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Cerebrovascular rupture can cause a severe stroke. Three-dimensional time-of-flight (TOF) magnetic resonance angiography
(MRA) is a common method of obtaining vascular information. This work proposes a fully automated segmentation method for
extracting the vascular anatomy from TOF-MRA. The steps of the method are as follows. First, the brain is extracted on the
basis of regional growth and path planning. Next, the brain’s highlighted connected area is explored to obtain seed point
information, and the Hessian matrix is used to enhance the contrast of image. Finally, a random walker combined with seed
points and enhanced images is used to complete vascular anatomy segmentation. The method is tested using 12 sets of data and
compared with two traditional vascular segmentation methods. Results show that the described method obtains an average Dice
coefficient of 90.68%, and better results were obtained in comparison with the traditional methods.

1. Introduction

Vascular malformations caused by vascular stenosis and
aneurysms have become the leading cause of cerebrovascu-
lar diseases [1] and pose a significant threat to human
health. Time-of-flight (TOF) magnetic resonance angiogra-
phy (MRA) is a clinical cerebrovascular angiography
technology with noninvasive, rapid, and high-resolution
characteristics and has been widely used in the diagnosis
and treatment of cerebrovascular diseases. When multiple
scales of blood vessels, image noise, and uneven contrast
are present, obtaining anatomical structures of precise
blood vessels from TOF images is critical for the diagnosis
and quantitative analysis of cerebrovascular diseases. More-
over, accurate cerebrovascular segmentation is an essential
prerequisite for neurosurgical planning and navigation.
Therefore, designing an accurate segmentation of cerebro-
vascular vessels has received extensive attention from
researchers in related fields.

This work proposes an automatic algorithm to obtain
seed points in the TOF-MRA image and overcome the diffi-
culties of the abovementioned methods. Given that the blood
vessel branching volume is usually small and the contrast is
low, blood vessels are difficult to detect in the original TOF
image; thus, the Hessian matrix of the TOF-MRA image of
the multiscale space is used to calculate the enhanced blood
vessel image. At last, the vascular structure is segmented on
the enhanced blood vessel image via the random walker
method in combination with the acquired seed points. The
main contributions are as follows: First, a fully automatic
cerebrovascular segmentation method is proposed, and a
control experiment is designed to verify the segmentation
accuracy. Second, the proposed length-strained enhance-
ment method can effectively improve the segmentation accu-
racy. Finally, the influence of the random walker parameter
was explored, and the best plan was applied.

This work is organized as follows. Related research work
is explored in Section 2. A detailed description of the
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proposed method is presented in Section 3. Experiments and
the overall performance are introduced in Section 4. Finally,
Section 5 discusses the conclusion.

2. Related Work

Many methods for segmenting 3D cerebrovascular structures
from TOF-MRA images have been proposed [2]. Common
methods include tracking-based segmentation, statistical
model-based methods, and neural network-based methods.

Tracking-based methods typically track adjacent edges
sequentially from a point in the image through a specific
search mechanism. All search processes are completed by
following a given termination condition to ultimately
capture the entire vascular structure. This approach often
achieves good results when combined with connectivity
information and edge detection techniques. Schneider
et al. [3] proposed a new joint 3D vessel segmentation
and centerline extraction framework based on multivariate
Hough voting and tilted random forest (RF) by learning
from noisy annotations. This method relies on steerable
filters to efficiently compute the local image features of
different scales and orientations. Wei et al. [4] introduced
a grid centerline extraction method that combines a series
of advanced techniques in branch segmentation schemes
and discrete geometry processing to solve the challenging
problem of vascular centerline extraction. Oliveira et al.
[5] iteratively tracked a whole vascular network by using
a single starting point in the basis of a sample point cloud
distributed over a concentric spherical layer. A container
model and a sample point matching degree with the
model were proposed. Network tracking is implemented
as a minimum cost flow problem, and a novel optimiza-
tion scheme is proposed to iteratively track vascular struc-
tures by inherently processing the bifurcation and path.
Because the tracking-based vascular structure segmentation
algorithm is based on the blood vessels with continuous
structural features, the high integrity of the vascular struc-
ture is required. The method must also specify the initial
point as the starting point of the local operator and is
highly dependent on the initial parameters.

The statistical model-based approach is a typical method
of cerebrovascular segmentation based on the principles of
Bayesian statistical classification. This method constructs
two gray distribution functions to fit the background and
blood vessels in the image. The threshold of vessel segmen-
tation is obtained by optimizing the grayscale distribution
function. Wen et al. [6] proposed a method based on auto-
matic statistical strength to extract 3D cerebrovascular struc-
tures from TOF-MRA data. The intensity histogram of the
brain image sequence is fitted using a finite mixed model
in which the cerebrovascular structure is modeled by a
Gaussian distribution function, while the Gaussian and
Rayleigh distribution functions model other low-intensity
tissues. Lu et al. [7] used a multiscale filtering algorithm to
enhance the blood vessels and suppress noise, thereby
enabling new statistical features for filtered data. A hybrid
model formed by three probability distributions (two expo-
nential distributions and one Gaussian distribution) is estab-

lished to fit a histogram curve of the filtered data, wherein an
expectation maximization (EM) algorithm is used for
parameter estimation. Finally, a 3D Markov random field
is used to improve the accuracy of pixel classification and
posterior probability estimation. Lu et al. [8] proposed an
improved variation level set method that uses nonlocal
robust statistics to suppress the effects of noise in MR
images. Nonlocal robust statistics representing vascular fea-
tures are learned adaptively from the seeds provided by the
user, and K-means clustering in the seed neighborhood is
used to exclude seeds that are affected by noise. The neigh-
borhood of the appropriate seed is placed in the array to cal-
culate nonlocal robust statistics, and a variation level set can
be constructed. Deviation correction is used in the level set
formulation to reduce the effect of intensity nonuniformity
of the MRI. Given that the blood vessels are mainly located
in the high-intensity region of the TOF-MRA data set, the
high-intensity large blood vessels can be easily distinguished
when a blood vessel is segmented using a statistical model-
based method. However, given their low intensity, the small
blood vessels are difficult to identify by using statistical
models.

