
Krylov and Efremov ﻿BMC Res Notes (2021) 14:124
https://doi.org/10.1186/s13104-021-05536-5

RESEARCH NOTE

libxtc: an efficient library for reading
XTC‑compressed MD trajectory data
Nikolay A. Krylov1,2*  and Roman G. Efremov1,2,3 

Abstract 

Objective:  The purpose of this work is to optimize the processing of molecular dynamics (MD) trajectory data
obtained for large biomolecular systems. Two popular software tools were chosen as the reference: the tng and
the xdrfile libraries. Current implementation of tng algorithms and library is either fast or storage efficient and
xdrfile is storage efficient but slow. Our aim was to combine speed and storage efficiency through the xdrfile’s code
modification.

Results:  Here we present libxtc, a ready-to-use library for reading MD trajectory files in xtc format. The effectiveness
of libxtc is demonstrated for several biomolecular systems of various sizes (~ 2 × 104 to ~ 2 × 105 atoms). In sequen-
tial mode, the performance of libxtc is up to 1.8 times higher and 1.4 times lower than xdrfile and tng, respectively. In
parallel mode, libxtc is about 3 and 1.3 times faster than xdrfile and tng. At the same time, MD data stored in the xtc
format require about 1.3 times less disk space than those treated with the tng algorithm in the fastest reading mode,
which is a noticeable saving especially when the MD trajectory is long and the number of atoms is large—this applies
to most biologically relevant systems.

Keywords:  Molecular dynamics, Biomolecular simulations, Parallel data processing, Efficiency of MD trajectories
reading

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Molecular dynamics (MD) is one of the most powerful
and widely used methods for atomistic modeling of bio-
logical systems. It is often employed to study such phe-
nomena as protein folding, assembly and binding to cell
membranes, protein–protein and protein–ligand inter-
actions, and many others (see [1] for recent review). The
results of the MD experiment are stored in the so-called
MD trajectory file, which contains information about the
coordinates and (if necessary) velocities of each atom in
every defined moment of time. Together with informa-
tion about the molecular topology, this creates a huge
array of raw MD data, that require further processing.

Although many libraries and ready-to-use applications
for MD data processing exist, e.g.: MMTK [2], CPPTRAJ
[3], HTMD [4], LOOS/PyLOOS [5], MDAnalysis [6],
MDTraj [7], Pteros [8, 9], VMD [10], ST-Analyzer [11],
GROMACS [12], there is, in our opinion, a prominent
need today for mid-level tools for large-scale MD data
analysis, which allow users with basic programming skills
to adapt existing code to new tasks relatively easy and
quickly. This need was further stimulated by the neces-
sity for straightforward and flexible implementation of
our original techniques of biomolecular simulations and
analysis methods, accumulated over more than 20 years
of work in this field (see some of the relevant reviews:
[13–15]) and resulted in the development of the inte-
grated framework for simulations and computational
analysis of complex molecular ensembles. The MD tra-
jectory processing is a core part of the framework.

Open Access

BMC Research Notes

*Correspondence: krylovna@gmail.com
1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian
Academy of Sciences, Miklukho‑Maklaya st. 16/10, Moscow 117997,
Russian Federation
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4520-0351
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-021-05536-5&domain=pdf

Page 2 of 4Krylov and Efremov ﻿BMC Res Notes (2021) 14:124

Despite the existence of the modern tng storage format
and the optimized library handling tng input and output
(I/O) operations [16], the older xtc format and the xdrfile
library (a standalone part of the GROMACS package for
reading and writing trr and xtc files) are still commonly
used.

In this work, we propose a ready-to-use libxtc library
for reading MD trajectory files written in xtc format
which is a part of our in-house integrated framework.
The efficiency of libxtc is demonstrated for several bio-
molecular systems of different size.

Main text
Methods
Preliminary performance measurements have shown that
the xtc frame reading algorithm [17] is primarily com-
pute-bound. Therefore multi-threaded parallelization
can be used to increase read speed employing the proper
workload distribution scheme. The scheme implemented
in libxtc is simple: each thread reads the control bits
from the input file and, depending on the thread index
and iteration counter of the main loop, either unpacks
the current data block or skips several consecutive data
blocks starting from the current one (see Additional
file 1: Algorithm S1). Hence, the full decompression time
is reduced when using more than one central processing
unit (CPU), since the control bits reading time is small
compared to the time of unpacking the data block. The
number of atomic coordinates in a single data block
(batch size) is adjusted at runtime to keep the workload
disbalance between threads below ~ 20% for small sys-
tems (< 104 atoms), while the batch size is fixed for larger
ones as it has little effect on read rate when the number
of atoms is greater than ~ 105 according to performance
measurements. Furthermore, to take advantage of mod-
ern CPU capabilities, an intermediate 64-bit buffer was
added allowing aligned memory access and making bit
reading from memory faster. To speed up inner loops,
64- and 128-bit integer arithmetic operations were used,
if they were supported by the compiler and the target
CPU. These techniques are similar to those applied in the
tng library [16], but were developed independently.

