemmatisation, and Part-of-Speech (POS) processors. Stanza
provides two biomedical Universal Dependencies (UD) models
that are pre-trained on human-annotated treebanks. For this
analysis, we used the option that is based on the GENIA corpus
(Kim et al., 2003), as it is built on top of 2, 000 PubMed abstracts
and was therefore thought to be a better fit for the (also PubMed-
sourced) texts that we had at our disposal.

Each text was split to sentences and then words, and each
word was mapped to its base form (lemma). We filtered out
lemmas that were not nouns, verbs, adjectives, or adverbs. A
list of stopwords was compiled by merging those included in
the spaCy package in Python with the ones provided
by PubMed (https://pubmed.ncbi.nlm.nih.gov/help/#help-
stopwords). Subsequently, both stopwords and any lemmas
that were less than 3 characters long were purged. As a result of
those pre-processing steps, implicitly, the texts were also
lowercase-normalised, and any numerals and punctuation
marks were dropped.

2.1.2 Concept Annotation
We queried PubTator Central’s (Wei et al., 2019) RESTful API to
acquire annotations for chemicals and diseases. The tool performs
concept disambiguation, which resolves conflicts when overlapping
annotations are found and returns concepts normalised to their
respective MeSH identifiers. We then counted the times each
annotated term shows up within a text and calculated and assigned

(text-specific) relative frequencies to them. In the code, the “PubTator”
class is responsible for handling POST and GET requests to the server,
processing the raw response data, and associating texts with annotated
terms and their relative frequencies. At this step, raw, unchanged texts
were used as input. As a result, the annotations we got back were
incompatible and thus could not be utilised together with the pre-
processed texts of the previous section.

To resolve this issue while also retaining clarity, the
“UnivTextBlock” class was implemented in the code. The class
provides a method for exporting processed text, in the sense that
pre-processing has been applied and concept terms have been
normalised, either by replacement with their MeSH identifiers or
the broader concept category (that is, “disease” or “chemical”). To
handle cases where a concept term spans across multiple words or
is misaligned compared to the target word(s)– often the result of
incorrect sentence segmentation or peculiarities in
tokenisation–the code checks for degree of overlap. We
observed good performance when demanding that the latter
exceed a minimum threshold value of 90%.

2.2 External Feature Vector Generation
2.2.1 Data Collection
We aimed to quantify disease and, separately, chemical similarity.
First, we collected data from the MeSH thesaurus. Descriptors and
supplementary concept records were downloaded in XML format.
At the uppermost level, there are 16 categories which are further
split in subcategories. Within each subcategory, descriptors are
arranged in a hierarchical manner from most general to most
specific. This results in a branching, tree-like structure. In the XML
file, each descriptor is associated with one or multiple tree
numbers, which represent paths taken from the root
subcategory until the descriptor in question is reached.

These data were parsed into a dictionary that associates
descriptors with their respective tree numbers. We selected for
disease-descriptors by pruning those whose trees did not start with
“C,” as category C is for diseases. Similarly, for chemicals, we
filtered out descriptors that did not fall under category D, which
contains drugs and chemicals. Supplementary concept records are
not associated with tree numbers. Instead, they are mapped onto
one or multiple descriptors. We parsed these relationships in a
separate dictionary which we used to indirectly link supplementary
concepts with the hierarchical structure described earlier.

We also collected data from the CTD, which associates
diseases with chemicals, genes, pathways, and phenotypes. In
this context, phenotypes refer to non-disease biological events
and are expressed using the Gene Ontology (GO) as controlled
vocabulary (Davis et al., 2021). As a result, disease-phenotype
associations are further split into three datasets, one for each
GO category: Biological Process (GO-BP), Cellular
Component (GO-CC), and Molecular Function (GO-MF).
In total, 6 datasets were downloaded from the CTD. Disease
terms are expressed using MeSH identifiers and thus required
no further processing.