A deep convolutional neural network is a common
method in processing cerebrovascular segmentation in
TOF-MRA images. Image segmentation and vascular extrac-
tion methods based on neural networks are mainly used to
simulate the learning process of biology, and many elements
simulating the mechanism of biological learning constitute a
network. Driven by the blood vessel calibration data set, the
network parameters are gradually converged to obtain the
final network structure for use in the segmentation of the
blood vessels. Liskowski and Krawiec [9] proposed a super-
vised segmentation technique using deep neural networks
to train large (up to 400,000) samples. These samples are
normalized by global contrast, zero-phase whitened, and
enhanced with geometric transformations and gamma
correction. Several variations of this approach, including
structured prediction, where the network simultaneously
classifies multiple pixels, have been considered. Dasgupta
and Singh [10] developed the segmentation task as a multi-
tag reasoning task and exploited the implicit advantages of
convolutional neural networks (CNN) combined with struc-
tured prediction. Fu et al. [11] developed the vascular
segmentation problem as a boundary detection task and
solved it by using a novel deep learning architecture. The
approach is based on two key ideas: the application of multi-
scale and multilevel CNN with side output layers to learn
rich hierarchical representations and the remote interaction
between conditional random field (CRF) analog pixels. CNN
and CRF layers are combined into an integrated deep net-
work called DeepVessel. The neural network method relies
on the data set to obtain convergence, which requires a large
amount of labeled data. In practical applications, this tech-
nique depends on the operating speed and storage capacity
of the device. However, given that numerous studies are
mainly based on slide by slide, obtaining all 3D texture
information effectively is impossible. Therefore, accurate
and low-cost segmentation is a significant problem in neural
network methods.
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3. Methods

As can been seen from Figure 1, the main steps of the
proposed automatic blood vessel segmentation method
can be divided into the following four parts. First, the
brain features in the TOF-MRA image are combined,
and the brain region is extracted on the basis of the region
growth and the cost-optimal path. Second, a set of seed
points is automatically obtained in conjunction with the
high-brightness structure and connectivity of the blood
vessels. Third, spatial multiscale angiographic enhance-
ment maps are constructed and special judgments are
made on the basis of noise and small structures. Finally,
the segmented 3D vascular structure is obtained via the
random walker method based on the detected seed point
set and vascular enhanced image.

3.1. Extraction of the Brain. The region of interest in the
brain-filled region should be located to obtain an accurate
cerebrovascular image. The present work uses regional
growth to initially segment low-intensity tissues adjacent
to the brain, such as the skull and cerebrospinal fluid
regions. Thus, the threshold ranges and seed points for
seed growth must be defined. The gray histogram of the
TOF slice is calculated and divided into two regions,
namely, the brain and the nonbrain regions. A mixed
Gaussian model is established to simulate the distribution
of the histogram, where i = 1, 2,⋯,m indicating the num-
ber of samples. The gray value is the only feature. The K
value is 2, which corresponds to two regions: one part rep-
resents the skull (the background of which is of low inten-
sity), and the other part corresponds to the blood vessels,
brain, nose, and eye area. A previous work [12] estimated
the parameters by using the expected maximum method.
However, in the mixed Gaussian model, the maximum
likelihood function contains a logarithm and cannot be
maximized via summation. In the present work, the K
clustering method is chosen to determine the initial value.

The classic Euclidean distance distedðxðiÞ, xðjÞÞ is selected as
a measure of distance and expressed as follows:

disted x ið Þ, x jð Þ
� �

= x ið Þ − x jð Þ
������
2
: ð1Þ

The brain area is determined by dividing the skull and
cerebrospinal fluid areas connected to it. Therefore, a good
threshold range is required to achieve growth in this part of
the region. A single threshold for each slice can be extracted
from the hybrid model on the basis of a minimum error clas-
sification. The extracted threshold is used as the upper
threshold TU for region growth and typically contains all or
most of the bone. The lower threshold TL is defined by the
lowest intensity value that appears in the middle image,
which typically appears in the background area. Thus, the
seed growth range T ∈ ½TL, TU� of the region growth is
obtained. The final analysis shows that the inflection point
represents the skull and nose area. Therefore, the inflection
point can be selected as the seed point of the region growth
to complete the initial segmentation.

Given that the range of thresholds does not accurately
cover all ranges, the initial segmentation has a broken struc-
ture that does not entirely enclose the brain. In accordance
with a previous work [12], the support points are extracted
on the basis of initial segmentation and connected using a
graph-based approach. Given that the 3D surface drawing
requires pillar points, 2D support points are extracted layer
by layer and a path to form a closed curve is built. The center
of gravity of the segmented skull is first calculated to extract
these support points. From this coordinate, the rays are
drawn at intervals of 22.5 degrees. The theoretical connection
portion of each ray with the region is determined, and the
shortest distance from the center of gravity is taken as the
support point. Finally, up to 16 support points Pi are
extracted. If no intersecting area of a ray is noted, the support
points obtained by the ray are no longer considered.
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Figure 1: Algorithm flowchart.
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The best path to the defined target node Pi+1 is searched
starting from the starting node Pi. A cost map is constructed
from the slice image to connect the extracted support points.
Here, the pixels of the image are represented as graphic
nodes, and edges are created between each pixel and its eight
neighbors. The cost-optimal path is then defined as the path
with the least cost, which consists of the sum of the cost of
each edge accessed from the path to the target node. The
included features are as follows: Laplacian zero-crossing f z ,
gradient magnitudef G, and gradient directionf D [13]. These
cost terms are weighted together to form the cost of the edge
lðp, qÞ between nodes p and q as follows:

