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Abstract: The SARS-CoV-2 spike protein mediates target recognition, cellular entry, and ultimately
the viral infection that leads to various levels of COVID-19 severities. Positive evolutionary selection
of mutations within the spike protein has led to the genesis of new SARS-CoV-2 variants with
greatly enhanced overall fitness. Given the trend of variants with increased fitness arising from
spike protein alterations, it is critical that the scientific community understand the mechanisms
by which these mutations alter viral functions. As of March 2022, five SARS-CoV-2 strains were
labeled “variants of concern” by the World Health Organization: the Alpha, Beta, Gamma, Delta,
and Omicron variants. This review summarizes the potential mechanisms by which the common
mutations on the spike protein that occur within these strains enhance the overall fitness of their
respective variants. In addressing these mutations within the context of the SARS-CoV-2 spike protein
structure, spike/receptor binding interface, spike/antibody binding, and virus neutralization, we
summarize the general paradigms that can be used to estimate the effects of future mutations along
SARS-CoV-2 evolution.
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1. Introduction

Of the structural proteins that comprise the SARS-CoV-2 virus, it is likely that none is
as well-studied as the spike (S) protein. The S protein is critical for the function of SARS-
CoV-2, being the protein responsible for target recognition, cellular entry, and endosomal
escape [1]. Given the multifaceted nature of the S protein, it is not surprising that the
enhanced fitness seen in many variants of SARS-CoV-2 has been attributed to mutations of
the S protein [2].

Perhaps one of the best exemplars of the impacts of mutational changes in the SARS-
CoV-2 S protein is the D614G mutation. Mutation D614G was first identified in mid-2020
and rapidly spread throughout the global population, with over 95% of all sequenced
SARS-CoV-2 variants containing this mutation by January 2021. Today, the D614G mutation
is found within all major circulating strains of SARS-CoV-2 and has been attributed to
substantially increasing the infectivity of the virus [3].

The newly identified SARS-CoV-2 variant of concern (VOC) as of December 2021,
Omicron, has a total of 34 mutations (30 nonsynonymous mutations, 3 deletions, and
1 insertion) relative to the wild-type S protein, accounting for 2.5% of all amino acids
occurring within the protein [4]. Given the rapid rate with which these mutations are
appearing, it is now more important than ever for the scientific community to understand
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the potential mechanisms by which these alterations are positively selected along SARS-
CoV-2 evolution. This review addresses the understood mechanisms by which these
mutations likely enhance the infectivity and/or the immunity-escaping ability of the virus,
while consolidating general paradigms that can be utilized to estimate the mechanisms by
which other mutations will likely arise during SARS-CoV-2 evolution.

2. Structure of the SARS-CoV-2 Spike Protein

To comprehend the mechanisms by which mutations of the S protein are able to
enhance infection and/or immune escape, it is critical to understand the general structure
and function of S as a whole. The SARS-CoV-2 S protein comprises two subunits, S1 and S2,
which can be subdivided into two and five primary subdomains, respectively [5]. The
S protein as a whole is responsible for target recognition, binding, and cellular entry by
SARS-CoV-2, with S1 and S2 playing distinct roles during this process [6]. The S1 subunit
is responsible for target recognition and binding, while S2 is involved in membrane fusion
and endosomal escape.