2.2.2 Concept Embedding Learning
After data collection, a procedure matching the one followed in
the CC was used. This was applied separately to each dataset and
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consists of three consecutive steps: 1) turning the dataset into a
corpus, 2) learning a (sparse) vector representation on it, and 3)
embedding the latter into a lower-dimensional space. For the
MeSH, concept terms are associated with tree numbers which
represent paths. We traversed these paths starting from the root
subcategory and saved each location on the tree as a word. A
corpus was then built by repeating this process for all terms. For
the CTD, concept terms are linked together through interactions
with chemicals, genes, etc. We created a corpus by treating these
interacting partners as words.

Corpora were mapped to a sparse vector space by applying a
Term Frequency–Inverse Document Frequency (TF-IDF)
transformation. Prior to that, frequent and infrequent words
were dropped—that is, words associated with less than 5 or
more than 80% of the terms. Following the transformation,
any null (zero) vectors were purged alongside with their
corresponding terms. An initial dimensionality reduction step
was performed by means of truncated Singular Value
Decomposition (SVD). Here, we kept the number of

components that explained around 90% of the variance seen
in the original data.

For learning the final embeddings, we ran the node2vec
algorithm (Grover and Leskovec, 2016), with its default
parameters, on a term similarity network. This produced 128-
dimensional vectors. To create the similarity network, we first
used cosine similarities to identify each term’s neighbourhood,
which consisted of its 100 closest neighbours. We approximated
the null distribution, empirically, by randomly sampling with
replacement 100,000 pairs of terms and calculating their cosine
similarities. This was used to map neighbour similarities to
p-values. We built the network by merging the
neighbourhoods together and assigning − log10 (p-values) as
edge weights. We pruned any insignificant edges–that is, edges
with weights less than or equal to 2– but demanded that each term
be connected to at least three closest neighbours.

2.2.3 Chemical Checker Embeddings
While chemical similarities from the CC need no further
processing themselves, vectors are indexed by their InChIKeys.
Since we normalise chemicals using MeSH identifiers, a mapping
had to be created that would link the two. We queried
ChemIDplus’s (https://chem.nlm.nih.gov/chemidplus/) API to
retrieve MeSH terms and their respective InChIKeys and
SMILES. We then used the MeSH thesaurus to associate
MeSH identifiers with concepts and terms. However, a MeSH
identifier usually points to multiple concepts–which typically
consist of one or more synonymous terms–and sometimes
more than one of those concepts or terms are associated with
an InChIKey and/or SMILES. Therefore, to reliably translate
from MeSH to InChIKeys, we also took into account the
hierarchy of preferred concepts and terms that exists in the
MeSH thesaurus.

In an attempt to further expand the number of MeSH terms
that are associated with an InChIKey, we extracted relevant
associations from the DrugBank database (Wishart et al.,
2018) and merged them with those associations sourced from
ChemIDplus. Furthermore, in order to enrich any sparse CC
spaces, we utilised the CC signaturisers (Bertoni et al., 2021) to
predict embeddings for chemical compounds that are not
included in the original database. Here, the SMILES structural
information–which had been acquired from ChemIDplus in the
previous step–were given as input to the signaturisers.

2.2.4 External Feature Vectors
2.2.4.1 Generation
At this stage, disease embeddings have been generated–seven
vector spaces in total; six from the CTD and another one from the
MeSH–and chemical signatures have been retrieved from the
Chemical Checker (25 spaces, augmented with an additional one
generated from MeSH data). We first aimed to concatenate
individual concept-specific spaces into one, so that diseases
(and chemicals) were represented by a single vector space (and
chemicals by a separate one). However, concatenation alone
would not only lead to a considerable dimensionality
difference between the resulting disease- and chemical-specific
spaces (896 and 3,328 dimensions, respectively), but also

FIGURE 1 | Overview of the baseline and extended classifiers. The
former accepts texts as its single input, while the latter augments its baseline
counterpart by also utilising external feature vectors. When training the
baseline model, weights downstream the “base input”– on the left side of
the figure–are learnt. Since the extended model is built on top of the baseline,
those weights can be transferred and frozen, effectively remaining unchanged
during training. As a result, for the extended model, only one dense layer’s
weights have to be trained (Created with BioRender.com).
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potentially combine a great number of correlated features
together, adding redundant dimensions to the produced space.
Therefore, after concatenation followed a dimensionality
reduction step using truncated SVD. We have carefully tuned
this process to retain as much information as possible without
introducing additional noise.