The libxtc library implements frame search and skip
algorithm intended for the trajectory file containing
frames with the monotonically increasing time.

Results
To test the optimization techniques implemented in the
library, we compared the performance of libxtc, xdrfile
and tng using MD trajectories obtained for the molecu-
lar systems enumerated in Additional file 1: Table S1. The
test systems were selected based on the following crite-
ria. First, they represent real cases that are commonly

considered in biomolecular simulations. Second, they
have significantly different sizes, and still contain at least
1.5–2 × 104 atoms. For smaller systems, overall process-
ing time is typically not too sensitive to the trajectory for-
mats and compression algorithms.

Performance measurements were carried out using the
hardware and software components listed in Additional
file 1: Table S2. The results obtained are shown in Addi-
tional file 1: Table S3 and Figure S1. To collect the results
and estimate the steady-state reading speed, 1000 frames
were read 20 times for each format. To calculate the aver-
age reading speed and its standard deviation, the values
of the reading speed from each run were used. The same
procedure was applied to evaluate xtc reading speedup in
multithreaded mode.

A tng-compressed trajectory has single frame in each
frame set, otherwise the performance of the algorithm
drops proportionally to the number of frames in the set.
Inter-frame compression gives the output file ~ 20–30%
smaller than xtc-compressed, but this gain only appears
when the output time step is less than 10 fs, which makes
inter-frame compression impractical.

The second set of tests is aimed at measuring the
dependence of the performance of libxtc on the num-
ber of CPUs (Additional file 1: Figure S1). To estimate
the acceleration, only the decompression time was taken
into account due to the aforementioned observation that
measurement results are significantly influenced by the
hardware. The tng and xdrfile acceleration data are not
shown, due to the single threaded structure of their code.

Discussion
In all cases libxtc performance was about 1.5–1.8 times
higher than xdrfile, but c.a. 1.4 times lower than tng.
However, additional tests with other hardware have dem-
onstrated that the read rate varies considerably depend-
ing on the hardware running the test code, and both
the read rate values for each algorithm and the pairwise
relative performance of the algorithms deviate from the
data in Additional file 1: Table S3. It is not possible to
test every possible hardware setup, but the performance
data obtained for an additional modern configuration is
shown in Additional file 1: Table S4 to illustrate the range
of possible performance values. Along the way, it can be
noted that an observable increase in the decompression
rate of xtc frames was achieved with a fairly simple opti-
mizations and code restructuring.

Additional file 1: Figure S1 shows that the slope of the
acceleration coefficient curve for 1–4 CPUs is about 0.5,
which indicates that the performance gain is not ideal. In
addition, the speedup saturates when using more than 4
CPUs. This is rather expected because the time spent by
each CPU while reading input data control bits and the

Page 3 of 4Krylov and Efremov ﻿BMC Res Notes (2021) 14:124 	

time required to begin and end parallel code execution
do not decrease when using more processors. This irre-
ducible overhead leads to a faster saturation of the accel-
eration gain for small systems. Still, the maximal achieved
read rate is comparable to that of tng. It was ~ 600 frames
per second for the medium system and ~ 350 frames per
second for the large one (according to the separate set of
test runs), so the proposed algorithm meets the stated
requirements. However, there should be some space to
improve it even in single-threaded mode—this is clearly
illustrated by the performance of the tng file I/O library.

Additional file 1: Table S3 shows that the overall
improvement in storage format and compression algo-
rithms has its cost in terms of storage requirements per
atom. For the largest system with a write interval of 100
picoseconds, a tng-compressed file consumes about 30%
more storage space than a compressed xtc one. In other
words, one has to consider a compromise: (i) faster com-
pression/decompression, but a larger file size for tng; or
(ii) smaller files, but a lower read rate for xtc, when using
existing software.

Conclusion
The libxtc library, that combines processing speed of
the modified decompression algorithm with storage
efficiency of the old but widely used xtc file format, can
accelerate analysis of long MD trajectories containing
lots of atoms—typical for many currently studied bio-
logical system models. The libxtc is meant to be used as a
standalone package or be integrated into the existing MD
analysis software.