The S1 subunit contains an N-terminal domain (NTD) and a C-terminal receptor-
binding domain (RBD). The RBD (~21 kDa) is responsible for the recognition of the
angiotensin-converting enzyme 2 (ACE2) which acts as the receptor for SARS-CoV-2 vi-
ral entry [7]. The RBD recognizes a number of other structurally related targets, though
the RBD’s role in recognition of these receptors is not yet well-understood in the context
of disease progression, symptoms, and severity [8]. In contrast to the RBD, the NTD of
S1 is underinvestigated and therefore less well-characterized. The NTD plays a critical
role in overall S protein structural conformation, and mutations occurring in the NTD
are linked to SARS-CoV-2 immune escape [9]. The NTDs of related coronaviruses are
capable of facilitating infection via the recognition of sugar-containing molecules such as
glycoproteins, although the exact role of this potential binding is debated in the context of
SARS-CoV-2 [10]. The primary mechanism of SARS-CoV-2 initial infection is viral entry
mediated by S (on virus) and ACE2 (on host cells) interactions in humans (Figure 1a) as
well as in model organisms such as nonhuman primates.
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Figure 1. ACE2-mediated cellular infection by SARS-CoV-2. (a) Schematic of direct cellular entry of
SARS-CoV-2 viral particles into human cells, mediated by ACE2. (b) Cellular infection by ACE2-spike
mediated cell-cell fusion. Infection in human (h) cells is used as an example.
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The S2 subunit contains a fusion peptide (FP) subdomain, two heptad repeat sub-
domains (HR1 and HR2), a transmembrane subdomain, and a C-terminal tail [10]. After
initial ACE2 recognition and viral attachment, the FP subdomain wedges into the cellular
membrane, at which point the HR1 and HR2 subdomains are pulled toward one another
in an antiparallel confirmation [11]. After contact, the HR1 and HR2 subdomains form
a six-helical bundle, causing the viral particle as a whole to come into close proximity to
the cell, ultimately leading to membrane fusion and viral entry [12]. The transmembrane
subdomain anchors the S to the envelope of SARS-CoV-2, while the C-terminal tail sits
inside the viral particle. Though the role of the transmembrane subdomain is primarily
structural, the C-terminal tail was demonstrated to promote S escape from the endoplas-
mic reticulum [13]. This escape of S from the endoplasmic reticulum likely leads to the
aggregation of S on the surface of infected cells, which can interact with the ACE2 receptor
expressed on neighboring cells, ultimately leading to cell–cell fusion, syncytia formation,
and spread of the viruses from infected cells to neighboring cells [14] (Figure 1b).

3. SARS-CoV-2 Variants of Concern

The World Health Organization (WHO) currently designates five strains of SARS-CoV-
2 as variants of concern (VOC): Alpha, Beta, Gamma, Delta, and Omicron [15]. The Pango
lineages for these variants are B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.1.529, respectively [16].
The defining mutations for each SARS-CoV-2 variant and their relative location within
S are shown in Figure 2a,b, respectively.
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SARS-CoV-2 strains are given a VOC designation on the basis of either a demon-
strated increase in transmissibility or an increase/alteration in disease presentation [15]. 
Although the pathogenicity and overall mortality of these strains are debatable, it is gen-
erally accepted that all five VOCs have enhanced transmissibility (with increased infec-
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in the Wuhan outbreak during early 2020 [17–19]. In particular, the most recent dominant 

Figure 2. Mutations of spike protein within VOCs. (a) Defining mutations of WHO-labelled VOCs
and their relative position in the S1/S2 subunits. (b) Visual representation of the relative position
of mutations within the SARS-CoV-2 spike protein. Mutations are reported as listed in the CoV-
Lineages database as of December 2021. NTD: N-terminal domain; RBD: receptor-binding domain;
FP: fusion peptide; HR1: heptad repeat 1; HR2: heptad repeat 2; TM: transmembrane region;
IC: intracellular domain.

SARS-CoV-2 strains are given a VOC designation on the basis of either a demon-
strated increase in transmissibility or an increase/alteration in disease presentation [15].
Although the pathogenicity and overall mortality of these strains are debatable, it is gener-
ally accepted that all five VOCs have enhanced transmissibility (with increased infectivity
and/or immune escape) compared to the earlier “wild-type” SARS-CoV-2 identified in
the Wuhan outbreak during early 2020 [17–19]. In particular, the most recent dominant
variant, Omicron, displays advantageous fitness in transmission and immune escape, sug-
gestive of potential serotype demarcation [20]. The overall increased fitness for positive
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selection of these variants is further supported by the fact that 6 of the 52 total mutations
that can be found among these variants existed in over half of all sequenced genomes
as of January 2022.