l p, qð Þ = ϖG ⋅ f G qð Þ + ϖZ ⋅ f Z qð Þ + ϖD ⋅ f D qð Þ: ð2Þ

The presence of bone marrow interference leads to incor-
rect segmentation. Considering that the change between the
adjacent layers is negligible, the shortest distance between
the pixel points of each layer and the adjacent layer is calcu-
lated, and the absolute value therein is taken as the distance d
between adjacent layers. The dividing line is taken as 50 sub-
region D in succession. When the minimum distance of the
subarea still satisfies d′ > d, D is considered as the disturbed
area. The cost of D is recalculated, expanding from field 9
to field 25, and a new path is regained. Figure 2 shows all
the steps above.

3.2. Seed Point Detection. Seed points are often needed to be
selected as the end of walk of the random walker [14]. A suf-
ficient number of seed points in the target range should be
ensured to increase the accuracy of the probability calcula-
tion. The nonconnected area caused by the abnormal situa-
tion, such as the lesion area and image quality interference,
should be marked separately similar to a previous study
[15]; the prior probability is used to improve the segmenta-
tion accuracy of the fracture area. Given that most of the
blood vessels in the image are characterized by small struc-
tures and blurred textures, traditional manual labeling is time
consuming and prone to omission or mislabeling.

Inspired by [16], an automatic selection scheme for seed
points is designed in the present study. The method com-
bines the following prior knowledge: (1) The angiographic

structure of the contrast-enhanced blood vessel in the image
exhibits a high-gradation gray value and has a significant
boundary gradient characteristic; thus, the blood vessel
portion can be obtained accurately under a sufficient thresh-
old constraint. (2) In the 3D view, voxel labeling is easily sub-
jected to differences in image depth and the parallax error is
judged. The traditional labeling usually adopts the layer-by-
layer processing method until the labeling ends. (3) In the
image, the blood vessels are usually presented in a tubular
structure of a connected region.

Based on the above principles, the projection of maxi-
mum intensity preserves the highlighted vascular area. We
project from angle X to Y to Z to avoid occlusion between
the blood vessels.

As can been seen in Figure 3, 2D projection map Izðx, yÞ
on the XY plane can be obtained in the Z-axis direction. The
pixel value of each point is determined by the maximum gray
value in the Z-axis direction. The Z coordinate of each
projection point is saved as the hidden variable Zp of the
point to satisfy Zpðx, yÞ = arg max

z
fVðx, y, zÞg.

Iz x, yð Þ =max
z

V x, y, zð Þf g: ð3Þ

A highlighted blood vessel partial region U ini is obtained
in Izðx, yÞ on the basis of the gray limit. The connected
domain V , which is defined as the connected domain part,
should be detected to avoid the interference caused by
local noise points. Thus, the connected domain set V =
fV1, V2,⋯, VNg in U ini can be obtained. Noise is usually
only present in the interlayer image; thus, V can deter-
mine the parts that are mainly blood vessels. Finally,
the local maximum is extracted as the seed point to further
screen and eliminate the interference, thereby satisfying the
following condition:

S = x, y, zð Þ ∣ I =max Ilocal vector x, yð Þf g, z = zp
� �

, ð4Þ

where Ilocal vector = Izðx + Δx, y + ΔxÞ
Δx =−1,0,1 andΔy =−1,0,1

is the image area

of size.

(a) (b) (c) (d)

Figure 2: Brain extraction: (a) detection of support points; (b) generation of brain boundary by support points; (c) obtained brain mask;
(d) extracted brain structure.
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If some blood vessels overlap in the MIP direction in the
projected image, their blood vessel information and number
of detected seed points will decrease. The problem of vascular
information in the same direction is overcome in the present
work by simultaneously projecting the X- and Y-axes and
obtaining the seed point sets Usx and Usy from the YZ and
XZ projection planes, respectively. Finally, the seed point
set Us is obtained to satisfy Us =Usx +Usy +Usz .

3.3. Vessel Enhancement. The image detection structure is
obtained by conducting feature analysis of the Hessian

matrix to capture the second-order structure of the local
intensity variation near each pixel, and the Hessian matrix
of the 3D medical image Iðx, y, zÞ is constructed [17] and
expressed as follows:

H = ∇2I =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

0
BB@

1
CCA, ð5Þ

where Ixx, Ixy , Ixz ,⋯, Izz correspond to the second-order
partial differentials of Iðx, y, zÞ, respectively.

In digital images, the second-order partial differentials in
the X, Y , and Z directions are represented in discrete ways:

Ixx =
∂2I
∂x2

= I x − 1, y, zð Þ + I x + 1, y, zð Þ − 2I x, y, zð Þ,

Iyy =
∂2I
∂y2

= I x, y − 1, zð Þ + I x, y + 1, zð Þ − 2I x, y, zð Þ,

Izz =
∂2I
∂z2

= I x, y, z − 1ð Þ + I x, y, z + 1ð Þ − 2I x, y, zð Þ:

8>>>>>>>><
>>>>>>>>:

ð6Þ

The corresponding mixed partial differential can be
expressed as follows:

Given that the blood vessels usually have different sizes,
the eigenvalues of multiscale Hessian matrices are usually
analyzed. The Hessian matrix precisely measures the contrast
between the inner and outer regions (−s, s), which indicates
that the scale s can represent the radius of the blood vessel.
The Hessian matrix is a symmetric matrix, and its eigen-
values λ1, λ2, and λ3 (jλ1j ≤ jλ2j ≤ jλ3j) are obtained by
calculation.