Limitations
Optimizations implemented in libxtc either reduce or
eliminate the performance gap between the xtc and tng
formats when the number of atoms in the MD system
is large (but less then ~ 108 particles, due to xtc file for-
mat limitation) and the recording interval is greater than
5–10 fs, due to reduction of the interframe compression
algorithm effectiveness, mentioned above. It is impor-
tant to note that most of biologically relevant systems—
proteins, biomembranes, and so on—meet the stated
criteria. Therefore, libxtc seems to be promising for the
processing of MD results obtained for this wide class of
biological objects.

Regardless of the storage format used, the difference in
trajectory processing speed will be more pronounced for
tasks that require a comparable amount of time to read
the trajectory and perform required calculations.

Abbreviations
CPU: Central processing unit; fs: Femtosecond; I/O: Input and output; MD:
Molecular dynamics.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13104-​021-​05536-5.

Additional file 1. Supplementary Materials. This file contains data
(pseudo-code, tables, figure) referenced in the text.

Acknowledgements
Supercomputer calculations for test systems 2 and 3 were carried out in the
framework of the Russian Foundation for Basic Research (Grant 19-04-00350),
Basic Research Program at the National Research University Higher School of
Economics and the Russian Academic Excellence Project ’5-100’.

Authors’ contributions
NAK wrote the code, performed data analysis and wrote the paper. RGE super-
vised the research, discussed the results and wrote the paper. All authors read
and approved the final manuscript.

Funding
This work was supported by the Russian Science Foundation project
19-74-30014.

Availability of data and materials
The datasets analysed during the current study are available from the cor-
responding author on reasonable request.

Availability and requirements
Project name: libxtc.
Project home page: https://​gitlab.​com/​impul​se_​md/​libxtc.
Operating systems: All CPython-supported OS. The pre-built binary packages
for Linux, Windows, macOS (x86 or amd64 CPU).
Programming language: Python, C++.
Other requirements: numpy.
License: GNU GPL v3.

Declarations

 Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy
of Sciences, Miklukho‑Maklaya st. 16/10, Moscow 117997, Russian Federa-
tion. 2 Higher School of Economics, Myasnitskaya st. 20, Moscow 101000,
Russian Federation. 3 Research Center for Molecular Mechanisms of Aging
and Age‑related Diseases, Moscow Institute of Physics and Technology, Insti-
tutskiy per. 9, Dolgoprudny 141701, Russian Federation.

Received: 4 November 2020 Accepted: 19 March 2021

References
	1.	 Chavent M, Duncan AL, Sansom MS. Molecular dynamics simulations of

membrane proteins and their interactions: from nanoscale to mesoscale.
Curr Opin Struct Biol. 2016;40:8–16. https://​doi.​org/​10.​1016/j.​sbi.​2016.​06.​
007.

	2.	 Hinsen K. The molecular modeling toolkit: a new approach to molecular
simulations. J Comput Chem. 2000;21(2):79–85. https://​doi.​org/​10.​1002/​
(sici)​1096-​987x(20000​130)​21:2%​3c79::​aid-​jcc1%​3e3.0.​co;2-b

https://doi.org/10.1186/s13104-021-05536-5
https://doi.org/10.1186/s13104-021-05536-5
https://gitlab.com/impulse_md/libxtc
https://doi.org/10.1016/j.sbi.2016.06.007
https://doi.org/10.1016/j.sbi.2016.06.007
https://doi.org/10.1002/(sici)1096-987x(20000130)21:2%3c79::aid-jcc1%3e3.0.co;2-b
https://doi.org/10.1002/(sici)1096-987x(20000130)21:2%3c79::aid-jcc1%3e3.0.co;2-b

Page 4 of 4Krylov and Efremov ﻿BMC Res Notes (2021) 14:124

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	3.	 Roe DR, Cheatham TE III. Ptraj and cpptraj: software for processing and
analysis of molecular dynamics trajectory data. J Chem Theory Comput.
2013;9(7):3084–95. https://​doi.​org/​10.​1021/​ct400​341p.

	4.	 Doerr S, Harvey MJ, Noé F, De Fabritiis G. Htmd: high-throughput
molecular dynamics for molecular discovery. J Chem Theory Comput.
2016;12(4):1845–52. https://​doi.​org/​10.​1021/​acs.​jctc.​6b000​49.

	5.	 Romo TD, Grossfield A. Loos: an extensible platform for the structural
analysis of simulations. In: Engineering in medicine and biology society.
2009. pp. 2332–5. https://​doi.​org/​10.​1109/​iembs.​2009.​53350​65

	6.	 Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. Mdanalysis: a
toolkit for the analysis of molecular dynamics simulations. J Comput
Chem. 2011;32(10):2319–27. https://​doi.​org/​10.​1002/​jcc.​21787.