4. Mutations of the S1 Subunit Containing the Receptor-Binding Domain

Due to the role of the RBD in ACE2 recognition and binding, it stands to reason that
changes in the amino acid sequence of RBD can dramatically impact S binding affinity for
ACE2 and, ultimately, SARS-CoV-2 infectivity. This is reflected by the fact that while muta-
tions occur throughout this region, most of them are located on the surface of S (Figure 3a),
allowing for direct interactions with potential ligands (Figure 3b,c). A 2020 deep mutational
analysis conducted by Starr et al. screened for alterations of human ACE2 affinity that
occurred as a result of single-site mutations within this region [21]. Comparing the results
of this study to variants of concern that have arisen as of March 2022 (Figure 3a), among
sixteen mutations that contributed to reduce the neutralization of the mutant viruses by
post-vaccinated sera, only seven likely conferred increased binding affinity of S for ACE2
(G339D, N440K, L452R, S477N, T478K, E484K, and N501Y). These data suggest that bind-
ing affinity between S and the host receptor is not the predominant factor contributing to
the positive selection of mutations within the RBD [21]. Polymorphism of ACE2 is rare
(mean Fst 0.0167), with alterations hypothesized as modifying RBD-ACE2 affinity being
exceedingly uncommon, even within this subset [22].
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Figure 3. Mutations within the RBD of SARS-CoV-2 spike protein. (a) Visual representation of
mutations within the RBD (magenta) of SARS-CoV-2 spike. Notably, 15 out of the 32 amino acid
substitutions in the spike protein are localized in the RBD. (b) Structural location of SARS-CoV-2 S
subunits. (c) Close-up view of RBD (magenta) and VOC-occurring mutations (red). (d) Frequency,
effect on ACE2 affinity, modification of charge at physiological pH, alterations in hydrophobicity at
pH 7, and direct evidence of decreased neutralization by postvaccinated sera for mutations within
the RBD of S protein. Frequency is presented as a percentage of reported SARS-CoV-2 genomes
logged within the GISAID database, as a notion of fitness advantage. Alteration in ACE2 affinity
based on data by Starr et al. [21], with mutations that increase ACE2 affinity in blue and mutations
negatively impacting ACE2 affinity in red. Frequency represented as a percentage of reported
SARS-CoV-2 genomes logged within the GISAID database retrieved 10 March 2022. Alterations in
hydrophobicity based on previously established values [23]. Alterations in residue charge based on
standard calculations at physiological pH.
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An alternative explanation for positive selection of mutations within the RBD of SARS-
CoV-2 is enhancement of resistance to postvaccinated sera [24]. Studies testing monoclonal
antibodies isolated from SARS-CoV-2-vaccinated individuals have demonstrated resistance
conferred by nearly all RBD mutations [19,25–28] (Figure 3d). This is not surprising
as 40% of the antibodies produced against SARS-CoV-2 target the RBD, and the vast
majority of these antibodies are neutralizing antibodies [29]. Additionally, the majority
of mutations within this region alter either the charge or hydrophobicity of the RBD,
dramatically increasing the probability of antibody escape via modified epitope affinity or
local conformational changes decreasing epitope accessibility. An interesting exception to
this trend of individual mutations showing increasing resistance to postvaccinated sera is
represented by the G496A substitution, though this may be due to this mutation being fairly
recent and data on its effects being limited at this time. Taken together, it can be inferred
that the primary driver of positive selection arising from the majority of mutations within
the RBD is enhanced neutralization resistance as opposed to increased affinity of S to ACE2.

Thirteen of the sixteen RBD mutations associated with VOCs are found within the
Omicron variant, ten of which exclusively occur in the defining sequence of Omicron. A
popular theory for the sudden appearance of these mutations (many of which reduce ACE2
affinity) is that the Omicron strain evolved in an immunocompromised patient, thereby
reducing selective pressure and allowing for multiple concurrent mutations as the strain
developed [30]. This theory is further supported by the strain first being identified in an
immunocompromised patient in South Africa [30]. An alternate theory for the sudden
appearance of this multitude of mutations is the occurrence of zoonosis. Five of the defining
Omicron mutations (K417, E484, Q493, Q498, and N501) are commonly found in mouse-
adapted SARS-CoV-2 strains, suggesting that the strain may have initially developed in
animal species (for example, murine) and then was transmitted to and further evolved
within the human population [31]. These observations demonstrate the possibility that
not all individual COVID-19 mutations arise as a result of normal selective pressures,
but may occur as the culmination of net-positive concurrent mutations that arise under
atypical conditions.