The vectors were not normalised or centred prior to
concatenation and dimensionality reduction, as doing so in
this particular case did not lead to significant differences. For
diseases, we chose to concatenate the top two most dense
CTD spaces (GO-BP and GO-MF; for rationale, see Results)
and then performed truncated SVD to reduce them down to
103 dimensions, which explained about 90% of the original
variance. Separately, we reduced the dimension of the MeSH
space for diseases from 128 to 47 dimensions, which also
retained about 90% of the variance of the original data. We
concatenated the two reduced spaces to form the final 150-
dimensional disease space. In a similar manner, for
chemicals, we concatenated all the CC spaces and reduced
them down to 265 dimensions. The MeSH space for
chemicals was also reduced to 35 dimensions. In both
cases, about 80% of the original variance was explained. By
concatenation, the final chemical space was produced, which
is 300-dimensional.

At this point, a single disease-specific (and a second chemical-
specific) space exists. These are by no means related to the texts
but instead encode similarities between the concepts that were
extracted out of them earlier. In contrast, external feature vectors
are meant to be text-specific and to capture the similarities
between the texts, as these are encoded by the combinations of
chemicals and diseases that show up in them. For each text,
concept relative frequencies–already calculated during concept

annotation–were used to calculate the weighted average for the
disease embeddings and, separately, chemical embeddings.
Concept embeddings that belong to terms mentioned
infrequently within the text are, as a result, down-weighted
compared to those associated with more frequent terms. The
two (now text- and concept-specific) vectors were first
normalised to unity and then concatenated to form the final
external feature vector.

2.2.4.2 Comparisons
For between-space comparisons, two measures were used: the
Rank-Biased Overlap (RBO) (Webber et al., 2010) and Pearson
correlation. The RBO is a top-weighted similarity measure that
can be applied to non-conjoint ranked lists of indefinite length.
The measure models the behaviour of a user comparing between
two lists incrementally, at increasing depths, where at each depth
a fixed probability of stopping exists.

To compare the similarity between two spaces, a procedure
similar to the one described in the CC was followed (Duran-
Frigola et al., 2020). First, the common concepts between the two
spaces were identified. Then, for each concept, we computed a list
of its 100 closest neighbours. We used cosine similarities and
returned lists that were ordered by decreasing similarity. The
similarity search was performed efficiently using the Faiss library
in Python (Johnson et al., 2021). The two ranked lists were used to
calculate a RBO similarity score (we set p = 0.7, making the search
more top-weighted). The process was repeated for all common
concepts, the similarity scores were aggregated, and their average
value was calculated. This was used as the RBO similarity score
for the space-pair.

To calculate Pearson correlations, we applied Canonical
Correlation Analysis (CCA) on space-pairs to find orthogonal

FIGURE 2 | Comparisons between the different disease spaces. CTD1-6: Genes, Chemicals, Pathways, GO-BP (Biological Process), GO-CC (Cellular
Component), and GO-MF (Molecular Function). (A) Disease term coverage for the 6 CTD (Comparative Toxicogenomics Database) spaces and MeSH (Medical Subject
Headings). The latter, together with GO-BP andGO-MF, are the most enriched spaces, encoding about 96%, 78%, and 73%, respectively, of all the disease terms found
in text. (B) RBO (Rank-Biased Overlap) similarities and Pearson correlations between disease spaces. Although the two are not directly comparable, they seem to
be in good agreement with each other, with MeSH being the least and CTD1 (Genes) the highest correlated space, in general.
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linear combinations (canonical variables) of their features that
maximally correlate with each other. We kept the first three
canonical variable pairs and, for each of them, calculated the
Pearson correlation. By averaging those values together, the final
space-pair correlation value was calculated.

