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Abstract 

Objective:  The purpose of this work is to optimize the processing of molecular dynamics (MD) trajectory data 
obtained for large biomolecular systems. Two popular software tools were chosen as the reference: the tng and 
the xdrfile libraries. Current implementation of tng algorithms and library is either fast or storage efficient and 
xdrfile is storage efficient but slow. Our aim was to combine speed and storage efficiency through the xdrfile’s code 
modification.

Results:  Here we present libxtc, a ready-to-use library for reading MD trajectory files in xtc format. The effectiveness 
of libxtc is demonstrated for several biomolecular systems of various sizes (~ 2 × 104 to ~ 2 × 105 atoms). In sequen-
tial mode, the performance of libxtc is up to 1.8 times higher and 1.4 times lower than xdrfile and tng, respectively. In 
parallel mode, libxtc is about 3 and 1.3 times faster than xdrfile and tng. At the same time, MD data stored in the xtc 
format require about 1.3 times less disk space than those treated with the tng algorithm in the fastest reading mode, 
which is a noticeable saving especially when the MD trajectory is long and the number of atoms is large—this applies 
to most biologically relevant systems.
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Introduction
Molecular dynamics (MD) is one of the most powerful 
and widely used methods for atomistic modeling of bio-
logical systems. It is often employed to study such phe-
nomena as protein folding, assembly and binding to cell 
membranes, protein–protein and protein–ligand inter-
actions, and many others (see [1] for recent review). The 
results of the MD experiment are stored in the so-called 
MD trajectory file, which contains information about the 
coordinates and (if necessary) velocities of each atom in 
every defined moment of time. Together with informa-
tion about the molecular topology, this creates a huge 
array of raw MD data, that require further processing.

Although many libraries and ready-to-use applications 
for MD data processing exist, e.g.: MMTK [2], CPPTRAJ 
[3], HTMD [4], LOOS/PyLOOS [5], MDAnalysis [6], 
MDTraj [7], Pteros [8, 9], VMD [10], ST-Analyzer [11], 
GROMACS [12], there is, in our opinion, a prominent 
need today for mid-level tools for large-scale MD data 
analysis, which allow users with basic programming skills 
to adapt existing code to new tasks relatively easy and 
quickly. This need was further stimulated by the neces-
sity for straightforward and flexible implementation of 
our original techniques of biomolecular simulations and 
analysis methods, accumulated over more than 20 years 
of work in this field (see some of the relevant reviews: 
[13–15]) and resulted in the development of the inte-
grated framework for simulations and computational 
analysis of complex molecular ensembles. The MD tra-
jectory processing is a core part of the framework.
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Despite the existence of the modern tng storage format 
and the optimized library handling tng input and output 
(I/O) operations [16], the older xtc format and the xdrfile 
library (a standalone part of the GROMACS package for 
reading and writing trr and xtc files) are still commonly 
used.

In this work, we propose a ready-to-use libxtc library 
for reading MD trajectory files written in xtc format 
which is a part of our in-house integrated framework. 
The efficiency of libxtc is demonstrated for several bio-
molecular systems of different size.

Main text
Methods
Preliminary performance measurements have shown that 
the xtc frame reading algorithm [17] is primarily com-
pute-bound. Therefore multi-threaded parallelization 
can be used to increase read speed employing the proper 
workload distribution scheme. The scheme implemented 
in libxtc is simple: each thread reads the control bits 
from the input file and, depending on the thread index 
and iteration counter of the main loop, either unpacks 
the current data block or skips several consecutive data 
blocks starting from the current one (see Additional 
file 1: Algorithm S1). Hence, the full decompression time 
is reduced when using more than one central processing 
unit (CPU), since the control bits reading time is small 
compared to the time of unpacking the data block. The 
number of atomic coordinates in a single data block 
(batch size) is adjusted at runtime to keep the workload 
disbalance between threads below ~  20% for small sys-
tems (< 104 atoms), while the batch size is fixed for larger 
ones as it has little effect on read rate when the number 
of atoms is greater than ~ 105 according to performance 
measurements. Furthermore, to take advantage of mod-
ern CPU capabilities, an intermediate 64-bit buffer was 
added allowing aligned memory access and making bit 
reading from memory faster. To speed up inner loops, 
64- and 128-bit integer arithmetic operations were used, 
if they were supported by the compiler and the target 
CPU. These techniques are similar to those applied in the 
tng library [16], but were developed independently.

The libxtc library implements frame search and skip 
algorithm intended for the trajectory file containing 
frames with the monotonically increasing time.