As can been seen in Figure 4, the corresponding feature
vectors are v1

!, v2
!, and v3

!. λ1 represents the change in inten-
sity along the direction of the blood vessel (v1

!), and λ2 and λ3
represent changes in intensity in the direction of the vertical
vessel (v2

! and v3
!). The blood vessels, depending on their

structure, always present tall tubular structures in MRA
images and are in contrast with the relatively dark back-
ground. The intensity change along the main direction of
the blood vessel is considerably smaller than the intensity

change along the vertical direction. A priori knowledge of
this image imaging mode can be used as a consistency test
to distinguish between the blood vessels and the rest of the
structure. Based on this observation, the eigenvalues measure
the curvature regeneration and vascular structure well. When
a pixel has a large λ2 and λ3 value and a small λ1 value, it
likely belongs to the blood vessel, as shown in the following
equation:

λ1j j ≈ 0,

λ1j j≪ λ2j j,
λ2 ≈ λ3 < 0:

8>><
>>: ð8Þ

An adjoining sphere with a radius of 1 centered on the
pixel x0 is established to quantify the differentiation criterion
of the vascular structure. The Hessian matrix is mapped onto

z

x

y

Projection direction

I
z
(x,y) = max{V(x,y,z)}

z
IIIIIIIIIIIIIIIIIIIIIIII
z
(x,y) = m

Figure 3: Schematic of the maximum intensity projection method.

Ixy = Iyx =
∂2I
∂x∂y

= I x + 1, y + 1, zð Þ + I x, y, zð Þ − I x + 1, y, zð Þ − I x, y + 1, zð Þ,

Iyz = Izy =
∂2I
∂y∂z

= I x, y + 1, z + 1ð Þ + I x, y, zð Þ − I x, y + 1, zð Þ − I x, y, z + 1ð Þ,

Ixz = Izx =
∂2I
∂x∂z

= I x + 1, y, z + 1ð Þ + I x, y, zð Þ − I x + 1, y, zð Þ − I x, y, z + 1ð Þ:

8>>>>>>>><
>>>>>>>>:

ð7Þ
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the ellipsoid structure, wherein the axial direction is given
by the eigenvalue. The axial length corresponds to the
eigenvalue.

Given that the ellipsoid is a second-order structure,
local features can be used to reflect the image detection
structure. Here, three coefficients are defined as follows:
RA, RB, and S.

RA =
La/π
Ls

2 =
λ2j j
λ3j j , ð9Þ

where La represents the largest cross-sectional area and Ls
represents the length of the largest semimajor axis. The
gray level invariance is maintained by its proportional
relationship, and only the image geometric information is
captured. This ratio can effectively distinguish between a
spherical structure and a tubular structure.

RB =
V/ 4π/3ð Þ
La/π3/2 =

λ1j jffiffiffiffiffiffiffiffiffiffiffiffi
λ2λ3j jp , ð10Þ

where V represents the volume. This ratio can be used to
effectively distinguish whether it is a sheet structure.

The volume occupied by the vascular structure is always
small; thus, random noise may occur in the same structural
features of the blood vessel. For a typical signal-to-noise

ratio, the derivative of the background pixel is usually small,
and the Hessian matrix norm can be written as follows:

S = Hk kF =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

j≤D
λj

2

vuut , ð11Þ

where D is the dimension of the image, H is the Hessian
matrix, and λj is the jth eigenvalue.

The multiscale linear filter is defined as Vðσ, xÞ, where
σmin and σmax correspond to the scale, that is, the width of
the blood vessel, and satisfies

V xð Þ = max
σmin<σ<σmax

V σ, xð Þ: ð12Þ

Taylor expansion is performed on the pixel point x to
analyze the local features of the image as follows:

I σ, x + δxð Þ ≈ I σ, xð Þ + δxT∇I σ, xð Þ + δxTH σ, xð Þδx: ð13Þ

When mapping through the Hessian matrix, the eigen-
values can be decomposed and extracted into three orthogo-
nal directions while keeping the scale factor unchanged; thus,
the local second-order structure of the image is decompos-
able. Because our eigenvector analysis gives the direction of
the minimum curvature, considering multiple directions is
unnecessary when applying the filter.

Linear filters for 3D images are constructed as follows:

where x is the voxel point in the volume data, α is the
difference control parameter between the tubular structure
and the disc structure, β is the difference control parameter
of the tubular structure and the spherical structure, and c is

the difference control parameter of the high- and low-
contrast structures.

Hλs can enhance the effective enhancement of the vascu-
lar area but is sensitive to noise background. In order to solve

A

B

X = (a1, a2, . . . , aL)XXX = (= (( (aaaaaaa111,, , aaa22222,,, .. .. .. ,,, aaaLLLLLLL)))

(a)

A

B
𝜎→

vL
(L) = (a→

v1
, a→

v2
, . . . , a→

vL
)

(b)

𝜆2

H = 
Ixx
Iyx
Izx

Ixy
Iyy
Izy

Ixz
Iyz
Izz

2I = 

𝜆3 𝜆1

𝛥

(c)

Figure 4: Relationship of the blood vessel and the Hessian matrix. (a) A continuous model of the blood vessel. (b) Discrete model of the blood
vessel. (c) Schematic of the direction eigenvalues of the Hessian matrix at the blood vessel.