2.3 NN Classifiers and Validation
We developed two NN classifiers. The baseline classifier accepts
processed texts as its single input. The extended classifier
augments the baseline model by additionally taking into
account each text’s external feature vector (Figure 1). First,
the texts are fed into an embedding layer which has been
initialised with GloVe vectors (Pennington et al., 2014).
Then, these embeddings pass through a Bidirectional Long
Short-Term Memory (BiLSTM) layer which is followed by a
dense layer with ReLU activation. An output dense layer with
sigmoid activation is used to compute the classification
probability value.

For the extended classifier, the external feature vectors first
pass through a separate ReLU dense layer that is chosen to have
the same number of units as the one mentioned earlier. Thus, the
outputs of those two dense layers can be added together before
going through the same sigmoid output dense layer as the one
used in the baseline model. This design choice is intentional, it
introduces no additional hyper-parameters to optimise, and
allows for both the baseline and extended models to be
trained and tested within the same NCV scheme. We trained
the 10 outer-fold baseline models (which were inner-fold
winners), froze their weights, augmented and transformed
them to extended models, and then repeated the training one

more time. As a result, for the extended model, just a single dense
layer’s weights needed to be trained.

During initial testing and tuning, it became apparent that
using a Bi- instead of a Uni-LSTM layer and allowing for the text
embeddings to be trainable consistently led to better performing
models. Therefore, we did not optimise for those parameters.
Nonetheless, hyper-parameter tuning was applied within a NCV
scheme with 10 outer and 5 inner folds. We varied the embedding
dimension ([50, 100, 200, 300]), Uni-LSTM units (32–96, with a
step size of 16), dense layer units (192–320, with a step size of 32),
and the learning rate ([10–3, 5 × 10–3, 7 × 10–3, 10–2]). During
model training, we used a batch size of 32 and the Adam
optimiser with binary cross-entropy as the loss function. For
hyper-parameter tuning, we monitored validation loss. When
training the extended model, a fixed learning rate of 10–2

was used.
Additionally, we observed that the models learn rapidly and

usually start to overfit within the first 10 epochs, even with
dropout and L1/L2 regularisation applied appropriately to the
LSTM and dense layers. In fact, training for just one epoch tended
to produce models performing similarly or better than those
trained for longer. Thus, we chose to train for no more than one
epoch. In this case, regularisation does not improve performance
and was thus omitted (Komatsuzaki, 2019). We used Keras and
the Bayesian optimisation algorithm in KerasTuner to build,
train, and validate the NN classifiers and to perform hyper-
parameter optimisation. To support NCV, the original
KerasTuner code was subclassed and extended. We generate
stratified k-folds through Scikit-learn’s (Pedregosa et al., 2011)
“StratifiedKFold” function.

FIGURE 3 | 3D t-SNE plot of all the non-zero external feature vectors
(which combine both chemical and disease embeddings). A good degree of
separation can be observed between the DILI positive and negative texts, with
the former clustering cleanly on the top-right corner of the plot. A second
dense cluster is formed at the bottom-left corner. Between them, in the middle
part of the plot, reside both positive and negative texts that did not form
distinct clusters. While feature vectors can improve classification
performance, they tend to be sparse and should, therefore, not be used as the
single input to the classifier.

FIGURE 4 | Classification performance comparison between the two
models for different validation datasets. The performance across 10 folds is
being reported. Mean values are annotated with white diamonds. Both
classifiers perform virtually identically during internal validation (macro F1-
scores of 95.04 ± 0.61% and 94.80 ± 0.41%, respectively) and equally well
when tested on the first external dataset (micro F1-scores of 95.11 ± 0.34%
and 94.93 ± 0.48%, respectively). The models are not overfitting. There is a
significant drop in performance when testing on the second external dataset
(meant to assess the classifier’s generalisability). However, the extended
model performs considerably better, with a (micro) F1-score of 91.14 ± 1.62%
compared to the baseline’s 88.30 ± 2.44%.
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3 RESULTS

3.1 Concept Embeddings
We first examined the degree of term coverage for the different
concept spaces (Figure 2A). Chemical and disease terms found in
the texts have already been extracted and collected. However,
there are terms missing in some of the spaces. This is either due to
the term not being present in the data that was used to construct
the spaces in the first place or a result of the TF-IDF word filtering
steps that were applied afterwards. Missing terms are represented
as null vectors. For diseases, MeSH is the most enriched space
(96% coverage), followed by the CTD’s GO-BP and GO-MF
(coverage of 78% and 73%, respectively). Since we normalise
terms to the MeSH vocabulary, the MeSH space is expected to be
the most enriched.