	7.	 McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernandez
CX, Schwantes CR, Wang L-P, Lane TJ, Pande VS. Mdtraj: a modern open
library for the analysis of molecular dynamics trajectories. Biophys J.
2015;109(8):1528–32. https://​doi.​org/​10.​1016/j.​bpj.​2015.​08.​015.

	8.	 Yesylevskyy SO. Pteros: fast and easy to use open-source c++ library for
molecular analysis. J Comput Chem. 2012;33(19):1632–6. https://​doi.​org/​
10.​1002/​jcc.​22989.

	9.	 Yesylevskyy SO. Pteros 2.0: evolution of the fast parallel molecular analysis
library for c++ and python. J Comput Chem. 2015;36(19):1480–8.
https://​doi.​org/​10.​1002/​jcc.​23943.

	10.	 Humphrey W, Dalke A, Schulten K. Vmd: visual molecular dynamics. J Mol
Graph. 1996;14(1):33–8. https://​doi.​org/​10.​1016/​0263-​7855(96)​00018-5.

	11.	 Jeong JC, Jo S, Wu EL, Qi Y, Monje-Galvan V, Yeom MS, Gorenstein L, Chen
F, Klauda JB, Im W. St-analyzer: a web-based user interface for simulation
trajectory analysis. J Comput Chem. 2014;35(12):957–63. https://​doi.​org/​
10.​1002/​jcc.​23584.

	12.	 Hess B, Kutzner C, van der Spoel D, Lindahl E. Gromacs 4: algorithms
for highly efficient, load-balanced, and scalable molecular simulation. J

Chem Theory Comput. 2008;4(3):435–47. https://​doi.​org/​10.​1021/​ct700​
301q.

	13.	 Efremov RG, Chugunov AO, Pyrkov TV, Priestle JP, Arseniev AS, Jacoby E.
Molecular lipophilicity in protein modeling and drug design. Curr Med
Chem. 2007;14(4):393–415. https://​doi.​org/​10.​2174/​09298​67077​79941​
050.

	14.	 Polyansky AA, Volynsky PE, Efremov RG. Structural, dynamic, and func-
tional aspects of helix association in membranes: a computational view.
In: Donev R, editor. Advances in protein chemistry and structural biology,
vol. 83. Cambridge: Elsevier; 2011. p. 129–61. https://​doi.​org/​10.​1016/​
b978-0-​12-​381262-​9.​00004-5.

	15.	 Bocharov EV, Mineev KS, Pavlov KV, Akimov SA, Kuznetsov AS, Efremov
RG, Arseniev AS. Helix-helix interactions in membrane domains of bitopic
proteins: specificity and role of lipid environment. Biochim Biophys Acta
Biomembr. 2017;1859(4):561–76. https://​doi.​org/​10.​1016/j.​bbamem.​2016.​
10.​024.

	16.	 Lundborg M, Apostolov R, Spangberg D, Gardenas A, Spoel D, Lindahl E.
An efficient and extensible format, library, and api for binary trajectory
data from molecular simulations. J Comput Chem. 2014;35(3):260–9.
https://​doi.​org/​10.​1002/​jcc.​23495.

	17.	 Spangberg D, Larsson DS, van der Spoel D. Trajectory ng: portable,
compressed, general molecular dynamics trajectories. J Mol Model.
2011;17(10):2669–85. https://​doi.​org/​10.​1007/​s00894-​010-​0948-5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1021/ct400341p
https://doi.org/10.1021/acs.jctc.6b00049
https://doi.org/10.1109/iembs.2009.5335065
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1002/jcc.22989
https://doi.org/10.1002/jcc.22989
https://doi.org/10.1002/jcc.23943
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1002/jcc.23584
https://doi.org/10.1002/jcc.23584
https://doi.org/10.1021/ct700301q
https://doi.org/10.1021/ct700301q
https://doi.org/10.2174/092986707779941050
https://doi.org/10.2174/092986707779941050
https://doi.org/10.1016/b978-0-12-381262-9.00004-5
https://doi.org/10.1016/b978-0-12-381262-9.00004-5
https://doi.org/10.1016/j.bbamem.2016.10.024
https://doi.org/10.1016/j.bbamem.2016.10.024
https://doi.org/10.1002/jcc.23495
https://doi.org/10.1007/s00894-010-0948-5

	libxtc: an efficient library for reading XTC-compressed MD trajectory data
	Abstract
	Objective:
	Results:

	Introduction
	Main text
	Methods
	Results
	Discussion

	Conclusion
	Limitations
	Acknowledgements
	References