5. Mutations of the S1 Subunit N-Terminal Domain

The reasons for the positive selection of variants bearing mutations within the NTD
of SARS-CoV-2 S are multifaceted, with common mutations occurring throughout the
NTD subdomain (Figure 4a,b). Though 35% of antibodies targeting SARS-CoV-2 target
the NTD, only about one-third of these antibodies have a neutralizing effect [29]. Further
investigation of neutralizing antibodies targeting NTD have revealed a “supersite” to
which nearly all of these antibodies bind [32]. An interesting hallmark of antibodies
targeting the NTD region is their ability to decrease cell–cell fusion, suggesting that the
NTD may play a role in syncytium formation [32]. Fourteen of the eighteen mutations
that occur in the NTD of VOCs occur within close proximity (eights angstroms) of this
antigenic supersite (Figure 4c). Taken together with the fact that many of these mutations
occur within the Omicron variant (which appeared only after vaccinations became widely
distributed), it is possible that resistance to neutralizing antibodies (particularly those
found in postvaccinated sera) targeting the NTD play a large role in the positive selection
for SARS-CoV-2 [33].
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Figure 4. Mutations within the NTD of SARS-CoV-2 spike protein. (a) Structural representation of
substitutions (red) within the NTD (green) of SARS-CoV-2 spike protein. (b) Visual representation of
mutations within the NTD of spike protein. (c) Frequency, residue distance from NTD “supersite”,
modification in charge at physiological pH, and change in hydrophobicity at pH 7. Residue distance
was calculated in PyMOL on the protein three-dimension structure (PDB-6ZGG), by measuring the
distance between the nearest atom of “supersite” amino acids identified by Mccalum et al., 2021 [32]
and the nearest atom of amino acids of interest.

Though they do not occur near the NTD neutralization “supersite”, T95I and ∆69–70
occur in almost one-quarter of all sequenced genomes and are indicators of the highly
successful Omicron variant, which has demonstrated a clear fitness advantage, suggesting
positive selection for these mutations. Analysis of ∆69–70 in pseudoviral models revealed
a substantial ability for this mutation set to increase infectivity [34]. Further analysis
demonstrated that this increase is primarily mediated by enhancement of cell–cell fusion,
while simultaneously having little to no effect on neutralization by NTD-neutralizing
antibodies [34]. Similarly, analysis of metadata for qPCR cycling thresholds obtained from
patients infected with SARS-CoV-2 showed an increase in viral load for patients with
variants bearing the T95I mutation, especially in the presence of ∆142 [35]. Structural
modelling additionally revealed topological changes that may occur in the NTD “supersite”
as a result of T95I, suggesting that it is possible for other mutant residues, even if they are
not in the supersite region, to alter the topology of the supersite and affect SARS-CoV-2
neutralization by postvaccinated sera [35].

6. Other S1 Mutations and Mutations Occurring between S1 and S2

Mutations that occur outside of major subdomains such as the NTD and RBD also
heavily influence SARS-CoV-2 infectivity and/or sensitivity to sera from convalescent
and/or vaccinated individuals. Although they do not occur in major subdomains, all
residues within this region substantially alter local charge and/or hydrophobicity, qualities
that greatly increase the likelihood of modifying local protein structure and, ultimately,
function. This observation suggests that these mutations have arisen as a result of positive
selection as opposed to random genetic drift.
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D614G is the most ubiquitous of all known SARS-CoV-2 mutations of the S protein,
having occurred in over 99% of all sequenced cases of COVID-19 as of 2022 (Figure 5a).
While D614G does not occur firmly within any particular subdomain (Figure 5b,c), it
seems to have an effect on multiple aspects of the S protein. Initial pseudoviral models
for infection demonstrated that D614G greatly enhances SARS-CoV-2 infectivity, likely
resulting from increased incorporation of S into the SARS-CoV-2 virion [36]. Further
analysis of D614G demonstrated that the mutation alters the conformation of the RBD,
increasing its occurrence in an “up” state that enhances the binding affinity between S and
ACE2, as well as increasing S accessibility by furin [37].
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Figure 5. Mutations occurring outside of major SARS-CoV-2 spike subdomains. (a) Frequency, charge
modifications, and alteration in hydrophobicity for mutations occurring outside of major spike
subdomains. (b) Structural representation of mutations occurring within this region (P681 is not
shown, as it is on the other surface of the current 3D view). (c) Schematic representation of mutations
occurring outside of major spike subdomains.