Hλs σ, xð Þ =
0, λ2 > 0 or λ3 > 0,

1 − exp −
RA

2

2α2

� 	� 	
exp −

RB
2

2β2

� 	
1 − exp −

S2

2c2

� 	� 	
, else,

8><
>: ð14Þ
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this problem, nonlocal vascular path features are introduced
to distinguish between the blood vessels and noise, and the
details can be expressed as follows:

(1) Adjacency and Path. A morphological path operator was
proposed in [8] for filtering curves through a specified direc-
tion. Supposing that the point set of the discrete image is V ,
the definition a→ b indicates the presence of a path from
point A to point B in the specified direction (Figure 4(a)).
The adjacency is used to define a path of length L, which
consists of consecutively adjacent L points. The point set
X = ða1, a2,⋯, aLÞ is referred to as a path of length L,
and σLðXÞ is used to represent it.

(2) Vascular Path Exploration. Inspired by the morphological
path operator, we introduce directional information from the
Hessian matrix to form the vascular path. Eigenvector analy-
sis of the Hessian matrix indicates that the eigenvectors v1

!,
v2
!, and v3

! can be obtained to represent the direction along
the vessel and its vertical direction. Therefore, the points in
the v1

! direction and opposite direction of each point can be
merged to form a blood vessel path. Path searches for the
nearest point are based on the direction of the current point
and involve a point-by-point step (Figure 4(a)). The path
formed by the vascular direction information of length L is
represented by σv!L as follows:

σv!L Lð Þ = av!1, av!2,⋯, av!L


 �
, ð15Þ

where av!i ⟶ av!i+1 is the constituent element of the path.
When leaving the blood vessel is possible, a stopping crite-
rion for the path search should be established. The most
obvious indicator of whether the path crosses the boundary
is the local vascular response Hλs. All vessel paths should be
locally smooth, which can be enforced by limiting the change
in direction between two consecutive points in the path.
Thus, the condition for maintaining a vascular path search
may be expressed by the following equation:

v!i
T
v!i+1

��� ��� < θpath
n o

∧ Hλs að Þ > 0 : a ∈ σv!L

� �
, ð16Þ

where v!i represents the corresponding direction of the path
point from the Hessian matrix. The first term in the equation
forces the path to smoothen, and the second term ensures
local curvature regeneration. Based on the results of vascular
path analysis, the empirically chosen threshold of the
smoothing constraint is θpath = cos ðπ/6Þ.

(3) Length Correction. The radius of the blood vessel usually
varies along the blood vessel, especially at the bifurcation.
Therefore, the length of the vascular path may be long at
the center and attenuated based on the direction v1

! after path
search. However, the length of these points can be corrected
by searching for another “path” from the boundary to the
center along the vertical direction v2

! and v3
! (Figure 4(b)).

The same criteria in Equation (14) are used for unification,
and a radius length constraint is added as follows:

v!i
T
v!i+1

��� ��� < θpath
n o

∧ Hλs að Þ > 0 : a ∈ σv!L

� �
∧ L < 2sf g:

ð17Þ

The third item in Equation (15) ensures that the search
path passes through the center point of the blood vessel.
The longest length in the path is selected as the final length
of the point in the same cross section of the blood vessel.

We propose a length-limited vascular enhancement as
follows:

RL að Þ =
max Hλs að Þ: a ∈ σv!L Xð Þ� �

,

Hλs að Þ,
min Hλs að Þ: a ∈ σv!L Xð Þ� �

,

8>><
>>: ð18Þ

where Lmax manually sets a constant to mean the minimum
length of the blood vessel and Lmin is the certain maximum
length of the nonvascular object. The basic idea of RL is to
choose the appropriate response for all points in the same
vessel path; it can increase the response of long paths and
suppress the response of short path points.

3.4. Random Walker Segmentation. A random walk map is
constructed following the condition (Figure 5), where V is
the set of vertices in the map, v ∈ V ; E is the set of undirected
edges of the vertices in the map, e ∈ E ⊆V ×V ; and eij repre-
sents the connection relationship between the vertices vi and
vj. The definition of the edge weight can reflect the similarity
between adjacent points, and the Gaussian weighting func-
tion [15] is selected as the edge weight as follows:

wij = exp −β gi − gj

� �2
� 	

, ð19Þ

where gi is the gray value of the vertex vi, and β parameter is
the influence of the gray value.

We can calculate the probability of the nonmarked point
moving to the seed point which can be calculated by obtain-
ing the edge weight, and the maximum probability is taken as
the newmark of the point; finally, image segmentation can be
realized. A previous work [18] proved that the process of
solving probabilities can be transformed into the classical
Dirichlet problem, which involves finding the harmonic
function as a solution to a specified partial differential
equation in a given region and taking a predetermined
value on the boundary. The harmonic function satisfies
Laplace’s equation ∇2u = 0 and corresponds to the Euler–
Lagrange equation of the Dirichlet integral D½u�; thus,
the solution at which the Dirichlet integral reaches the
minimum value is the desired harmonic function, where
D½u� = ð1/2ÞÐ

Ω
j∇uj2dΩ.
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A Laplacian matrix L of the map G is created as follows:

Lij =

dij, when i = j,

−wij, when vi and vj are adjacent,

0, others,

8>><
>>: ð20Þ

where L satisfies the condition L = ATCA and di is the degree
of the vertex vi, that is, the sum of all the edge weights of the
connected vertices,di =∑wij. A is an associative matrix of
edges and vertices and satisfies Equation (21). C is the
constitutive matrix of G, which is defined as a diagonal
matrix, and the diagonal elements are the weights of the
corresponding edges.