For chemicals, the CC spaces appear to be equally enriched,
with a coverage of about 60%. The MeSH space for diseases has a
higher coverage of 84%. The uniformity that is observed across
the different CC spaces can be attributed to, and also supports, the
usage of the CC signaturisers. These fill in the gaps of missing
molecular signatures; typically, CC spaces tend to differ
considerably in terms of their sizes (Duran-Frigola et al.,
2020). Notably, a concept space with lower term coverage does
not necessarily translate to external feature vectors with reduced
text coverage. The latter are (text-specific) linear combinations of
concept vectors and the coverage of that space is, thus, also
affected by the combination of terms that show up in each
particular text as well as their relative frequencies.

We then calculated the RBO similarity measures and Pearson
correlations across the different pairs of disease spaces

(Figure 2B). The two measures are in good agreement with
each other. As expected, given that the rest of the spaces are based
on the CTD-sourced datasets, the MeSH space tends to be the
most dissimilar one, followed by the CTD’s Chemicals space. On
the other end, CTD Genes is highly correlated with most other
CTD spaces. We created similar plots to compare between the
chemical spaces and, for the CC spaces, observed a similarity and
correlation profile that matched the one provided and discussed
in the original publication (Duran-Frigola et al., 2020).

We utilised both coverages and correlations when selecting for
the disease spaces and, separately, chemical spaces to concatenate.
For diseases, we chose the top three enriched spaces (MeSH, and
CTD GO-BP and GO-MF). When seen as a group, these are
strongly correlated with the rest of the CTD spaces. We chose to
concatenate all chemical spaces together. The premise here is that
concatenation between spaces with largely different term
coverages might introduce unwanted noise later, during the
dimensionality reduction step (see Methods). This is of
concern for diseases, where coverage ranges from as low as
44% to a highest score of 96%, but not for chemicals, where it
remains virtually unchanged across the CC spaces.

3.2 External Feature Vectors
We were also interested in assessing the extent to which the
external feature vectors are capable of capturing the differences
between DILI positive and negative texts. Ability to do so, at this
stage, would provide strong evidence of their suitability to be used
as additional inputs to the (extended) classifier. First, we
normalised the vectors, performed Principal Component
Analysis (PCA), and kept the first 15 components. We then
applied t-Distributed Stochastic Neighbour Embedding (t-SNE)–
a technique for visualising high-dimensional datasets in two or
three dimensions–to produce a 3D t-SNE plot (Figure 3). The
method is particularly suited for our purposes here, as it preserves
the local structure of the data (van der Maaten and Hinton, 2008).
Throughout this work, as is usual in NLP, we are working with
cosine similarities. However, cosine distances are not invariant to
mean-centring–which PCA implicitly performs–and will be
affected and distorted. In contrast, euclidean distances are
mean-centring invariant. By normalising the data first, we
enforce a monotonic relationship between cosine and
euclidean distances, which we later exploit by using euclidean
distances in the t-SNE plot (Korenius et al., 2007).

In the plot (Figure 3), a good degree of separation can be
observed between the DILI positive and negative samples.
Positive texts tend to cluster in the upper-right and also form
a tight cluster in the lower-left corner. Between those, both
positive and negative texts reside, forming largely overlapping
clusters. It should be pointed out that concept vectors were learnt
completely separately from, and are in no way connected with,
the classification of texts in the two classes. As such, the
acceptable clustering performance seen here should be
attributed in: 1) similar chemicals and/or diseases appearing
within each class, 2) dissimilar chemicals and/or diseases
appearing between classes, 3) unique chemical, disease, and
chemical-disease combinations dominating in each class. This
might be worth further investigation but, for the moment, makes

FIGURE 5 | Macro F1-score as a function of classification threshold
varied in the domain [0.5, 0.95]. Mean values and standard deviations are
plotted. The extended model outperforms the baseline at every threshold
value. There is a clear difference in slope, with the baseline curve being
steeper throughout the domain. Learning from the external feature vectors has
pushed the extended classifier to be more confident in its predictions. In turn,
using the same threshold for both models will lead to (at least) one of them
under-performing. A higher threshold is desirable, as it tends to improve the
performance of the models on the more challenging second external dataset.
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an appealing case for the usefulness of the external feature vectors
as a means for improving classification performance.