Results
To test the optimization techniques implemented in the 
library, we compared the performance of libxtc, xdrfile 
and tng using MD trajectories obtained for the molecu-
lar systems enumerated in Additional file 1: Table S1. The 
test systems were selected based on the following crite-
ria. First, they represent real cases that are commonly 

considered in biomolecular simulations. Second, they 
have significantly different sizes, and still contain at least 
1.5–2 × 104 atoms. For smaller systems, overall process-
ing time is typically not too sensitive to the trajectory for-
mats and compression algorithms.

Performance measurements were carried out using the 
hardware and software components listed in Additional 
file 1: Table S2. The results obtained are shown in Addi-
tional file 1: Table S3 and Figure S1. To collect the results 
and estimate the steady-state reading speed, 1000 frames 
were read 20 times for each format. To calculate the aver-
age reading speed and its standard deviation, the values 
of the reading speed from each run were used. The same 
procedure was applied to evaluate xtc reading speedup in 
multithreaded mode.

A tng-compressed trajectory has single frame in each 
frame set, otherwise the performance of the algorithm 
drops proportionally to the number of frames in the set. 
Inter-frame compression gives the output file ~ 20–30% 
smaller than xtc-compressed, but this gain only appears 
when the output time step is less than 10 fs, which makes 
inter-frame compression impractical.

The second set of tests is aimed at measuring the 
dependence of the performance of libxtc on the num-
ber of CPUs (Additional file  1: Figure S1). To estimate 
the acceleration, only the decompression time was taken 
into account due to the aforementioned observation that 
measurement results are significantly influenced by the 
hardware. The tng and xdrfile acceleration data are not 
shown, due to the single threaded structure of their code.

Discussion
In all cases libxtc performance was about 1.5–1.8 times 
higher than xdrfile, but c.a. 1.4 times lower than tng. 
However, additional tests with other hardware have dem-
onstrated that the read rate varies considerably depend-
ing on the hardware running the test code, and both 
the read rate values for each algorithm and the pairwise 
relative performance of the algorithms deviate from the 
data in Additional file  1: Table  S3. It is not possible to 
test every possible hardware setup, but the performance 
data obtained for an additional modern configuration is 
shown in Additional file 1: Table S4 to illustrate the range 
of possible performance values. Along the way, it can be 
noted that an observable increase in the decompression 
rate of xtc frames was achieved with a fairly simple opti-
mizations and code restructuring.

Additional file 1: Figure S1 shows that the slope of the 
acceleration coefficient curve for 1–4 CPUs is about 0.5, 
which indicates that the performance gain is not ideal. In 
addition, the speedup saturates when using more than 4 
CPUs. This is rather expected because the time spent by 
each CPU while reading input data control bits and the 
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time required to begin and end parallel code execution 
do not decrease when using more processors. This irre-
ducible overhead leads to a faster saturation of the accel-
eration gain for small systems. Still, the maximal achieved 
read rate is comparable to that of tng. It was ~ 600 frames 
per second for the medium system and ~ 350 frames per 
second for the large one (according to the separate set of 
test runs), so the proposed algorithm meets the stated 
requirements. However, there should be some space to 
improve it even in single-threaded mode—this is clearly 
illustrated by the performance of the tng file I/O library.

Additional file  1: Table  S3 shows that the overall 
improvement in storage format and compression algo-
rithms has its cost in terms of storage requirements per 
atom. For the largest system with a write interval of 100 
picoseconds, a tng-compressed file consumes about 30% 
more storage space than a compressed xtc one. In other 
words, one has to consider a compromise: (i) faster com-
pression/decompression, but a larger file size for tng; or 
(ii) smaller files, but a lower read rate for xtc, when using 
existing software.

Conclusion
The libxtc library, that combines processing speed of 
the modified decompression algorithm with storage 
efficiency of the old but widely used xtc file format, can 
accelerate analysis of long MD trajectories containing 
lots of atoms—typical for many currently studied bio-
logical system models. The libxtc is meant to be used as a 
standalone package or be integrated into the existing MD 
analysis software.

Limitations
Optimizations implemented in libxtc either reduce or 
eliminate the performance gap between the xtc and tng 
formats when the number of atoms in the MD system 
is large (but less then ~ 108 particles, due to xtc file for-
mat limitation) and the recording interval is greater than 
5–10 fs, due to reduction of the interframe compression 
algorithm effectiveness, mentioned above. It is impor-
tant to note that most of biologically relevant systems—
proteins, biomembranes, and so on—meet the stated 
criteria. Therefore, libxtc seems to be promising for the 
processing of MD results obtained for this wide class of 
biological objects.

Regardless of the storage format used, the difference in 
trajectory processing speed will be more pronounced for 
tasks that require a comparable amount of time to read 
the trajectory and perform required calculations.
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