Aeijvk
=

+1, when i = k,

−1, when j = k,

0, others:

8>><
>>: ð21Þ

Therefore, a discrete form of Dirichlet’s integral D½u� is
obtained as follows:

D x½ � = 1
2

Axð ÞTC Axð Þ = 1
2
xTLx =

1
2
〠
ei j∈E

wij xi − xj

 �2

: ð22Þ

A discrete harmonic function x that satisfies D½x� min-
imization is required. Given that L is a semidefinite
matrix, D½x� has a unique minimum value. The vertex V
consists of a marked point Us and an unmarked point
Uu, satisfying Uu ∪Us =V , Uu ∩Us = ∅. Further decom-
position of D½x� yields

D xu½ � = 1
2

xs
Txu

T
 � LM B

BT LU

" #
xs

xu

" #

=
1
2

xs
TLuxs + 2xuTBTxs + xu

TLuxu

 �

,

ð23Þ

where xs and xu correspond to the probability of marked and
unmarked points, respectively. D½xu� is solved to differentiate
xu and the extreme point is sought through zero: Luxu =
−BTxs. Let xi

s be the probability that vertex x belongs to
label s. The s-tag set is defined as QðvjÞ = s, ∀vj ∈Us,
where 0 < s ≤ K , and K is the number of all seed points.
For ∀vj ∈Us, define

mj
s =

1, whenQ vj

 �

= s,

0, whenQ vj

 �

≠ s:

(
ð24Þ

The solution to the Dirichlet problem is LUX = −BTM.
The sum of all probabilities in which any vertex is satisfied
is 1, that is, ∑sxi

s = 1, ∀vi ∈ V .

4. Experiments and Results

We randomly selected 12 sets of TOF-MRA data from the
open head magnetic resonance data set [19] on the network
to verify the reliability of the proposed method. The data
were generated by an MRI scanner under 3T, the data sam-
pling interval was was 0:5mm × 0:5mm × 0:8mm, and the
corresponding image size was 448 × 448 × 128. Each set of
data was manually segmented by a medical imaging specialist
as the gold standard for evaluation. The test environment was
an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and
3.41GHz CPU processor with a total memory of 16GB. Data
preprocessing and segmentation were performed in Visual
Studio 2017 and MATLAB 2017.

The Dice coefficient was chosen as the empirical similar-
ity measure. Moreover, Marching Cubes [20] was chosen to
fill the extracted outline of each slice to generate a binary
3D segmentation. The Dice coefficient DðAR, BGTÞ is defined
as follows:

D AR, BGTð Þ = 2 AR ∩ BGTð Þ
AR + BGT

, ð25Þ

Background
seed point

Vascular
seed point

Weight
constraint

w
ij
 = exp (–𝛽(g

i
 – g

j
)2)

Figure 5: Random walk map to complete image segmentation, where the green point represents the background seed point, the red point
represents the vascular seed point, and their boundary is constrained by weights.
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where AR is the result of the segmentation and BGT is the
gold standard. A value close to 1 indicates a good segmen-
tation result, whereas a value close to 0 indicates a poor
consensus.

Many blood vessels, especially veins, are located in the
border area of the brain. A small difference in the boundary
area between the two segments does not result in a strong
change in the similarity measure described above. Therefore,
even if the Dice coefficient implies a good consensus, these
similarity measures cannot provide information about the
blood vessels involved in the segmentation. Given that the
pretreatment step as an improved vessel segmentation and
visualization is one of the main tasks of the proposed
method, the FPR and FNR parameters are introduced herein

to quantify the inclusion rate of vascular voxels by the
automatic segmentation of the blood vessels.

FDR AR, BGTð Þ = AR ∩ BGT
C

AR + BGT
,

FNR AR, BGTð Þ = AR
C ∩ BGT

BGT
:

8>>><
>>>:

ð26Þ

Before processing, a set of preprocessing experiments was
designed to reduce image quality and images from back-
ground areas, such as nonbrain tissue. Each TOF image
sequence was first preprocessed using the histogram-based
plate boundary artifact reduction method proposed by

a2a1 a3 a4

(a)

b2b1 b3 b4

(b)

c2c1 c3 c4

(c)

Figure 6: Brain extraction: (a1–a4) an example of data at different slices; (b1–b4) detected brain mask at different slices; (c1–c4) extracted
brain at different slices.
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Kholmovski et al. [21] to reduce slice-related intensity varia-
tions caused by multiplate acquisition. Next, the N3 algo-
rithm is used to correct for in-slice intensity intensities
caused by poor RF coil uniformity [22].

Figure 6 shows the results of brain extraction at different
slices. The maximum value of the mixed model Gaussian
distribution was used as the threshold. Following the work
of Forkert et al., the parameter settings of this paper are

a2a1 a3

(a)

b2b1 b3

(b)

c1 c2 c3

(c)

Figure 7: Examples of detected seed points: (a1–a3) maximum projection of original image; (b1–b3) detected vascular seed points; (c1–c3)
detected background seed points.
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ϖGM = 0:2, ϖGD = 0:4, and ϖDE = 0:8, which show good
performance on MRA cerebrovascular images. The mask
(½0‐1�) obtained in this paper was first expanded to ensure
that the blood vessels in the marginal region of the brain
can be contained. The final mask was logically ANDed with
the original image, as Equation (27). The expanded
connected domain was 9 and the expansion coefficient was 3.

A ⊕ B = x, y, z ∣ Bð Þxyz ∩ A ≠∅
n o

: ð27Þ

The local maximum point of I > Thr in the maximum
intensity projection map was selected for the target seed
point; here, I represents the gray value of the projected image
and Thr is the selected threshold. The selection of thresholds
follows the principle of including as many targets as possible.
The local maximum ensures that the seed point is valid and
nonredundant. Avoid vascular information covering by pro-
jection, projecting three axes and removing duplicate points.
The constraints of the connected domain can prevent the
seed point set from including interference factors, such as
noise. The entire set of seed points contains a set of blood ves-
sel seed points and a set of background (nonvascular) seed
points (Figure 7).