3.3 Classification Performance
We compared between the baseline classifier, which uses texts
as its sole input, and the extended one that also accepts
external feature vectors. As we are interested in the balance
between precision and recall, we used the F1-score as
performance measure. During internal validation, macro
F1-score (average of per-class scores) was calculated. For
external validation, micro scores (calculated over the
entirety of the predictions, irrespective of classes) are
reported. During initial tuning and testing, we observed
that the baseline model performs optimally with the usual
classification threshold of 0.5 but, for the extended model, a
higher threshold of about 0.7 leads to unchanged or improved
performance, depending on the validation dataset used. We
set these, seemingly arbitrary, thresholds at the beginning of
the NCV procedure and evaluated their suitability afterwards.
Alternatively, a more elegant approach would treat the
classification threshold as a hyper-parameter to be
optimised in the inner NCV folds.

We plotted the average performance across the 10 outer
folds (Figure 4). During internal validation, the baseline and
extended models performed virtually identically, with F1-
scores of 95.04 ± 0.61% and 94.80 ± 0.41%, respectively.
Evaluating the models on the first external dataset, which
closely resembles those used for training and internal
evaluation, painted a similar picture; most importantly, this
provides proof that the training procedure we utilise does not
lead to overfitting. In this case, baseline and extended models

achieved scores of 95.11 ± 0.34% and 94.93 ± 0.48%,
respectively. We observed a drop in performance, which
affected both models, when testing on the second external
dataset. However, the extended model managed to outperform
the baseline model by a considerable margin; the former
achieved an F1-score of 91.14 ± 1.62% compared to the
baseline’s 88.30 ± 2.44%. The extended classifier also seems
to produce lower dispersed scores, which becomes especially
pronounced during the second phase of external validation.
For this, the classifiers are tested against texts that are not title-
abstract pairs; for the positive set, LiverTox (Hoofnagle et al.,
2013) annotations are included instead. The better performing
extended model can then be assumed to generalise better on
texts that follow a different feature distribution than the one
the classifier was trained on.

Lastly, we evaluated the choice of threshold for the two
classifiers. Within each outer fold, we varied the threshold
between 0.5 and 0.95 and calculated the (macro) F1-scores
(Figure 5). When compared at the same classification
threshold, the extended model consistently outperforms its
baseline counterpart by a small margin at thresholds closer to
0.5, which incrementally grows larger at higher thresholds. This
implies a difference between the slopes of the two curves which is,
indeed, there to be seen: the baseline curve is steeper at each
threshold value compared to the extended one. The inclusion of
the external feature vectors has resulted in the extended classifier
being more confident in its predictions, which is reflected in the
probability scores being pushed closer to the limit points of the [0,
1] interval (and a lower binary cross-entropy validation loss, too).
It is desirable to set the threshold to a higher value, as doing so can
improve–sometimes considerably–the classification performance

FIGURE 6 | Comparison of precision and recall scores between the two models during external validation. Classification performance is reported across 10 folds
and mean values are annotated with white diamonds. Overall, moving from the first to the second external dataset results in significantly decreased precision and
moderately improved recall (with the latter approaching unity). No notable performance difference is observed between the models, with the exception of precision
achieved on the second validation dataset (assessing generalisability). There, the extended model gets a higher score of 85.17 ± 3.63% compared to 79.66 ±
4.20% of its baseline counterpart. On the same data, extended and baseline models achieve recall scores of 98.15 ± 1.37% and 99.22 ± 0.51%, respectively.
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on the second external dataset. Higher thresholds, however,
might hurt the performance on the internal and the first
external validation datasets. For the extended model, choosing
a threshold in the range of 0.5–0.7 leads to virtually unchanged
F1-scores, a behaviour not followed by the baseline model. With
this in mind, the choice of thresholds for the two classifiers seems
to be near-optimal.