As the pandemic has progressed, mutations at P681 have emerged in the majority of
sequenced SARS-CoV-2 genomes. These mutations are particularly interesting as they occur
in a 10-residue stretch from amino acids 680–689, which comprise the furin cleavage site
which develops during viral particle production. Structural modeling of P681 mutations
have demonstrated that alterations at this site are capable of increasing furin cleavage [38].
In pseudoviral models, only P681R has been demonstrated to independently increase
cellular infectivity via furin cleavage, while P681H does not appear to significantly impact
either furin cleavage or viral infectivity independently [39,40]. The A570D mutation may
also impact furin cleavage, with structural analysis of this alteration showing an increase in
the spacing between individual chains of S trimer (brought about by drastic changes in both
charge and hydrophobicity), potentially enhancing furin accessibility [41]. Pseudoviral
testing of the A570D was unable to demonstrate that the mutation can independently
increase infectivity, with the mutation destabilizing the SARS-CoV-2 pseudovirion [42].
This finding indicates that positive selection of A570D may occur as a result of interaction
with coinciding mutations that are known to stabilize SARS-CoV-2 pseudovirions (such as
D950N and D1118H) [42].
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7. Mutations of the S2 Subunit

The mechanisms through which mutations within the S2 subunit affect SARS-CoV-2
infectivity are potentially diverse, with the S2 subunit containing five subdomains, each
having a distinct function. Only four mutations within the S2 region occur commonly
in SARS-CoV-2 VOCs other than the recent Omicron strain (and are therefore better re-
searched): T716I, D950N, S982A, and D1118H (Figure 6a). Two of these three mutations
(D950N and S982A) lie within the HR1 domain, suggesting that alterations within this
region may be particularly prone to driving positive selection (Figure 6b). This positive
selection may occur by altering the association of HR1 with HR2, the possibility of which is
further enhanced when considering that both mutations substantially alter either the charge
or hydrophobicity at these sites. Structural analysis of the region between the heptad repeat
domains (where D1118H occurs) showed that residues within this region play an important
role in repositioning the S2 domain postfusion, allowing for the heptad repeat domains to
interact with the targeted cell membrane [43].
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modification in charge at physiological pH, and alteration in hydrophobicity for mutations occurring
within the S2 subunit. (b) Visual representation of mutations occurring within the S2 subunit.

The S982A substitution increases the presentation of the “up” RBD state by eliminating
the interaction with T547, which stabilizes the “down” RBD state. This change in RBD
state is partially counteracted by the complementary A570D mutation that occurs in the
Alpha SARS-CoV-2 variant [44]. It was demonstrated that the D570 residue is capable of
forming an interprotomer hydrogen bond with N856, effectively re-establishing the bond
that stabilizes this “down” confirmation [44]. Within the S trimer, when D1118H mutation
occurs, the three histidine residues (one from each monomeric S) form a histidine triad
within the trimer, stabilizing the overall structure of the trimeric S complex [45]. Although
there is, as yet, no direct evidence of the role this stabilization plays, it was suggested that
this effect may compensate for local destabilizations caused by associated mutations such
as T716I [44]. The concurrence of these conflicting mutations within the same variants
indicates that there is likely a balancing act between maintaining S stability and allowing
for the switching between various conformations in the pre- and postfusion states.

8. Conclusions

Mutations within the S protein of the circulating variants of SARS-CoV-2 are increas-
ing at a significant rate and are likely to occur more often as selective pressures from
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host immunity gained in previous infections and/or vaccinations continue to drive rapid
evolution. Although many mutations have presented over the course of the pandemic,
diligent research has elucidated a general trend: many of the emerging and surviving
mutants enhance SARS-CoV-2 functions regarding infectivity and immune escape. With
new variants constantly emerging, future therapies, as well as vaccinations, will be more
successful if they demonstrate effectiveness over a broad range of S variants. Given these
rapid changes, it may also be beneficial to give particular consideration to therapies that
function independently of S structure and functionality.
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