Length-strained enhancement was applied to show the
enhanced contrast of blood vessels and improve visualiza-
tion. Figure 8 shows the extracted enhanced results of the
three sets of data, and details are shown by expanding the
window. Lmax = 100, Lmin = 9, and γ = 3 were chosen in the
present study on the basis of a previous work [17]. Here,

the original image clearly has more background interference
than the processed one. The contrast of the target area can be
effectively improved through length-strained enhancement,
and tissue interference, such as the brain, spinal cord, and
fat, can be filtered. Comparison of the experimental data of
Figures 8(a1)–8(a4) and Figures 8(b1)–8(b4) reveals that
the method has no limitation on the blood vessels of different
sizes. Therefore, if the scale threshold can be discriminated in
the subsequent processing, the method can also effectively fil-
ter out arteriovenous information. Figures 8(c1)–8(c4) show
that the limited length inhibition can increase the vascular
recognition degree and incorrect expansion of the tissue
blood vessel. However, the blood vessels in vascular
enhanced images tend to be narrower than the original data
set, which is attributed to several factors. At the boundary
of the blood vessel, the vessel’s vesselness is not strong
enough. This phenomenon may cause misjudgment of a cer-
tain background area, as shown in Figures 8(c2) and 8(c4).
This defect will be resolved by random walk segmentation.

To evaluate the performance of the proposed method,
two traditional vascular segmentation algorithms, the Chap-
man algorithm [23] and the Forkert algorithm [24], are
introduced to compare with our method. Here, three sets of
comparative experiments were set up, and the experimental
results are shown in Figure 9. Among them, Figure 9(a) is
the results of the Chapman algorithm, Figure 9(b) is the
results of the Forkert algorithm, and Figure 9(c) is the results
of the proposed algorithm. Figures 9(d) and 9(e) give the
results tested without enhancement or tested after enhance-
ment, respectively. Among them, the blue hollow histogram

a2a1 a3 a4

(a)

b2b1 b3 b4

(b)

c2c1 c3 c4

(c)

Figure 8: Vascular structures and their corresponding enhanced results: (a1–c1) original vascular structures; (a2–c2) enlarged vessels;
(a3–c3) enhanced results of (a1–c1); (a4–c4) enlarged enhanced results.
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Figure 9: Results of three sets of comparative experiments. (a–c) The results of the Chapman algorithm, Forkert algorithm, and proposed
algorithm, respectively. (d, e) The results tested without enhancement and tested after enhancement, respectively. (f) The evaluation of the
β parameters. DSC, FPR, and FNR are given as green, yellow, and blue curves, respectively.
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is DSC, the green hollow histogram is FPR, and the blue solid
histogram is FNR. Finally, Figure 9(f) shows the results of an
evaluation of the β parameters. Among these figures, DSC,
FPR, and FNR are given as green, yellow, and blue curves,
respectively. Tables 1–3 show the quantitative results of these
three sets of comparative experiments.

Table 1 gives the comparative experimental results of the
Chapman algorithm, Forkert algorithm, and our method.
Here, these three algorithms need seed points in the proce-
dure of segmentation. In the Chapman algorithm and Fork-
ert algorithm, seed points and multifeatures of the original
image are combined to extract the structures of blood vessels.
In the present work, consistent seed points were controlled as
a fixed variable of the three-group segmentation method to
eliminate the interference of subjective factors. The parame-
ters used in the proposed method were determined on the
basis of recent research [25] and experimental verification.
The parameters used in this paper are ϖGM = 0:2, ϖGD = 0:4,
ϖDE = 0:8, Lmax = 100, Lmin = 9, γ = 3, and β = 100. Finally,
the resulting data based on brain segmentation in the TOF-
MRA image were obtained.

Table 1 lists the results of the evaluation subdivision of
the proposed method. The average Dice coefficient was
90.68% compared with 80.17% and 80.70% of the other two
groups of control experiments. Moreover, FPR and FNR
were 0.57% and 13.30%, respectively. In terms of segmenta-
tion results (Figure 10), obtaining a small blood vessel branch
by using Forkert et al.’s method is difficult because of the
insufficient judgment of the details (Figures 10(b1)–10(b4)),
and its FNR index is 24.56%. The method of Chapman
et al. cannot effectively exclude the interference of the image
(Figures 10(a1)–10(a4)), and the background area is insuffi-
ciently judged with an FPR index of 50.67%. The standard
deviation of DSC is 0.037734391. The dispersion of data is
stable; hence, the proposed method has good robustness
[26]. Overall, the method proposed in the present work
achieves good performance. By employing the random walk

Table 1: The comparative results of the Chapman algorithm, Forkert algorithm, and proposed method, respectively.