4 DISCUSSION

In this work, we set out to develop a classifier that is capable of
accurately distinguishing between DILI-positive and negative
literature. To do this, we began by utilising word embeddings as
a means of capturing the semantic similarities between
individual words and, subsequently, the texts these appear in.
However, word embeddings learnt directly on DILI-related (or
other clinical or biomedical) literature should not be expected to
capture the similarities between diseases and chemicals.
Ultimately, while a variety of different approaches exist,
methods for learning (word) embeddings rely on

context—that is, the entities (in this case words) that tend to
appear around a target one. As an example, GloVe embeddings
encode linguistic and/or semantic similarities of words by taking
into account co-occurrences (Pennington et al., 2014), and the
word2vec algorithm either predicts a target word given those
around it (Continuous Bag-of-Words Model; CBOW) or tries to
predict surrounding words based on the target (continuous
Skip-gram model) (Mikolov et al., 2013). Then, it becomes
apparent that no appropriate context exists in free text for
meaningful relations to be encoded for either chemicals or
diseases. For the former, such context could instead be
shared indications, protein targets, or adverse effects; for the
latter, common disease-associated genes–including how these
might relate through GO terms–or shared therapeutic
chemicals. This is the rationale behind the usage of concept
embeddings here.

Concept embeddings, turned into text-specific external feature
vectors, however, present a challenge when utilised alone for
classification. For the DILI-positive class, 93% and 86% of the
texts have been annotated with at least one disease and chemical
term, respectively. In the negative class, these percentages shrink

FIGURE 7 | An example case of exploratory analysis: retrieving non-trivially similar papers. Identifying documents that co-mention “Liver Cirrhosis (LC),” “Systemic
Lupus Erythematosus (SLE),” and “Azathioprine” presents an interesting challenge, as that specific combination does not exist in the positive training set. Notably,
searching through the complete (positive and negative) training set using our proposed approach uncovers a non-trivially similar text as the best hit (cosine similarity of
about 0.91). Further looking into the similarities between the query and in-text diseases (along the x-axis; sorted by decreasing in-text frequency) reveals that, while
no overlapping terms exist, a link between SLE and rheumatoid arthritis has been identified (similarity of 0.79). Likewise, the close connection between LC, and Drug-
Induced Liver Injury (DILI) and adverse drug reactions has been captured (similarities of 0.78 and 0.71, respectively) (Created with BioRender.com).
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down to 78% for diseases and 56% for chemicals. The lack of
annotated concept terms can be attributed to: 1) failure to
annotate terms that exist in the text (false negatives), or 2)
genuine lack of terms (true negatives), or 3) lack of terms in
the title and/or abstract but presence in the full text (true
negatives in the context of the challenge but false negatives in
the broader sense). Because of the first and last points, filtering
out texts with no annotated concepts as DILI-negative would be
problematic. Instead, combining concept with word embeddings
enables the classifier to make informed decisions even when no
chemicals or disease terms have been identified. As a result,
acquiring full texts when no concept terms are included in the
title and abstract could have the potential to further improve
classification performance.

Interestingly, the inclusion of chemical and disease
embeddings leading to improved F1-scores was not a
behaviour shared between the two external validation datasets
(Figure 4). While the extended classifier outperformed the
baseline during the second round of external validation, the
two models behaved equally well on the first. Moreover, both
suffered reduced performance when moving from the first to the
second round. The latter can be attributed to the different nature
of the data. Although the first external validation dataset is a
collection of paper title and abstract pairs–similar to those used
for model training, and internal evaluation and testing–the
second comprises of a combination of LiverTox (Hoofnagle
et al., 2013) DILI-positive annotations and a set of non-trivial
DILI-negative texts. Therefore, it is meant to assess the robustness
of the classifiers on unseen texts that should also be expected to
follow a different underlying feature distribution. That explains
the drop in performance observed during the second round of
external validation and, partially, the difference (or lack thereof)
in behaviour between the two models. The extended classifier
seems to generalise better on unseen data, a trend that is captured
by the second but not the first external dataset.

Further to that, the improved behaviour of the extended model
during the second round of external validation is a result of the
threshold moving that was performed during model performance
tuning. We have showed that the extended classifier, in contrast to
the baseline model, maintains a high, almost unchanged, F1-score
over a large range of increasing classification thresholds (Figure 5).
This captures the expected behaviour of themodel on data of similar
nature to the first external dataset. We hypothesise that this dataset
includes a more trivial negative set of texts compared to the second.
Because of that, making predictions on the latter leads to a rise in
false-positives, which is reflected in the steep drop in precision that is
observed (while recall improves moderately; Figure 6). In this case,
the extended classifier performs better because of its ability to make
more confident predictions (probabilities pushed towards unity),
which justified and allowed for the selection of a higher classification
threshold in the first place. That further supports the observation
that the inclusion of drug and disease embeddings has resulted in a
more robust classifier. Training with a more challenging negative set
of texts might further improve classification performance.
Additionally, selecting an even higher threshold could trade
increased precision for reduced recall–a viable option given that
recall already approaches unity.

The additional information that we either generate or
collect about disease, chemical, and text similarity can also
prove valuable for the purposes of visualisation and
exploratory analysis. Similar to the t-SNE plot that we
provide in this study (Figure 3), texts could be further
clustered together based on the combination of chemicals
or, alternatively, diseases that occur therein–a process that
inherently takes into account concept similarities, too.
Alternatively, average chemical similarities could be
calculated against drugs that are already known to cause
DILI, for example with the help of the DILIrank dataset
(Chen et al., 2016). These could be used to rank DILI-
positive texts from most (high similarity to known DILI-
related drugs) to less promising, as well as annotate them
separately on the t-SNE plot so that their neighbourhoods can
be identified and further explored. This is one of the most
exciting future prospects of this work.

In support of the latter, we utilised the text-specific external
feature vectors that have already been calculated to retrieve non-
trivially similar texts. Searching against an existing text that is
included in the positive training set typically leads to the
identification of a large number of highly-similar texts with
overlapping terms (diseases and/or chemicals). While this is
desirable behaviour, the existence of multiple overlapping
terms does not make for an appealing case of “non-trivial
similarity.” For that reason, we created a dummy query feature
vector which represents a text that mentions Liver Cirrhosis
(LC), Systemic Lupus Erythematosus (SLE), and azathioprine.
This is a combination that does not exist in the positive set of
the training data. Ranking, in terms of cosine similarity, both
DILI-positive and negative training texts against the
aforementioned query vector reveals that the best hits
mention azathioprine but none of the disease terms. When
looking further into the top-scoring text (score of about 0.91;
Figure 7), we observe a high degree of similarity between the
diseases that are mentioned in-text and the ones that were
queried. Notably, SLE is linked with rheumatoid arthritis with
a similarity score of 0.79, and LC with DILI and adverse drug
reactions with scores of 0.78 and 0.71, respectively. In a similar
manner, non-obvious associations can be brought forward for
further consideration; such connections are also captured on
the t-SNE plot (Figure 3).

Taken together, these points make a strong case for the
inclusion of chemical and disease embeddings in the proposed
algorithm. First, they allow for the classifier to make more
decisive predictions which, in turn, places the optimal (as in,
the one that improves on or, at worst, leaves unchanged the
performance of the classifier on all datasets) classification
threshold above 0.5. As a result, the extended classifier
generalises better on alternatively-sourced texts compared to
the baseline model (Figure 4). We would expect this
behaviour to translate similarly to imbalanced datasets, though
this case was not explicitly tested here. Most notably, though, the
proposed pipeline can facilitate the visualisation and further
exploratory analysis of the identified literature. Ultimately, an
automated classification procedure can only do so much before
human intervention and reasoning is required. In this regard, the
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potential to further cluster publications based on the similarities
of the in-text mentioned drugs and/or diseases can both help
uncover hidden relations that exist between them and speed up
the overall process of accumulating enough “incriminating”
evidence implicating a particular drug with DILI (and the
conditions under which this happens).
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