Data
Chapman algorithm Forkert algorithm Proposed algorithm

FPR FNR DSC FPR FNR DSC FPR FNR DSC

V1 94.69% 1.95% 66.99% 3.45% 18.17% 88.33% 0.33% 13.76% 92.45%

V2 58.05% 1.25% 76.90% 25.97% 17.53% 79.13% 0.43% 16.02% 89.24%

V3 50.72% 0.49% 79.52% 19.07% 15.63% 82.94% 0.12% 11.75% 92.80%

V4 115.85% 0.92% 62.92% 5.77% 18.73% 86.90% 0.64% 9.21% 94.34%

V5 38.57% 0.55% 83.56% 22.32% 15.64% 81.63% 1.90% 8.03% 94.48%

V6 18.53% 0.57% 91.24% 1.53% 34.72% 78.27% 0.37% 19.55% 85.99%

V7 24.44% 1.32% 88.46% 8.72% 15.75% 87.31% 0.61% 18.45% 86.94%

V8 56.75% 0.65% 77.58% 2.55% 27.64% 82.74% 0.55% 19.89% 85.55%

V9 23.46% 0.36% 89.32% 1.13% 46.58% 69.13% 0.98% 5.70% 96.39%

V10 42.94% 1.26% 81.71% 2.31% 33.14% 79.05% 0.37% 10.86% 93.33%

V11 48.23% 1.59% 79.80% 20.75% 20.08% 79.65% 0.09% 15.31% 90.02%

V12 35.81% 1.52% 84.06% 18.85% 31.15% 73.36% 0.47% 18.89% 86.59%

Mean 50.67% 1.04% 80.17% 11.04% 24.56% 80.70% 0.57% 13.95% 90.68%

Table 2: The comparative results tested with nonenhancement and
tested after enhancement (proposed algorithm).

Data
Nonenhancement Proposed algorithm

FPR FNR DSC FPR FNR DSC

V1 9.38% 41.23% 42.58% 0.33% 13.76% 92.45%

V2 8.54% 46.68% 20.43% 0.43% 16.02% 89.24%

V3 10.52% 43.67% 33.50% 0.12% 11.75% 92.80%

V4 5.73% 43.32% 36.36% 0.64% 9.02% 94.34%

V5 3.72% 43.89% 34.67% 1.90% 8.03% 94.48%

V6 8.21% 40.93% 43.98% 0.37% 19.55% 85.99%

V7 7.66% 44.49% 30.99% 0.61% 18.45% 86.94%

V8 1.24% 41.45% 40.74% 0.55% 19.89% 85.55%

V9 1.47% 40.94% 41.49% 0.98% 5.70% 96.39%

V10 10.76% 43.08% 35.66% 0.37% 10.86% 93.33%

V11 1.23% 4.78% 15.36% 0.08% 15.31% 90.02%

V12 8.42% 44.28% 31.65% 0.47% 18.89% 86.59%

Mean 6.41% 39.90% 33.95% 0.57% 13.94% 90.68%

Table 3: Two sets of verification data with β having a range of
50-150.

Beta
Data 1 Data 2

DSC FPR FNR DSC FPR FNR

50 84.23% 10.97% 15.45% 90.66% 5.15% 11.17%

75 87.21% 4.41% 16.04% 91.72% 1.23% 1.25%

100 92.45% 0.33% 13.76% 92.84% 0.12% 11.75%

125 86.84% 0.66% 18.53% 73.62% 0.0689% 29.43%

150 82.33% 1.14% 22.62% 53.25% 40.48% 28.08%
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algorithm, this work proposes a fully automated method
including automatic acquisition of seeds. Partially complex
vascular regions require accurate clinical experience for judg-
ment, and ensuring adequate target labeling by relying only
on reasonable threshold selection is difficult. Therefore, the
high FNR index obtained is attributed to the missing seed
points. While the result is still lower than that of the control
test in Forkert’s group, the accuracy of the method generally
meets clinical requirements. If higher accuracy is required,
the clinician and related staff can manually calibrate the seed
point in combination with clinical experience.

To verify the importance of length-strained enhance-
ment, a compared nonenhancement experiment was
designed as a control group, and the results are shown in
Table 2. The method requires three steps: (1) skull stripping,
(2) seed point selection, and (3) random walk segmentation.
A single variable was controlled, and all parameters had the
same value. The results of comparative verification under this
premise are shown in Table 2. Effective contrast between the
target and the background cannot be achieved due to the lack
of length-strained enhancement. Thus, accurately finding the
structure of the blood vessel by relying on the gray limit of
random walk is difficult.

The last set of experiments verified the parameters of the
random walk, as shown in Table 3. The random walk algo-
rithm designed in this paper establishes weights based on
gray values; thus, choosing different β parameter values will
yield different results. As such, a comparison experiment of
β value parameters was designed. Here, β had a range of
50–150 and an interval of 25. Two sets of data were selected

as the verification result. The results in Table 3 indicate that
the final selected parameter value is 100.

It is worth mentioning that in the process of the random
walker, a large number of sparse matrices need to be calcu-
lated in the process of obtaining the segmentation probability
through the Lmatrix. Hence, sufficient memory and comput-
ing are necessary to obtain the result in clinical experiments.

5. Conclusions

This work presents a method for automatically segmenting
cerebrovascular vessels in 3D TOF-MRA images. Three sets
of control experiments and a set of parameter verification
experiments were designed to evaluate the proposed method.
Two of the control experiments were compared with two tra-
ditional methods, and another set of control experiments was
compared with their own variables. The results show that the
proposed method can achieve good accuracy. The image
obtained after vascular enhancement provides good results
for the spectral band provided by the random walk point.
The proposed method takes into account the structural prop-
erties of blood vessels in the TOF-MRA image and constructs
a set of seed points with appropriate thresholds. The final
result leads to a large FNR indication under the premise of
satisfying the accuracy, which is caused by the insufficient
selection of seed points. Actual conditions may have poor
contrast, such as lesions, noise, and quality blur. If high accu-
racy is required, the seed point can be manually selected by
the clinician and first-time staff. Combining this technique
with clinical knowledge can lead to precise results.

a1 a2 a3 a4

(a)

b1 b2 b3 b4

(b)

c1 c2 c3 c4

(c)

Figure 10: Segmentation results and their local segmentation details of the (a1–a4) Chapman algorithm, (b1–b4) Forkert algorithm, and
(c1–c4) proposed method.
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